
1/10

September 2, 2021

A deep-dive into the SolarWinds Serv-U SSH vulnerability
microsoft.com/security/blog/2021/09/02/a-deep-dive-into-the-solarwinds-serv-u-ssh-vulnerability/

Several weeks ago, Microsoft detected a 0-day remote code execution exploit being used to
attack the SolarWinds Serv-U FTP software in limited and targeted attacks. The Microsoft
Threat Intelligence Center (MSTIC) attributed the attack with high confidence to DEV-0322, a
group operating out of China, based on observed victimology, tactics, and procedures. In this
blog, we share technical information about the vulnerability, tracked as CVE-2021-35211,
that we shared with SolarWinds, who promptly released security updates to fix the
vulnerability and mitigate the attacks.

This analysis was conducted by the Microsoft Offensive Research & Security Engineering
team, a focused group tasked with supporting teams like MSTIC with exploit development
expertise. Our team’s remit is to make computing safer. We do this by leveraging our
knowledge of attacker techniques and processes to build and improve protections in
Windows and Azure through reverse engineering, attack creation and replication,
vulnerability research, and intelligence sharing.

In early July, MSTIC provided our team with data that seemed to indicate exploit behavior
against a newly-discovered vulnerability in the SolarWinds Serv-U FTP server’s SSH
component. Although the intel contained useful indicators, it lacked the exploit in question, so
our team set out to reconstruct the exploit, which required to first find and understand the
new vulnerability in the Serv-U SSH-related code.

As we knew this was a remote, pre-auth vulnerability, we quickly constructed a fuzzer
focused on the pre-auth portions of the SSH handshake and noticed that the service
captured and passed all access violations without terminating the process. It immediately
became evident that the Serv-U process would make stealthy, reliable exploitation attempts
simple to accomplish. We concluded that the exploited vulnerability was caused by the way
Serv-U initially created an OpenSSL AES128-CTR context. This, in turn, could allow the use
of uninitialized data as a function pointer during the decryption of successive SSH
messages. Therefore, an attacker could exploit this vulnerability by connecting to the open
SSH port and sending a malformed pre-auth connection request. We also discovered that
the attackers were likely using DLLs compiled without address space layout randomization
(ASLR) loaded by the Serv-U process to facilitate exploitation.

We shared these findings, as well as the fuzzer we created, with SolarWinds through
Coordinated Vulnerability Disclosure (CVD) via Microsoft Security Vulnerability Research
(MSVR), and worked with them to fix the issue. This is an example of intelligence sharing

https://www.microsoft.com/security/blog/2021/09/02/a-deep-dive-into-the-solarwinds-serv-u-ssh-vulnerability/
https://www.microsoft.com/security/blog/2021/07/13/microsoft-discovers-threat-actor-targeting-solarwinds-serv-u-software-with-0-day-exploit/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-35211
https://www.solarwinds.com/trust-center/security-advisories/cve-2021-35211
https://www.microsoft.com/en-us/msrc/cvd?rtc=1
https://www.microsoft.com/en-us/msrc/msvr


2/10

and industry collaboration that result in comprehensive protection for the broader community
through detection of attacks through products and fixing vulnerabilities through security
updates.

Vulnerability in Serv-U’s implementation of SSH

Secure Shell (SSH) is a widely adopted protocol for secure communications over an
untrusted network. The protocol behavior is defined in multiple requests for comment
(RFCs), and existing implementations are available in open-source code; we primarily used
RFC 4253, RFC 4252, and libssh as references for this analysis.

The implementation of SSH in Serv-U was found by enumerating references to the “SSH-“
string, which must be present in the first data sent to the server. The most likely instance of
such code was the following:

Figure 1. Promising instance of “SSH-” string

Putting a breakpoint on the above code and attempting to connect to Serv-U with an SSH
client confirmed our hypothesis and resulted in the breakpoint being hit with the following call
stack:

Figure 2. The call stack resulting from a break point set on code in Figure 1.

At this point, we noticed that Serv-U.dll and RhinoNET.dll both have ASLR support disabled,
making them prime locations for ROP gadgets, as any addresses within them will be
constant across any server instances running on the internet for a given Serv-U version.

