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September 2, 2021

Anatomy and Disruption of Metasploit Shellcode
blog.nviso.eu/2021/09/02/anatomy-and-disruption-of-metasploit-shellcode/

In April 2021 we went through the anatomy of a Cobalt Strike stager and how some of its
signature evasion techniques ended up being ineffective against detection technologies. In
this blog post we will go one level deeper and focus on Metasploit, an often-used framework
interoperable with Cobalt Strike.

Throughout this blog post we will cover the following topics:

1. The shellcode’s import resolution – How Metasploit shellcode locates functions from
other DLLs and how we can precompute these values to resolve any imports from
other payload variants.

2. The reverse-shell’s execution flow – How trivial a reverse shell actually is.
3. Disruption of the Metasploit import resolution – A non-intrusive deception technique (no

hooks involved) to have Metasploit notify the antivirus (AV) of its presence with high
confidence.

For this analysis, we generated our own shellcode using Metasploit under version v6.0.30-
dev . The malicious sample generated using the command below had as resulting SHA256
hash of 3792f355d1266459ed7c5615dac62c3a5aa63cf9e2c3c0f4ba036e6728763903  and
is available on VirusTotal for readers willing to have a try themselves.

msfvenom -p windows/shell_reverse_tcp -a x86 > shellcode.vir 

Throughout the analysis we have renamed functions, variables and offsets to reflect their
role and improve clarity.

Initial Analysis

In this section we will outline the initial logic followed to determine the next steps of the
analysis (import resolution and execution flow analysis).

https://blog.nviso.eu/2021/09/02/anatomy-and-disruption-of-metasploit-shellcode/
https://blog.nviso.eu/2021/04/26/anatomy-of-cobalt-strike-dll-stagers/
https://blog.cobaltstrike.com/2016/01/05/interoperability-with-the-metasploit-framework/
https://www.virustotal.com/gui/file/3792f355d1266459ed7c5615dac62c3a5aa63cf9e2c3c0f4ba036e6728763903/detection
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While a typical executable contains one or more entry-points (exported functions, TLS-
callbacks, …), shellcode can be seen as the most primitive code format where initial
execution occurs from the first byte.

Analyzing the generated shellcode from the initial bytes outlines two operations:

1. The first instruction at ① can be ignored from an analytical perspective. The cld
operation clears the direction flag, ensuring string data is read on-wards instead of
back-wards (e.g.: cmd  vs dmc ).

2. The second call  operation at ② transfers execution to a function we named Main ,
this function will contain the main logic of the shellcode.

Figure 1: Disassembled shellcode calling the Main  function.
Within the Main  function, we observe additional calls such as the four ones highlighted in
the trimmed figure below (③, ④, ⑤ and ⑥). These calls target a yet unidentified function
whose address is stored in the ebp  register. To understand where this function is located,
we will need to take a step back and understand how a call  instruction operates.

Figure 2: Disassembly of the Main  function.
A call  instruction transfers execution to the target destination by performing two
operations:

1. It pushes the return address (the memory address of the instruction located after the
call  instruction) on the stack. This address can later be used by the ret  instruction

to return execution from the called function (callee) back to the calling function (caller).
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2. It transfers execution to the target destination (callee), as a jmp  instruction would.

As such, the first pop  instruction from the Main  function at ③ stores the caller’s return
address into the ebp  register. This return address is then called as a function later on,
among others at offset 0x99 , 0xA9  and 0xB8  (④, ⑤ and ⑥). This pattern, alongside the
presence of a similarly looking push  before each call  tends to suggest the return
address stored within ebp  is the dynamic import resolution function.

Without diving into unnecessary depth, a “normal” executable (e.g.: Portable Executable on
Windows) contains the necessary information so that, once loaded by the Operating System
(OS) loader, the code can call imported routines such as those from the Windows API (e.g.:
LoadLibraryA ). To achieve this default behavior, the executable is expected to have a

certain structure which the OS can interpret. As shellcode is a bare-bone version of the code
(it has none of the expected structures), the OS loader can’t assist it in resolving these
imported functions; even more so, the OS loader will fail to “execute” a shellcode file. To
cope with this problem, shellcode commonly performs a “dynamic import resolution”.

One of the most common techniques to perform “dynamic import resolution” is by hashing
each available exported function and compare it with the required import’s hash. As
shellcode authors can’t always predict whether a specific DLL (e.g.: ws3_32.dll  for
Windows Sockets) and its exports are already loaded, it is not uncommon to observe
shellcode loading DLLs by calling the LoadLibraryA  function first (or one of its
alternatives). Relying on LoadLibraryA  (or alternatives) before calling other DLLs’ exports
is a stable approach as these library-loading functions are part of kernel32.dll , one of
the few DLLs which can be expected to be loaded into each process.

To confirm our above theory, we can search for all call  instructions as can be seen in the
following figure (e.g.: using IDA’s Text...  option under the Search  menu). Apart from the
first call to the Main  function, all instances refer to the ebp  register. This observation,
alongside well-known constants we will observe in the next section, supports our theory that
the address stored in ebp  holds a pointer to the function performing the dynamic import
resolution.

Figure 3: All

call  instructions in the shellcode.

https://en.wikipedia.org/wiki/Portable_Executable
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
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The abundance of calls towards the ebp  register suggests it indeed holds a pointer to the
import resolution function, which we now know is located right after the first call to Main .

