
1/18

Threat Intelligence Team August 20, 2021

New variant of Konni malware used in campaign targetting
Russia

blog.malwarebytes.com/threat-intelligence/2021/08/new-variant-of-konni-malware-used-in-campaign-targetting-russia/

This blog post was authored by Hossein Jazi

In late July 2021, we identified an ongoing spear phishing campaign pushing Konni Rat to target
Russia. Konni was first observed in the wild in 2014 and has been potentially linked to the North
Korean APT group named APT37.

We discovered two documents written in Russian language and weaponized with the same
malicious macro. One of the lures is about the trade and economic issues between Russia and
the Korean Peninsula. The other one is about a meeting of the intergovernmental Russian-
Mongolian commission.

In this blog post we provide on overview of this campaign that uses two different UAC bypass
techniques and clever obfuscation tricks to remain under the radar.

Attack overview

The following diagram shows the overall flow used by this actor to compromise victims. The
malicious activity starts from a document that executes a macro followed by a chain of activities
that finally deploys the Konni Rat.

https://blog.malwarebytes.com/threat-intelligence/2021/08/new-variant-of-konni-malware-used-in-campaign-targetting-russia/

2/18

Figure 1: Overall Process

Document analysis

We found two lures used by Konni APT. The first document “Economic relations.doc” contains a
12 page article that seems to have been published in 2010 with the title: “The regional economic
contacts of Far East Russia with Korean States (2010s)“. The second document is the outline of
a meeting happening in Russia in 2021: “23th meeting of the intergovernmental Russian-
Mongolian commission on Trade, Economic, scientific and technical operation“.

Figure 2: Lures used by Konni APT

These malicious documents used by Konni APT have been weaponized with the same simple
but clever macro. It just uses a Shell function to execute a one-liner cmd command. This one
liner command gets the current active document as input and looks for the "^var" string using
findstr and then writes the content of the line staring from “var” into y.js . At the end it calls
Wscript Shell function to executes the Java Script file (y.js).

https://blog.malwarebytes.com/wp-content/uploads/2021/08/k-1.jpg
https://blog.malwarebytes.com/wp-content/uploads/2021/08/lures.jpg

3/18

The clever part is that the actor tried to hide its malicious JS which is the start of its main
activities at the end of the document content and did not put it directly into the macro to avoid
being detected by AV products as well as hiding its main intent from them.

Figure 3: Macro
The y .js file is being called with the active document as its argument. This javascript looks for
two patterns encoded within the the active document and for each pattern at first it writes that
content starting from the pattern into temp.txt file and then base 64 decodes it using its built-
in base64 decoder function, function de(input) , and finally writes the decoded content into
the defined output.

yy.js is used to store the data of the first decoded content and y.ps1 is used to store the
data of the second decoded content. After creating the output files, they are executed using
Wscript and Powershell .

Figure 4: y.js
The Powershell script (y.ps1), uses DllImport function to import URLDownloadToFile
from urlmon.dll and WinExec from kernel32.dll . After importing the required functions
it defines the following variabbles:

URL to download a file from it
Directory to store the downloaded file (%APPDATA%/Temp)
Name of the downloaded file that will be stored on disk.

https://blog.malwarebytes.com/wp-content/uploads/2021/08/macro.jpg
https://blog.malwarebytes.com/wp-content/uploads/2021/08/yjs-scaled.jpg

4/18

In the next step it calls URLDownloadToFile to download a cabinet file and stores it in the
%APPDATA%Temp directory with the unique random name created by GetTempFileName . At the

end it uses WinExec to execute a cmd command that calls expand to extract the content of
cabinet file and delete the cabinet file. The y.ps 1 is deleted at the end using Winexec .

Figure 5: y.ps1
The extracted cabinet file contains 5 files: check.bat , install.bat , xmlprov.dll ,
xmlprov.ini and xwtpui.dll . The yy.js is responsible to execute check.bat file that

extracted from the cabinet file and delete itself at the end.