After reversing related code in the RhinoNET and Serv-U DLLs, we could track SSH
messages’ paths as Serv-U processes them. To handle an incoming SSH connection, Serv-
U.dll creates a CSUSSHSocket object, which is derived from the RhinoNET!CRhinoSocket
class. The CSUSSHSocket object lifetime is the length of the TCP connection—it persists
across possibly many individual TCP packets. The underlying CRhinoSocket provides a
buffered interface to the socket such that a single TCP packet may contain any number of

https://datatracker.ietf.org/doc/html/rfc4253
https://datatracker.ietf.org/doc/html/rfc4252
https://git.libssh.org/projects/libssh.git/tree/


3/10

bytes. This implies a single packet may include any number of SSH messages (provided
they fit in the maximum buffer size), as well as partial SSH messages. The
CSUSSHSocket::ProcessRecvBuffer function is then responsible for parsing the SSH
messages from the buffered socket data.

CSUSSHSocket::ProcessRecvBuffer begins by checking for the SSH version with
ParseBanner. If ParseBanner successfully parses the SSH version from the banner,
ProcessRecvBuffer then loops over ParseMessage, which obtains a pointer to the current
message in the socket data and extracts the msg_id and length fields from the message
(more on the ParseMessage function later).

Figure 3. Selection of code from CSUSSHSocket::ProcessRecvBuffer processing loop

The socket data being iterated over is conceptually an array of the pseudo-C structure
ssh_msg_t, as seen below. The message data is contained within the payload buffer, the first
byte of which is considered the msg_id:



4/10

ProcessRecvBuffer then dispatches handling of the message based on the msg_id. Some
messages are handled directly from the message parsing loop, while others get passed to
ssh_pkt_others, which posts the message to a queue for another thread to pick up and
process.

Figure 4.Pre-auth reachable handlers in CSUSSHSocket::ProcessRecvBuffer

If the msg_id is deferred to the alternate thread, CSSHSession::OnSSHMessage processes
it. This function mainly deals with messages that need to interact with Serv-U managed user
profile data (e.g., authentication against per-user credentials) and UI updates.
CSSHSession::OnSSHMessage turned out to be uninteresting in terms of vulnerability
hunting as most message handlers within it require successful user authentication (initial
telemetry indicated this was a pre-authentication vulnerability), and no vulnerabilities were
found in the remaining handlers.



5/10

When initially running fuzzers against Serv-U with a debugger attached, it was evident that
the application was catching exceptions which would normally crash a process (such as
access violations), logging the error, modifying state just enough to avoid termination of the
process, and then continuing as if there had been no problem. This behavior improves
uptime of the file server application but also results in possible memory corruption lingering
around in the process and building up over time. As an attacker, this grants opportunities like
brute-forcing addresses of code or data with dynamic addresses.

This squashing of access violations assists with exploitation, but for fuzzing, we filtered out
“uninteresting” exceptions generated by read/write access violations and let the fuzzer run
until hitting a fault wherein RIP had been corrupted. This quickly resulted in the following
crashing context:

Figure 5. WinDbg showing crashing context from fuzzer-generated SSH messages



6/10

As seen above, CRYPTO_ctr128_encrypt in libeay32.dll (part of OpenSSL) attempted to call
an invalid address. The version of OpenSSL used is 1.0.2u, so we obtained the sources to
peruse. The following shows the relevant OpenSSL function:

Meanwhile, the following shows the structure that is passed:

The crashing function was reached from the OpenSSL API boundary via the following path:
EVP_EncryptUpdate -> evp_EncryptDecryptUpdate -> aes_ctr_cipher ->
CRYPTO_ctr128_encrypt.

https://www.openssl.org/source/old/1.0.2/openssl-1.0.2u.tar.gz


7/10

Looking further up the call stack, it is evident that Serv-U calls EVP_EncryptUpdate from
CSUSSHSocket::ParseMessage, as seen below:

Figure 6. Location of call into OpenSSL, wherein attacker-controlled function pointer may be
invoked

At this point, we manually minimized the TCP packet buffer produced by the fuzzer until only
the SSH messages required to trigger the crash remained. In notation like that used in the
RFCs, the required SSH messages were:



8/10

Note that the following description references “encrypt” functions being called when the
crashing code path is clearly attempting to decrypt a buffer. This is not an error: Serv-U uses
the encrypt OpenSSL API and, while not optimal for code clarity, it is behaviorally correct
since Advanced Encryption Standard (AES) is operating in counter (CTR) mode.