Import Resolution Analysis

So far we noticed the instructions following the initial call to Main  play a crucial role as what
we expect to be the import resolution routine. Before we analyze the shellcode’s logic, let us
analyze this resolution routine as it will ease the understanding of the remaining calls.

From Import Hash to Function

The code located immediately after the initial call to Main  is where the import resolution
starts. To resolve these imports, the routine first locates the list of modules loaded into
memory as these contain their available exported functions.

To find these modules, an often leveraged shellcode technique is to interact with the Process
Environment Block (shortened as PEB ).

In computing the Process Environment Block (abbreviated PEB) is a data structure in
the Windows NT operating system family. It is an opaque data structure that is used by
the operating system internally, most of whose fields are not intended for use by
anything other than the operating system. […] The PEB contains data structures that
apply across a whole process, including global context, startup parameters, data
structures for the program image loader, the program image base address, and
synchronization objects used to provide mutual exclusion for process-wide data
structures.

wikipedia.org

As can be observed in figure 4, to access the PEB , the shellcode accesses the Thread
Environment Block ( TEB ) which is immediately accessible through a register (⑦). The TEB
structure itself contains a pointer to the PEB  (⑦). From the PEB , the shellcode can locate
the PEB_LDR_DATA  structure (⑧) which in turn contains a reference to multiple double-
linked module lists. As can be observed at (⑨), the Metasploit shellcode leverages one of
these double-linked lists ( InMemoryOrderModuleList ) to later iterate through the
LDR_DATA_TABLE_ENTRY  structures containing the loaded module information.

Once the first module is identified, the shellcode retrieves the module’s name
( BaseDllName . Buffer ) at ⑩ and the buffer’s maximum length (
BaseDllName . MaximumLength ) at ⑪ which is required as the buffer is not guaranteed to

be NULL -terminated.

https://docs.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb
https://en.wikipedia.org/wiki/Process_Environment_Block
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Figure 4: Disassembly of the initial module retrieval.
One point worth highlighting is that, as opposed to usual pointers
( TEB.ProcessEnvironmentBlock , PEB.Ldr , …), a double-linked list points to the next
item’s list entry. This means that instead of pointing to the structures’ start, a pointer from the
list will target a non-zero offset. As such, while in the following figure the
LDR_DATA_TABLE_ENTRY  has the BaseDllName  property at offset 0x2C , the offset from

the list entry’s perspective will be 0x24  ( 0x2C-0x08 ). This can be observed in the above
figure 4 where an offset of 8  has to be subtracted to access both of the BaseDllName
properties at ⑩ and ⑪.

Figure 5: From TEB  to BaseDllName .
With the DLL name’s buffer and maximum length recovered, the shellcode proceeds to
generate a hash. To do so, the shellcode performs a set of operations for each ASCII
character within the maximum name length:

1. If the character is lowercase, it gets modified into an uppercase. This operation is
performed according to the character’s ASCII representation meaning that if the value
is 0x61  or higher ( a  or higher), 0x20  gets subtracted to fall within the uppercase
range.

2. The generated hash (initially 0 ) is rotated right (ROR) by 13 bits ( 0x0D ).
3. The upper-cased character is added to the existing hash.

https://en.wikipedia.org/wiki/ASCII#Printable_characters
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Figure 6: Schema depicting the hashing loops of KERNEL32.DLL ‘s first character ( K ).
With the repeated combination of rotations and additions on a fixed registry size (32 bits in
edi ‘s case), characters will ultimately start overlapping. These repeated and overlapping

combinations make the operations non-reversible and hence produces a 32-bit
hash/checksum for a given name.

One interesting observation is that while the BaseDllName  in LDR_DATA_TABLE_ENTRY  is
Unicode-encoded (2 bytes per character), the code treats it as ASCII encoding (1 byte per
character) by using lodsb  (see ⑫).

Figure 7: Disassembly of the module’s name hashing routine.
The hash generation algorithm can be implemented in Python as shown in the snippet below.
While we previously mentioned that the BaseDllName ‘s buffer was not required to be
NULL -terminated per Microsoft documentation, extensive testing has showed that NULL -

termination was always the case and could generally be assumed. This assumption is what
makes the MaximumLength  property a valid boundary, similarly to the Length  property.
The following snippet hence expects the data passed to get_hash  to be a Python bytes
object generated from a NULL -terminated Unicode string.

https://docs.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb_ldr_data
https://www.aldeid.com/wiki/X86-assembly/Instructions/lodsb
https://docs.microsoft.com/en-us/windows/win32/api/ntdef/ns-ntdef-_unicode_string


7/28

# Helper function for rotate-right on 32-bit architectures 
def ror(number, bits): 
   return ((number >> bits) | (number << (32 - bits))) & 0xffffffff 

# Define hashing algorithm 
def get_hash(data): 
   # Initialize hash to 0 
   result = 0 
   # Loop each character 
   for b in data: 
       # Make character uppercase if needed 
       if b < ord('a'): 
           b -= 0x20 
       # Rotate DllHash right by 0x0D bits 
       result = ror(result, 0x0D) 
       # Add character to DllHash 
       result = (result + b) & 0xffffffff 
   return result 

The above functions could be used as follows to compute the hash of KERNEL32.DLL .