Figure 6: yy.js

Check.bat

https://blog.malwarebytes.com/wp-content/uploads/2021/08/psfile.jpg
https://blog.malwarebytes.com/wp-content/uploads/2021/08/yy.js_.jpg

5/18

This batch file checks if the command prompt is launched as administrator using net session
> nul and if that is the case, it executes install.bat . If the user does not have the
administrator privilege, it checks the OS version and if it is Windows 10 sets a variable named
num to 4, otherwise it sets it to 1. It then executes xwtpui.dll using rundll32.exe by

passing three parameters to it: EntryPoint (The export function of the DLL to be executed),
num (the number that indicated the OS version) and install.bat .

Figure 7:

check.bat

Install.bat

the malware used by the attacker pretends to be the xmlprov Network Provisioning Service. This
service manages XML configuration files on a domain basis for automatic network provisioning.

 Install.bat is responsible to install xmlprov.dll as a service. To achieve this goal, it
performs the following actions:

Stop the running xmlprov service
Copy dropped xmlprov.dll and xmlrov.ini into the system32 directory and delete
them from the current directory
Check if xmlProv service is installed or not and if it is not installed create the service
through svchost.exe
Modify the xmlProv service values including type and binpath
Add xmlProv to the list of the services to be loaded by svchost
add xmlProv to the xmlProv registry key
Start the xmlProv service

https://blog.malwarebytes.com/wp-content/uploads/2021/08/check.jpg

6/18

Figure 8:

Install.bat

xwtpui.dll

As we mentioned earlier if the victim’s machine does not have the right privilege, xwtpui.dll
is being called to load install.bat file. Since install.bat is creating a service, it should
have the high integrity level privilege and "xwtpui.dll" is used to bypass UAC and get the
right privilege and then loads install.bat .

EntryPoint is the main export function of this dll. It starts its activities by resolving API calls.
All the API call names are hard coded and the actor has not used any obfuscation techniques to
hide them.

https://blog.malwarebytes.com/wp-content/uploads/2021/08/install.jpg

7/18

Figure 9: EntryPoint
In the next step, it checks privilege level by calling the Check_Priviledge_Leve l function. This
function performs the following actions and returns zero if the user does not have the right
privilege or UAC is not disabled.

Call RtlQueryElevationFlags to get the elevation state by checking PFlags value. If
it sets to zero, it indicates that UAC is disabled.

https://blog.malwarebytes.com/wp-content/uploads/2021/08/mainswt.jpg

8/18

Get the access token associated to the current process using NtOpenProcessToken and
then call NtQueryInformationToken to get the TokenElevationType and check if it’s
value is 3 or not (If the value is not 3, it means the current process is elevated). The
TokenElevationType can have three values:

TokenElevationDefault (1): Indicates that UAC is disabled.
TokenElevationTypeFull (2): Indicates that the current process is running elevated.
TokenElevationTypeLimited (3): Indicates that the process is not running elevated.

Figure 10: Check privilege

level
After checking the privilege level, it checks the parameter passed form check.bat that
indicates the OS version and if the OS version is Windows 10 it uses a combination of a
modified version of RPC UAC bypass reported by Google Project Zero and Parent PID Spoofing
for UAC bypass while for other Windows versions it uses “ Token Impersonation technique ”
technique to bypass UAC.

Token Impersonation UAC Bypass (Calvary UAC Bypass)

Calvary is a token impersonation/theft privilege escalation technique that impersonates the
token of the Windows Update Standalone Installer process (wusa.exe) to spawn cmd.exe
with highest privilege to execute install.bat . This technique is part of the US CIA toolsets
leak known as Vault7.

https://blog.malwarebytes.com/wp-content/uploads/2021/08/CheckPrivelege.jpg
https://googleprojectzero.blogspot.com/2019/12/

9/18

The actor has used this method on its 2019 campaign as well. This UAC bypass starts by
executing wusa.exe using ShellExecuteExw and gets its access token using
NtOpenProcessToken . Then the access token of wusa.exe is duplicated using
NtDuplicatetoken . The DesiredAccess parameter of this function specifies the requested

access right for the new token. In this case the actor passed TOKEN_ALL_ACCESS as
DesiredAccess value which indicates that the new token has the combination of all access

rights of this current token. The duplicated token is then passed to
ImpersonateLoggedOnUser and then a cmd instance is spawned using
CreateProcessWithLogomW . At the end the duplicated token is assigned to the created thread

using NtSetINformationThread to make it elevated.