After taking a Time Travel Debugging trace and debugging through the message processing
sequence, we found that the root cause of the issue was that Serv-U initially creates the
OpenSSL AES128-CTR context with code like the following:

Calling EVP_EncryptInit_ex with NULL key and/or IV is valid, and Serv-U does so in this
case because the context is created while handling the KEXINIT message, which is before
key material is ready. However, AES key expansion is not performed until the key is set, and
the data in the ctx->cipher_data structure remains uninitialized until the key expansion is
performed. We can (correctly) surmise that our sequence of messages to hit the crash has
caused enc_algo_client_to_server->decrypt to be called before the key material is initialized.
The Serv-U KEXINIT handler creates objects for all parameters given in the message.
However, the corresponding objects currently active for the connection are not replaced with
the newly created ones until the following NEWKEYS message is processed. The client
always completes the key exchange process In a normal SSH connection before issuing a
NEWKEYS message. Serv-U processed NEWKEYS (thus setting the m_bCipherActive flag
and replacing the cipher objects) no matter the connection state or key exchange. From this,
we can see that the last message type in our fuzzed sequence does not matter—there only
needs to be some data remaining to be processed in the socket buffer to trigger decryption
after the partially initialized AES CTR cipher object has been activated.

Exploitation

As the vulnerability allows loading RIP from uninitialized memory and as there are some
modules without ASLR in the process, exploitation is not so complicated: we can find a way
to control the content of the uninitialized cipher_data structure, point the cipher_data->block
function pointer at some initial ROP gadget, and start a ROP chain. Because of the
exception handler causing any fault to be ignored, we do not necessarily need to attain
reliable code execution upon the first packet. It is possible to retry exploitation until code
execution is successful, however this will leave traces in log files and as such it may be
worthwhile to invest more effort into a different technique which would avoid logging.The first
step is to find the size of the cipher_data allocation, as the most direct avenue to prefill the
buffer is to spray allocations of the target allocation size and free them before attempting to
reclaim the address as cipher_data. ctx->cipher_data is allocated and assigned in
EVP_CipherInit_ex with the following line:

https://www.openssl.org/docs/man1.0.2/man3/EVP_EncryptInit_ex.html


9/10

With a debugger, we can see the ctx_size in our case is 0x108, and that this allocator winds
up calling ucrtbase!_malloc_base. From previous reversing, we know that both
CRhinoSocket and CSUSSHSocket levels of packet parsing call operator new[] to allocate
space to hold the packets we send. Luckily, that also winds up in ucrtbase!_malloc_base,
using the same heap. Therefore, prefilling the target allocation is as simple as sending a
properly sized TCP packet or SSH message and then closing the connection to ensure it is
freed. Using this path to spray does not trigger other allocations of the same size, so we
don’t have to worry about polluting the heap.

Another important value to pull out of the debugger/disassembly is offsetof(EVP_AES_KEY,
block), as that offset in the sprayed data needs to be set to the initial ROP gadget. This value
is 0xf8. Conveniently, most of the rest of the EVP_AES_KEY structure can be used for the
ROP chain contents itself, and a pointer to the base of this structure exists in registers rbx,
r8, and r10 at the time of the controlled function pointer call.

As a simple proof of concept, consider the following python code:

The above results in the following context in the debugger:

Figure 7. Machine context showing rcx, rdx, and rip controlled by attacker

Conclusion: Responsible disclosure and industry collaboration improves
security for all

Our research shows that the Serv-U SSH server is subject to a pre-auth remote code
execution vulnerability that can be easily and reliably exploited in the default configuration.
An attacker can exploit this vulnerability by connecting to the open SSH port and sending a



10/10

malformed pre-auth connection request. When successfully exploited, the vulnerability could
then allow the attacker to install or run programs, such as in the case of the targeted attack
we previously reported.

We shared our findings to SolarWinds through Coordinated Vulnerability Disclosure (CVD).
We also shared the fuzzer we created. SolarWinds released an advisory and security patch,
which we strongly encourage customers to apply. If you are not sure if your system is
affected, open a support case in the SolarWinds Customer Portal.

In addition to sharing vulnerability details and fuzzing tooling with SolarWinds, we also
recommended enabling ASLR compatibility for all binaries loaded in the Serv-U process.
Enabling ASLR is a simple compile-time flag which is enabled by default and has been
available since Windows Vista. ASLR is a critical security mitigation for services which are
exposed to untrusted remote inputs, and requires that all binaries in the process are
compatible in order to be effective at preventing attackers from using hardcoded addresses
in their exploits, as was possible in Serv-U.

We would like to thank SolarWinds for their prompt response. This case further underscores
the need for constant collaboration among software vendors, security researchers, and other
players to ensure the safety and security of users’ computing experience.

Microsoft Offensive Research & Security Engineering team

https://www.microsoft.com/en-us/msrc/cvd?rtc=1
https://www.solarwinds.com/trust-center/security-advisories/cve-2021-35211
https://customerportal.solarwinds.com/support/submit-a-ticket?sid=satsn
https://docs.microsoft.com/en-us/cpp/build/reference/dynamicbase-use-address-space-layout-randomization?view=msvc-160