# Define a NULL-terminated base DLL name 
name = 'KERNEL32.DLL\0' 
# Encode it as Unicode 
encoded = name.encode('UTF-16-LE') 
# Compute the hash 
value = hex(get_hash(encoded)) 
# And print it ('0x92af16da') 
print(value) 

With the DLL name’s hash generated, the shellcode proceeds to identify all exported
functions. To do so, the shellcode starts by retrieving the LDR_DATA_TABLE_ENTRY ‘s
DllBase  property (⑬) which points to the DLL’s in-memory address. From there, the
IMAGE_EXPORT_DIRECTORY  structure is identified by walking the Portable Executable’s

structures (⑭ and ⑮) and adding the relative offsets to the DLL’s in-memory base address.
This last structure contains the number of exported function names (⑰) as well as a table of
pointers towards these (⑯).

Figure 8: Disassembly of the export retrieval.
The above operations can be schematized as follow, where dotted lines represent addresses
computed from relative offsets increased by the DLL’s in-memory base address.
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Figure 9: From LDR_DATA_TABLE_ENTRY  to IMAGE_EXPORT_DIRECTORY .
Once the number of exported names and their pointers are identified, the shellcode
enumerates the table in descending order. Specifically, the number of names is used as a
decremented counter at ⑱. For each exported function’s name and while none matches, the
shellcode performs a hashing routine ( hash_export_name  at ⑲) similar to the one we
observed previously, with as sole difference that character cases are preserved
( hash_export_character ).

The final hash is obtained by adding the recently computed function hash ( ExportHash ) to
the previously obtained module hash ( DllHash ) at ⑳. This addition is then compared at ㉑
to the sought hash and, unless they match, the operation starts again for the next function.

Figure 10: Disassembly of export’s name hashing.
If none of the exported functions match, the routine retrieves the next module in the
InMemoryOrderLinks  double-linked list and performs the above operations again until a

match is found.

Figure 11: Disassembly of the loop to the next module.
The above walked double-linked list can be schematized as the following figure.
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Figure 12: Walking the InMemoryOrderModuleList .
If a match is found, the shellcode will proceed to call the exported function. To retrieve its
address from the previously identified IMAGE_EXPORT_DIRECTORY , the code will first need to
map the function’s name to its ordinal (㉒), a sequential export number. Once the ordinal is
recovered from the AddressOfNameOrdinals  table, the address can be obtained by using
the ordinal as an index in the AddressOfFunctions  table (㉓).

Figure 13: Disassembly of the import “call”.
Finally, once the export’s address is recovered, the shellcode simulates the call  behavior
by ensuring the return address is first on the stack (removing the hash it was searching for,
at ㉔) , followed by all parameters as required by the default Win32 API __stdcall  calling
convention (㉕). The code then performs a jmp  operation at ㉖ to transfer execution to the
dynamically resolved import which, upon return, will resume from where the initial call
ebp  operation occurred.

Overall, the dynamic import resolution can be schematized as a nested loop. The main loop
walks modules following the in-memory order (blue in the figure below) while, for each
module, a second loop walks exported functions looking for a matching hash between
desired import and available exports (red in the figure below).

https://docs.microsoft.com/en-us/cpp/cpp/stdcall?view=msvc-160
https://docs.microsoft.com/en-us/cpp/cpp/stdcall?view=msvc-160
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Figure 14: The import resolution flow.

Building a Rainbow Table

Identifying which imports the shellcode relies on will provide us with further insight into the
rest of its logic. Instead of dynamically analyzing the shellcode, and given that we have
figured out the hashing algorithm above, we can build ourselves a rainbow table.

A rainbow table is a precomputed table for caching the output of cryptographic hash
functions, usually for cracking password hashes.

wikipedia.org

The following Python snippet computes the “Metasploit” hashes for DLL exports located in
the most common system locations.

https://en.wikipedia.org/wiki/Rainbow_table
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import glob 
import os 
import pefile 
import sys 

size = 32 
mask = ((2**size) - 1) 

# Resolve 32- and 64-bit System32 paths 
root = os.environ.get('SystemRoot') 
if not root: 
   raise Exception('Missing "SystemRoot" environment variable') 

globs = [f"{root}\\System32\\*.dll", f"{root}\\SysWOW64\\*.dll"] 

# Helper function for rotate-right 
def ror(number, bits): 
   return ((number >> (bits % size)) | (number << (size - (bits % size)))) &  mask 

# Define hashing algorithm 
def get_hash(data): 
   result = 0 
   for b in data: 
       result = ror(result, 0x0D) 
       result = (result + b) & mask 
   return result 