https://e.cyberint.com/hubfs/Cyberint_Konni%20Malware%202019%20Campaign_Report.pdf
https://blog.malwarebytes.com/wp-content/uploads/2021/08/cavalry.jpg

10/18

Figure 11: Cavalry PE

Windows 10 UAC Bypass

The UAC bypass used for Windows 10 uses a combination of a modified version of RPC based
UAC bypass reported by Google project Zero and Parent PID spoofing to bypass UAC. The
process is as follows:

Step 1: Creates a string binding handle for interface id “201ef99a-7fa0-444c-9399-
19ba84f12a1a” and returns its binding handle and sets the required authentication,
authorization and security Quality of service information for the binding handle.

https://blog.malwarebytes.com/wp-content/uploads/2021/08/cavalry.jpg
https://googleprojectzero.blogspot.com/2019/12/

11/18

Figure 12: RPC Binding
Step 2: Initializes an RPC_ASYNC_STATE to make asynchronous calls and creates a new
non-elevated process (it uses winver.exe as non-elevated process)
through NdrAsyncClientCall .

https://blog.malwarebytes.com/wp-content/uploads/2021/08/bind.jpg

12/18

Figure 13: RPC AsyncCall
Step 3: Uses NtQueryInformationProcess to Open a handle to the debug object by
passing the handle of the created process to it. Then detaches the debugger from the
process using NtRemoveProcessDebug and terminates this created process using
TerminateProcess .

https://blog.malwarebytes.com/wp-content/uploads/2021/08/asyncCall.jpg

13/18

Figure 14: Detach the process
Step 4: Repeats the step 1 and step 2 to create a new elevate process: Taskmgr.exe .
Step 5: Get full access to the taskmgr.exe process handle by retrieving its initial debug
event. At first It issues a wait on the debug object using WaitForDebugEvent to get the
initial process creation debug event and then uses NtDuplicateObject to get the full
access process handle.

Figure 15: Create Auto elevated process (TaskMgr.exe)

https://blog.malwarebytes.com/wp-content/uploads/2021/08/detach.jpg
https://blog.malwarebytes.com/wp-content/uploads/2021/08/taskmgr.jpg

14/18

Step 6: After obtaining the fully privileged handle of Taskmgr.exe , the actor uses this
handle to execute cmd as high privilege process to execute install.bat . To achieve
this, the actor has used Parent PID Spoofing technique to spawn a new cmd process
using CreateProcessW and handle of Taskmgr.exe which is an auto elevated process
is assigned as its parent process using UpdateProcThreadAttribute .

Figure 16: Parent PID Spoofing

Xmlprov.dll (Konni Rat)

https://blog.malwarebytes.com/wp-content/uploads/2021/08/pidspoof.jpg

15/18

This is the final payload that has been deployed as a service using svchost.exe . This Rat is
heavily obfuscated and is using multiple anti-analysis techniques. It has a custom section
named “ qwdfr0 ” which performs all the de-obfuscation process. This payload register itself as
a service using its export function ServiceMain .

Figure 17: ServiceMain
Even though this sample is heavily obfuscated its functionality has not changed much and it is
similar to its previous version. It seems the actor just used a heavy obfuscation process to
hinder all the security mechanisms. VirusTotal detection of this sample at the time of analysis
was 3 which indicates that the actor was successful in using obfuscation and bypass most of the
AV products.

This RAT has an encrypted configuration file “xmlprov.ini” which will be loaded and decrypted at
the start of the analysis. The functionality of this RAT starts by collecting information from the
victim’s machine by executing the following commands:

cmd /c systeminfo: Uses this command to collect the detailed configuration
information about the victim’s machine including operation system configurations, security
information and hardware data (RAM size, disk space and network cards info) and store
the collected data in a tmp file.
cmd /c tasklist : Executes this command to collect a list of running processes on

victim’s machine and store them in a tmp file.

https://blog.malwarebytes.com/wp-content/uploads/2021/08/servicemain.jpg
https://e.cyberint.com/hubfs/Cyberint_Konni%20Malware%202019%20Campaign_Report.pdf

16/18

In the next step each of the the collected tmp files is being converted into a cab file using cmd
/c makecab and then encrypted and sent to the attacker server in an HTTP POST request
(http://taketodjnfnei898.c1.biz/up.php?name=%UserName%).