# Helper function to uppercase data 
def upper(data): 
   return [(b if b < ord('a') else b - 0x20) for b in data] 

# Print CSV header 
print("File,Function,IDA,Yara") 

# Loop through all DLLs 
for g in globs: 
   for file in glob.glob(g): 
       # Compute the DllHash 
       name = upper(os.path.basename(file).encode('UTF-16-LE') + b'\x00\x00') 
       file_hash = get_hash(name) 
       try: 
           # Parse the DLL for exports 
           pe = pefile.PE(file, fast_load=True) 
           pe.parse_data_directories(directories = 
[pefile.DIRECTORY_ENTRY["IMAGE_DIRECTORY_ENTRY_EXPORT"]]) 
           if hasattr(pe, "DIRECTORY_ENTRY_EXPORT"): 
               # Loop through exports 
               for exp in pe.DIRECTORY_ENTRY_EXPORT.symbols: 
                   if exp.name: 
                       # Compute ExportHash 
                       name = exp.name.decode('UTF-8') 
                       exp_hash = get_hash(exp.name + b'\x00') 
                       metasploit_hash = (file_hash + exp_hash) & 0xffffffff 
                       # Compute additional representations 
                       ida_view = metasploit_hash.to_bytes(size/8, 
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byteorder='big').hex().upper() + "h" 
                       yara_view = metasploit_hash.to_bytes(size/8, 
byteorder='little').hex(' ') 
                       # Print CSV entry 
                       print(f"\"{file}\",\"{name}\",\"{ida_view}\",\"
{{{yara_view}}}\"") 
       except pefile.PEFormatError: 
           print(f"Unable to parse {file} as a valid PE, skipping.", 
file=sys.stderr) 
           continue 

As an example, the following PowerShell commands generate a rainbow table, then
searches it for the 726774Ch  hash we observed first in figure 2. For everyone’s
convenience, we have published our rainbow.csv version containing 239k hashes.

# Generate the rainbow table in CSV format 
PS > .\rainbow.py | Out-File .\rainbow.csv -Encoding UTF8 

# Search the rainbow table for a hash 
PS > Get-Content .\rainbow.csv | Select-String 726774Ch 
"C:\Windows\System32\kernel32.dll","LoadLibraryA","0726774Ch","{4c 77 26 07}" 
"C:\Windows\SysWOW64\kernel32.dll","LoadLibraryA","0726774Ch","{4c 77 26 07}" 

As can be observed above, the first import resolved and called by the shellcode is
LoadLibraryA , exported by the 32- and 64-bit kernel32.dll .

Execution Flow Analysis

With the import resolving sorted-out, understanding the remaining code becomes a lot more
accessible. As we can see in figure 15, the shellcode starts by performing the following calls:

1. LoadLibraryA  at ㉗ to ensure the ws3_32  library is loaded. If not yet loaded, this
will map the ws3_32.dll  DLL in memory, enabling the shellcode to further resolve
additional functions related to the Windows Socket 2 technology.

2. WSAStartup  at ㉘ to initiate the usage of sockets within the shellcode’s process.
3. WSASocketA  at ㉙ to create a new socket. This one will be a stream-based

( SOCK_STREAM ) socket over IPv4 ( AF_INET ).

https://github.com/NVISOsecurity/blogposts/blob/master/anatomy-and-disruption-of-metasploit-shellcode/rainbow.csv?raw=true
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya
https://docs.microsoft.com/en-us/windows/win32/api/_winsock/
https://docs.microsoft.com/en-us/windows/win32/api/winsock/nf-winsock-wsastartup
https://docs.microsoft.com/en-us/windows/win32/api/winsock2/nf-winsock2-wsasocketa
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Figure 15: Disassembly of the socket initialization.
Once the socket is created, the shellcode proceeds to call the connect  function at ㉝ with
the sockaddr_in  structure previously pushed on the stack (㉜). The sockaddr_in
structure contains valuable information from an incident response perspective such as the
protocol ( 0x0200  being AF_INET , a.k.a. IPv4, in little endianness), the port ( 0x115c
being the default 4444  Metasploit port in big endianness) as well as the C2 IPv4 address at
㉛ ( 0xc0a801ca  being 192.168.1.202  in big endianness).

If the connection fails, the shellcode retries up to 5 times (decrementing at ㉞ the counter
defined at ㉚) after which it will abort execution using ExitProcess  (㉟).

Figure 16: Disassembly of the socket connection.
If the connection succeeds, the shellcode will create a new cmd  process and connect all of
its Standard Error, Output and Input (㊱) to the established C2 socket. The process itself is
started through a CreateProcessA  call at ㊲.

https://docs.microsoft.com/en-us/windows/win32/api/winsock2/nf-winsock2-connect
https://docs.microsoft.com/en-us/windows/win32/winsock/sockaddr-2
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-exitprocess
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessa
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Figure 17: Execution of the reverse-shell.
Finally, while the process is running, the shellcode performs the following operations:

1. Wait indefinitely at ㊳ for the remote shell to terminate by calling
WaitForSingleObject .

2. Once terminated, identify the Windows operating system version at ㊴ using
GetVersion  and exit at ㊵ using either ExitProcess  or RtlExitUserThread .

Figure 18: Termination of the shellcode.
Overall, the execution flow of Metasploit’s windows/shell_reverse_tcp  shellcode can be
schematized as follows:

https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-waitforsingleobject
https://docs.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-getversion
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-exitprocess
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Figure 19: Metasploit’s TCP reverse-shell execution flow.

Shellcode Disruption

With the execution flow analysis squared away, let’s see how we can turn the tables on the
shellcode and disrupt it. From an attacker’s perspective, the shellcode itself is considered
trusted while the environment it runs in is hostile. This section will build upon the
assumption that we don’t know where shellcode is executing in memory and, as such,
hooking/modifying the shellcode itself is not an acceptable solution.

In this section we will firstly focus on the theoretical aspects before covering a proof-of-
concept implementation.

The Weaknesses

CWE-1288: Improper Validation of Consistency within Input

The product receives a complex input with multiple elements or fields that must be
consistent with each other, but it does not validate or incorrectly validates that the input
is actually consistent.

cwe.mitre.org

From the shellcode’s perspective only two external interactions provide a possible attack
surface. The first and most obvious surface is the C2 channel where some security solutions
can detect/impair either the communications protocol or the surrounding API calls. This
attack surface however has the massive caveat that security solutions have to make the
distinction between legitimate and malicious behaviors, possibly resulting in some
medium/low-confidence detection.

https://cwe.mitre.org/data/definitions/1288.html
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A second less obvious attack surface is the import resolution itself which, from the
shellcode’s perspective, relies on external process data. Within this import resolution routine,
we observed how the shellcode relied on the BaseDllName  property to generate a hash for
each module.

Figure 20: The hashing routine retrieving both Buffer  and MaximumLength  to hash a
module’s BaseDllName .
While the module’s exports were UTF-8 NULL -terminated strings, the BaseDllName
property was a UNICODE_STRING  structure. This structurecontains multiple properties:

typedef struct _UNICODE_STRING { 
 USHORT Length; 
 USHORT MaximumLength; 
 PWSTR  Buffer; 
} UNICODE_STRING, *PUNICODE_STRING; 

Length : The length, in bytes, of the string stored in Buffer .

MaximumLength : The length, in bytes, of Buffer .

Buffer : Pointer to a buffer used to contain a string of wide characters.

[…]

If the string is null-terminated, Length does not include the trailing null character.

The MaximumLength is used to indicate the length of Buffer so that if the string is
passed to a conversion routine such as RtlAnsiStringToUnicodeString the
returned string does not exceed the buffer size.

docs.microsoft.com

While not explicitly mentioned in the above documentation, we can implicitly understand that
the buffer’s MaximumLength  property is unrelated to the actual string’s Length  property.
The Unicode string does not need to consume the entire Buffer , neither is it guaranteed to
be NULL -terminated. Theoretically, the Windows API should only consider the first Length

https://docs.microsoft.com/en-us/windows/win32/api/ntdef/ns-ntdef-_unicode_string
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bytes of the Buffer  for comparison, ignoring any bytes between the Length  and
MaximumLength  positions. Increasing a UNICODE_STRING ‘s buffer ( Buffer  and
MaximumLength ) should not impact functions relying on the stored string.

As the shellcode’s hashing routine relies on the buffer’s MaximumLength , similar strings
within differently-sized buffers will generate different hashes. This flaw in the hashing routine
can be leveraged to neutralize potential Metasploit shellcode. From a technical perspective,
as security solutions already hook process creation and inject themselves, interfering with
the hashing routine without knowledge of its existence or location can be achieved by
increasing the BaseDllName  buffer for modules required by Metasploit (e.g.:
kernel32.dll ).

This hash-input validation flaw is what we will leverage next as initial vector to cause a
Denial of Service as well as an Execution Flow Hijack.

CWE-823: Use of Out-of-range Pointer Offset

The program performs pointer arithmetic on a valid pointer, but it uses an offset that
can point outside of the intended range of valid memory locations for the resulting
pointer.

cwe.mitre.org

One observation we made earlier is how the shellcode loops modules indefinitely until a
matching export is found. As we found a flaw to alter hashes, let us analyze what happens if
all hashes fail to match.

While walking the double-linked list could loop indefinitely, the shellcode will actually
generate an “Access Violation” error once all modules have been checked. This exception is
not generated explicitly by the shellcode but rather occurs as the code doesn’t verify the list’s
boundaries. Given that for each item in the list the BaseDllName.Buffer  pointer is loaded
from offset 0x28 , an exception will occur once we access the first non-
LDR_DATA_TABLE_ENTRY  item in the list. As shown in the figure below, this will be the case

once the shellcode loops back to the first PEB_LDR_DATA  structure, at which stage an out-
of-bounds read will occur resulting in an invalid pointer being de-referenced.

https://cwe.mitre.org/data/definitions/823.html
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Figure 21: An out-of-bounds read when walking the InMemoryOrderModuleList  double-
linked list.
Although from a defensive perspective causing a Denial of Service is better than having
Metasploit shellcode execute, let’s see how one could further exploit the above flaw to the
defender’s advantage.

Abusing CWE-1288 to Hijack the Execution Flow

One module of interest is kernel32.dll  which, as previously analyzed in the “Execution
Flow Analysis” section, is the first required module in order to call the LoadLibraryA
function. During the hashing routine, the kernel32.dll  hash is computed to be
0x92af16da . By applying the above buffer-resize technique, we can ensure the shellcode

loops additional modules since the original hashes won’t match. From here, a security
solution has a couple of options:

Our injected security solution’s DLL could be named kernel32.dll . While its hashes
would match, having two modules named kernel32.dll  might have unintended
consequences on legitimate calls to LoadLibraryA .
Similarly, as we are already modifying buffers in LDR_DATA_TABLE_ENTRY  structures,
we could easily save the original values of the kernel32.dll  buffer and assign them
to our security solution’s injected module. While this would theoretically work, having a
second buffer in memory called kernel32.dll  isn’t a great idea as previously
mentioned.
Alternatively, our security solution’s injected module could have a different name, as
long as there is a hash-collision with the original hash. This technique won’t impact
legitimate calls such as LoadLibraryA  as these rely on value-based comparisons, as
opposed to the shellcode’s hash-based comparisons.