Figure 18:

Upload data to server
After sending data to server it goes to a loop to receive commands from the server
(http://taketodjnfnei898.c1.biz/dn.php?name=%UserName%&prefix=tt). At the time of
the analysis the server was down and unfortunately we do not have enough information about
the next step of this attack. The detail analysis of this payload will be published in a follow up
blog post.

Campaign Analysis

Konni is a Rat that potentially is used by APT37 to target its victims. The main victims of this Rat
are mostly political organizations in Russia and South Korea but it is not limited to these
countries and it has been observed that it has targeted Japan, Vietnam, Nepal and Mongolia.

There were several operations that used this Rat but specifically the campaigns reported by
ESTsecurity and CyberInt in 2019 and 2020 are similar to what we reported here. In those
campaigns the actor used lures in Russian language to target Russia. There are several
differences between past campaigns of this actor and what we documented here but still the
main process is the same: in all the campaigns the actor uses macro weaponized documents to
download a cab file and deploy the Konni RAT as a service.

Here are the some major differences between this new campaign and older ones:

The macros are different. In the old campaign the actor used TextBoxes to store its data
while in the new one the content has been base64 encoded within the document content.
In the new campaign JavaScript files have been used to execute batch and PowerShell
files.
The new campaign uses Powershell and URLMON API calls to download the cab file while
in the old campaign it used certutil to download the cab file.

https://blog.malwarebytes.com/wp-content/uploads/2021/08/upload.jpg
https://blog.alyac.co.kr/2474
https://e.cyberint.com/hubfs/Cyberint_Konni%20Malware%202019%20Campaign_Report.pdf

17/18

The new campaign has used two different UAC bypass techniques based on the victim’s
OS while in the old one the actor only used the Token Impersonation technique.
In the new campaign the actor has developed a new variant of Konni RAT that is heavily
obfuscated. Also, its configuration is encrypted and is not base64 encoded anymore. It
also does not use FTP for exfiltration.

Malwarebytes customers are protected against this campaign.

IOCs

name Sha256

N/A fccad2fea7371ad24a1256b78165bceffc5d01a850f6e2ff576a2d8801ef94fa

economics
relations.doc

d283a0d5cfed4d212cd76497920cf820472c5f138fd061f25e3cddf65190283f

y.js 7f82540a6b3fc81d581450dbdf7dec7ad45d2984d3799084b29150ba91c004fd

yy.js 7a8f0690cb0eb7cbe72ddc9715b1527f33cec7497dcd2a1010def69e75c46586

y.ps1 617f733c05b42048c0399ceea50d6e342a4935344bad85bba2f8215937bc0b83

 tmpBD2B.tmp 10109e69d1fb2fe8f801c3588f829e020f1f29c4638fad5394c1033bc298fd3f

check.bat a7d5f7a14e36920413e743932f26e624573bbb0f431c594fb71d87a252c8d90d

https://blog.malwarebytes.com/wp-content/uploads/2021/08/block_.gif

18/18

install.bat 4876a41ca8919c4ff58ffb4b4df54202d82804fd85d0010669c7cb4f369c12c3

xwtpui.dll 062aa6a968090cf6fd98e1ac8612dd4985bf9b29e13d60eba8f24e5a706f8311

xmlprov.dll f702dfddbc5b4f1d5a5a9db0a2c013900d30515e69a09420a7c3f6eaac901b12

xmlprov.dll 80641207b659931d5e3cad7ad5e3e653a27162c66b35b9ae9019d5e19e092362

xmlprov.ini 491ed46847e30b9765a7ec5ff08d9acb8601698019002be0b38becce477e12f6

Domains:

 takemetoyouheart[.]c1[.]biz
 taketodjnfnei898[.]ueuo[.]com

 taketodjnfnei898[.]c1[.]biz
 romanovawillkillyou[.]c1[.]biz