We previously observed how the Metasploit shellcode performed hashing using additions
and rotations on ASCII characters (1-byte). As a follow-up on figure 6, the following schema
depicts the state of KERNEL32.DLL ‘s hash on the third loop, where the ASCII characters K
and E  overlap. As one might observe, the NULL  character is a direct consequence of
performing 1-byte operations on what initially is a Unicode string (2-byte).
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Figure 22: The first and third ASCII characters overlapping.
To obtain a hash collision, we need to identify changes which we can perform on the initial
KERNEL32.DLL  string without altering the resulting hash. The following figure highlights how

there is a 6-bit relationship between the first and third ASCII character. By subtracting the
second bit of the first character, we can increment the eighth bit (2+6) of the third character
without affecting the resulting hash.

Figure 23: A hash collision between the first and third ASCII characters.
While the above collision is not practical (the ASCII or Unicode character 0xC5  is not within
the alphanumeric range), we can apply the same principle to identify acceptable
relationships. The following Python snippet brute-forces the relationships among Unicode
characters for the KERNEL32.DLL  string assuming we don’t alter the string’s length.
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name = "KERNEL32.DLL\0" 
for i in range(len(name)): 
   for j in range(len(name)): 
       # Avoid duplicates 
       if j <= i: 
           continue 
       # Compute right-shift/left-shift relationships 
       # We shift twice by 13 bits due to Unicode being twice the size of ASCII. 
       # We perform a modulo of 32 due to the registers being, in our case,  32 bits 
in size. 
       relation = ((13*2*(j-i))%32) 
       if relation > 16: 
           relation -= 32 
       # Get close relationships (0, 1, 2 or 3 bit-shifts) 
       if -3 <= relation <= 3: 
           print(f"Characters at index {i} and {j:2d} have a relationship of 
{relation} bits") 
# "Characters at index 0 and  5 have a relationship of 2 bits" 
# "Characters at index 0 and 11 have a relationship of -2 bits" 
# "Characters at index 1 and  6 have a relationship of 2 bits" 
# "Characters at index 1 and 12 have a relationship of -2 bits" 
# "Characters at index 2 and  7 have a relationship of 2 bits" 
# "Characters at index 3 and  8 have a relationship of 2 bits" 
# "Characters at index 4 and  9 have a relationship of 2 bits" 
# "Characters at index 5 and 10 have a relationship of 2 bits" 
# "Characters at index 6 and 11 have a relationship of 2 bits" 
# "Characters at index 7 and 12 have a relationship of 2 bits" 

As observed above, multiple character pairs can be altered to cause a hash collision. As an
example, there is a 2-bit left-shift relation between the characters at Unicode position 0 and
11.

Given a 2-bit left-shift is similar to a multiplication by 4, incrementing the Unicode character
at position 0 by any value requires decrementing the character at position 11 by 4 times the
same value to keep the Metasploit hash intact. The following Python commands highlight the
different possible combinations between these two characters for KERNEL32.DLL .

https://en.wikipedia.org/wiki/Logical_shift
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# The original hash (0x92af16da) 
print(hex(get_hash(upper('KERNEL32.DLL\0'.encode('UTF-16-LE'))))) 
# "0x92af16da" 
# Decrementing 'K' by 3 requires adding 12 to 'L' 
print(hex(get_hash(upper('HERNEL32.DLX\0'.encode('UTF-16-LE'))))) 
# "0x92af16da" 
# Decrementing 'K' by 2 requires adding 8 to 'L' 
print(hex(get_hash(upper('IERNEL32.DLT\0'.encode('UTF-16-LE'))))) 
# "0x92af16da" 
# Decrementing 'K' by 1 requires adding 4 to 'L' 
print(hex(get_hash(upper('JERNEL32.DLP\0'.encode('UTF-16-LE'))))) 
# "0x92af16da" 
# Incrementing 'K' by 1 requires substracting 4 from 'L' 
print(hex(get_hash(upper('LERNEL32.DLH\0'.encode('UTF-16-LE'))))) 
# "0x92af16da" 
# Incrementing 'K' by 2 requires substracting 8 from 'L' 
print(hex(get_hash(upper('MERNEL32.DLD\0'.encode('UTF-16-LE'))))) 
# "0x92af16da" 

This hash collision combined with the buffer-resize technique can be chained to ensure our
custom DLL gets evaluated as KERNEL32.DLL  in the hashing routine. From here, if we
export a LoadLibraryA  function, the Metasploit import resolution will incorrectly call our
implementation resulting in an execution flow hijack. This hijack can be leveraged to signal
the security solution about a high-confidence Metasploit import resolution taking place.

Building a Proof of Concept

To demonstrate our theory, let’s build a proof-of-concept DLL which will, once loaded, make
use of CWE-1288 to simulate how an EDR (Endpoint Detection and Response) solution
could detect Metasploit without prior knowledge of its in-memory location. As we want to
exploit the above hash collisions, our DLL will be named hernel32.dlx .

The proof of concept has been published on NVISO’s GitHub repository.

The Process Injection

To simulate how a security solution would be injected into most processes, let’s build a
simple function which will run our DLL into a process of our choosing.

The Inject  function will trick the targeted process into loading a specific DLL (our
hernel32.dlx ) and execute its DllMain  function from where we’ll trigger the buffer-

resizing. While multiple techniques exist, we will simply write our DLL’s path into the target
process and create a remote thread calling LoadLibraryA . This remote thread will then
load our DLL as if the target process intended to do it.

https://github.com/NVISOsecurity/blogposts/tree/master/anatomy-and-disruption-of-metasploit-shellcode
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METASPLOP_API 
void 
Inject(HWND hwnd, HINSTANCE hinst, LPSTR lpszCmdLine, int nCmdShow) 
{ 
   #pragma EXPORT 
   int PID; 
   HMODULE hKernel32; 
   FARPROC fLoadLibraryA; 
   HANDLE hProcess; 
   LPVOID lpInject; 

   // Recover the current module path 
   char payload[MAX_PATH]; 
   int size; 
   if ((size = GetModuleFileNameA(hPayload, payload, MAX_PATH)) == NULL) 
   { 
       MessageBoxError("Unable to get module file name."); 
       return; 
   } 
    
   // Recover LoadLibraryA  
   hKernel32 = GetModuleHandle(L"Kernel32"); 
   if (hKernel32 == NULL) 
   { 
       MessageBoxError("Unable to get a handle to Kernel32."); 
       return; 
   } 
   fLoadLibraryA = GetProcAddress(hKernel32, "LoadLibraryA"); 
   if (fLoadLibraryA == NULL) 
   { 
       MessageBoxError("Unable to get LoadLibraryA address."); 
       return; 
   } 

   // Open the processes 
   PID = std::stoi(lpszCmdLine); 
   hProcess = OpenProcess(PROCESS_ALL_ACCESS, FALSE, PID); 
   if (!hProcess) 
   { 
       char message[200]; 
       if (sprintf_s(message, 200, "Unable to open process %d.", PID) > 0) 
       { 
           MessageBoxError(message); 
       } 
       return; 
   } 

   // Allocated memory for the injection 
   lpInject = VirtualAllocEx(hProcess, NULL, size + 1, MEM_COMMIT, PAGE_READWRITE); 
   if (lpInject) 
   { 
       wchar_t buffer[100]; 
       wsprintfW(buffer, L"You are about to execute the injected library in process 
%d.", PID); 
       if (WriteProcessMemory(hProcess, lpInject, payload, size + 1, NULL) && 
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IDCANCEL != MessageBox(NULL, buffer, L"NVISO Mock AV", MB_ICONINFORMATION | 
MB_OKCANCEL)) 
       { 
           CreateRemoteThread(hProcess, NULL, NULL, 
(LPTHREAD_START_ROUTINE)fLoadLibraryA, lpInject, NULL, NULL); 
       } 
       else 
       { 
           VirtualFreeEx(hProcess, lpInject, NULL, MEM_RELEASE); 
       } 
   } 
   else 
   { 
       char message[200]; 
       if (sprintf_s(message, 200, "Unable to allocate %d bytes.", size+1) > 0)
       { 
           MessageBoxError(message); 
       } 
   } 
   CloseHandle(hProcess); 
   return; 
} 

As one might notice, the above code relies on the hPayload  variable. This variable will be
defined in the DllMain  function as we aim to get the current DLL’s module regardless of its
name, whereas GetModuleHandleA  would require us to hard-code the hernel32.dlx
name.

HMODULE hPayload; 

BOOL APIENTRY DllMain( HMODULE hModule, 
                      DWORD  ul_reason_for_call, 
                      LPVOID lpReserved 
                    ) 
{ 
   switch (ul_reason_for_call) 
   { 
   case DLL_PROCESS_ATTACH: 
       hPayload = hModule; 
       break; 
   case DLL_THREAD_ATTACH: 
   case DLL_THREAD_DETACH: 
   case DLL_PROCESS_DETACH: 
       break; 
   } 
   return TRUE; 
} 

With our Inject  method exported, we can now proceed to build the logic needed to trigger
CWE-1288.

The Buffer-Resizing

https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getmodulehandlea
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Resizing the BaseDllName  buffer from the kernel32.dll  module can be accomplished
using the logic below. Similar to the shellcode’s technique, we will recover the PEB , walk the
InMemoryOrderModuleList  and once the KERNEL32.DLL  module is found, increase its

buffer by 1.

void 
Metasplop() { 
   PPEB pPeb = NULL; 
   PPEB_LDR_DATA pLdrData = NULL; 
   PLIST_ENTRY pHeadEntry = NULL; 
   PLIST_ENTRY pEntry = NULL; 
   PLDR_DATA_TABLE_ENTRY pLdrEntry = NULL; 
   USHORT MaximumLength = NULL; 

   // Read the PEB from the current process 
   if ((pPeb = GetCurrentPebProcess()) == NULL) { 
       MessageBoxError("GetPebCurrentProcess failed."); 
       return; 
   } 

   // Get the InMemoryOrderModuleList 
   pLdrData = pPeb->Ldr; 
   pHeadEntry = &pLdrData->InMemoryOrderModuleList; 

   // Loop the modules 
   for (pEntry = pHeadEntry->Flink; pEntry != pHeadEntry; pEntry = pEntry->Flink) { 
       pLdrEntry = CONTAINING_RECORD(pEntry, LDR_DATA_TABLE_ENTRY, 
InMemoryOrderModuleList); 
       // Skip modules which aren't kernel32.dll 
       if (lstrcmpiW(pLdrEntry->BaseDllName.Buffer, L"KERNEL32.DLL")) continue;
       // Compute the new maximum length 
       MaximumLength = pLdrEntry->BaseDllName.MaximumLength + 1; 
       // Create a new increased buffer 
       wchar_t* NewBuffer = new wchar_t[MaximumLength]; 
       wcscpy_s(NewBuffer, MaximumLength, pLdrEntry->BaseDllName.Buffer); 
       // Update the BaseDllName 
       pLdrEntry->BaseDllName.Buffer = NewBuffer; 
       pLdrEntry->BaseDllName.MaximumLength = MaximumLength; 
       break; 
   } 
   return; 
} 

This logic is best triggered as soon as possible once injection occurred. While this could be
done through a TLS hook, we will for simplicity update the existing DllMain  function to
invoke Metasplop  on DLL_PROCESS_ATTACH .

https://docs.microsoft.com/en-us/windows/win32/dlls/dllmain
https://docs.microsoft.com/en-us/windows/win32/dlls/dllmain#parameters
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HMODULE hPayload; 

BOOL APIENTRY DllMain( HMODULE hModule, 
                      DWORD  ul_reason_for_call, 
                      LPVOID lpReserved 
                    ) 
{ 
   switch (ul_reason_for_call) 
   { 
   case DLL_PROCESS_ATTACH: 
       hPayload = hModule; 
       Metasplop(); 
       break; 
   case DLL_THREAD_ATTACH: 
   case DLL_THREAD_DETACH: 
   case DLL_PROCESS_DETACH: 
       break; 
   } 
   return TRUE; 
} 

The Signal

As the shellcode we analyzed relied on LoadLibraryA , let’s build an implementation which
will simply raise the Metasploit alert and then terminate the current malicious process. The
following function will only be triggered by the shellcode and is itself never called from within
our DLL.

_Ret_maybenull_ 
HMODULE 
WINAPI 
LoadLibraryA(_In_ LPCSTR lpLibFileName) 
{ 
   #pragma EXPORT 
   // Raise the error message 
   char buffer[200]; 
   if (sprintf_s(buffer, 200, "The process %d has attempted to load \"%s\" through 
LoadLibraryA using Metasploit's dynamic import resolution.\n", GetCurrentProcessId(), 
lpLibFileName) > 0) 
   { 
       MessageBoxError(buffer); 
   } 
   // Exit the process 
   ExitProcess(-1); 
} 

The above approach can be performed for other variations such as LoadLibraryW ,
LoadLibraryExA  and others.

The Result
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With our emulated security solution ready, we can proceed to demonstrate our technique. As
such, we’ll start by executing Shellcode.exe , a simple shellcode loader (show on the left
in figure 24). This shellcode loader mentions its process ID (which we’ll target for injection)
and then waits for the shellcode path it needs to execute.

Once we know in which process the shellcode will run, we can inject our emulated security
solution (shown on the right in figure 24). This process is typically performed by the security
solution for each process and is merely done manually in our PoC for simplicity. Using our
custom DLL, we can inject into the desired process using the following command where the
path to hernel32.dlx  and the process ID have been picked accordingly.

# rundll32.exe <dll_path>,Inject <target_pid> 
rundll32.exe C:\path\to\hernel32.dlx,Inject 6780

Figure 24: Manually emulating the AV injection into the future malicious process.
Once the injection is performed, the Shellcode.exe  process has been staged (module
buffer resized, colliding DLL loaded) for exploitation of the CWE-1288 weakness should any
Metasploit shellcode run. It is worth noting that at this stage, no shellcode has been loaded
nor has there been any memory allocation for it. This ensures we comply with the
assumption that we don’t know where shellcode is executing.

With our mock security solution injected, we can proceed to provide the path to our initially
generated shellcode ( shellcode.vir  in our case) to the soon-to-be malicious
Shellcode.exe  process (left in figure 25).
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Figure 25: Executing the malicious shellcode as would be done by the stagers.
Once the shellcode runs, we can see how in figure 26 our LoadLibraryA  signalling
function gets called, resulting in a high-confidence detection of shellcode-based import
resolution.

Figure 26: The input-validation flaw and hash collision being chained to signal the AV.

Disclosure

As a matter of courtesy, NVISO delayed the publishing of this blog post to provide Rapid7,
the maintainers of Metasploit, with sufficient review time.

Conclusion

This blog post highlighted the anatomy of Metasploit shellcode with an additional focus on
the dynamic import resolution. Within this dynamic import resolution we further identified two
weaknesses, one of which can be leveraged to identify runtime Metasploit shellcode with
high confidence.

At NVISO, we are always looking at ways to improve our detection mechanisms.
Understanding how Metasploit works is one part of the bigger picture and as a result of this
research, we were able to build Yara rules identifying Metasploit payloads by fingerprinting
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both import hashes and average distances between them. A subset of these rules is
available upon request.


