
1/29

Snakes on a Domain: An Analysis of a Python Malware
Loader

huntress.com/blog/snakes-on-a-domain-an-analysis-of-a-python-malware-loader

Hackers and snakes—oh my! What do they have in common? Both are shady characters that
can hide in plain sight, just waiting for the right moment to strike.

But how do you know if you have any unwanted pests nearby? Often, you just need to go
looking for them—and that’s exactly what we did. Along the way, we found a very shady Python
(and coincidentally, a friendly RAT) just waiting to strike.

Join us on our journey as we show just how important it is to keep your yard—both the real one
with green grass and the virtual one with bytes and binaries—clean and tidy. Otherwise, you
never know what kind of shady creatures may be lurking in the shadows.

What Happened?

We recently investigated a suspicious link file persisting in a user’s startup folder. The file was
named “sysmon.lnk” and looked a bit fishy. After some quick initial investigation, we found that
the link was executing a malicious Python script that was used to inject a remote access Trojan
(RAT) onto the system.

Along the way, we encountered a total of six consecutive payloads and some new offensive
tooling which we found pretty interesting. Towards the end, we also experimented with some
custom scripts for de-obfuscating data and extracting configuration from the final RAT, resulting
in some juicy indicators of compromise (IOCs) with 0 detections on VirusTotal (as of June 2021).

https://www.huntress.com/blog/snakes-on-a-domain-an-analysis-of-a-python-malware-loader

2/29

Let's Dive In

Before we go too much further, here’s a visual representation of the malware we encountered.

We stumbled upon a suspicious file (sysmon.lnk) that appeared to reside in a user’s startup
directory. The nature of the startup directory is to hold files that automatically run when a user
logs into the computer. Since it looks just like a normal folder, all you need to do is copy and
paste a file into the folder, and boom—you can persist, or stick around, between reboots.

This provides an easy way for legitimate programs to stick around and keep running. Given its
simplicity and stealth, it’s a common place that attackers will place malware and malicious files
that they want to stick around.

Want to learn more about persistence? Download our eBook Persistence: The Key to
Cybercriminal Stealth, Strategy and Success.

https://www.huntress.com/resources/ebook/persistence-the-key-to-cybercriminal-stealth-strategy-and-success

3/29

Here’s a snippet of what we saw:

c:\\users\
<username>\appdata\roaming\microsoft\windows\startmenu\programs\startup\sysmon.lnk

This is a .lnk file (also known as a shortcut file), which redirects to another file or command on
the system. Inspecting the.lnk file can tell us where it points to.

When we inspected sysmon.lnk, we found that it was redirecting to a suspicious “ctfmon.exe”
with “update.py” passed as an argument. Both were residing in a suspicious-looking directory:

c:\users\<username>\appdata\roaming\PpvcbBQh\ctfmon.exe

c:\Users\<username>\AppData\Roaming\PpvcbBQh\update.py

So, we retrieved the files and did some analysis.

File Analysis

First, we noticed that the hash of ctfmon.exe had 0 detections on VirusTotal, which we found
interesting at first but were able to understand after looking at the file’s information. (Typically we
can’t trust file version information without a valid signature, but in this case, the information
made sense).

The information suggested that ctfmon.exe is a renamed Python interpreter—specifically, an
IronPython interpreter, which utilizes a branch of Python with access to .NET libraries. This
allows Python code to access deep Windows OS functionality typically reserved for .NET or
PowerShell. This was interesting and provided enough information to confidently move on to the
Python file.

We can see that the original file ctfmon.exe had 0 detections on VirusTotal, as technically it’s a
legitimate interpreter and not a malicious file.

https://ironpython.net/

4/29

Below, we can see the file description, indicating that it was a renamed IronPython interpreter.
Alternatively, we could have also discovered this information using PeStudio or a similar tool.

This was enough information to determine the purpose of the ctfmon.exe file, so we moved on
to the Update.py file, which we’ll refer to as stage1.py.

Stage1.py

We first moved the Python file into a text editor within a Virtual Machine just in case it was
malicious—and spoiler alert: it was. 😅

This led us to a relatively small script with a large obfuscated string and some obfuscated
variable names. We can see the full script in this screenshot:

5/29

This wasn’t super pleasant to read, so we cleaned it up a bit and added comments, which left
this script:

If we inspect closer, we can see that the script achieves four main things:

Base64 decodes an obfuscated string
It converts the Base64-decoded string into a bytearray of hex values
Then, it decreases the value of each byte by 12 (decimal)
Finally, it executes the resulting data

By copying out the obfuscated string and recreating the logic in CyberChef, we were able to
retrieve another Python script—which we saved and named as stage2.py. The decoding logic
can be seen below:

6/29

Stage2.py

We copied the resulting script out of CyberChef and opened up stage2 in a text editor, where we
quickly noticed another obfuscated string, as well as some imported libraries related to
reflection. (In case you’re not familiar, reflection is a common technique used to execute code
from memory without needing to save it to disk—in this case, the “something” would be the
obfuscated string containing malware.)

Based on this information, we assumed that the script was decoding the string and loading the
results into memory for execution.

https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/reflection

7/29

In the middle of the above screenshot, we can observe two main operations used to decode the
string:

Replacing all “!” exclamation marks with the letter “A”
Base64 decoding the results

This didn’t seem too complicated, so we moved back to CyberChef and recreated the decoding
logic. This resulted in the appearance of an MZ header, indicating that we had successfully
decoded the data and retrieved an executable file. We saved this file and named it stage3.bin.

Stage3.bin

Saving stage3 as an executable file, we were able to do some basic inspection using PeStudio
and Detect-It-Easy (DIE). This quickly led us to the conclusion that this was a .NET file and
likely another stager (based on the presence of a path referencing injector.pdb).

Below, we can see that DIE recognized the file as a .NET executable, which meant we could
use Dnspy or ILspy for analysis.

https://en.wikipedia.org/wiki/DOS_MZ_executable
https://github.com/horsicq/Detect-It-Easy

8/29

Below, we can also see the PDB path with references to “injector.pdb”, indicating that this is
likely another stager doing some kind of injection:

Since we now knew that this was a .NET file, we moved over to Dnspy where we could view the
source code of the file. This can be seen below.

https://en.wikipedia.org/wiki/Program_database

9/29

Just looking at the function names alone, we got a strong indication of what the file was going to
do. We can see functions indicative of Injection (VirtualAlloc, WriteProcessMemory, etc.),
Dynamic Library/Function loading (GetProcAddress, LoadLibrary) and decoding (compress,
decompress, base64_encode). Without looking at the code in detail, we could already assume
the core functionality: an obfuscated payload is going to be decoded and injected into a
process.

Browsing to the main function, we quickly found the encoded payload. Combined with the
preceding function calls (Load, Decompress, Base64), we can assume that the data is being
Base64 decoded and then decompressed and loaded into memory.

Below, we can see the encoded string and related function calls:

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya

10/29

Towards the end of the encoded data, we also observed a reference to msbuild.exe. This
became important later, as it turned out to be the second argument passed to the Mandark.Load
method.

Next, we browsed to the Mandark.Load method to find out what else was happening—and to
determine the significance of that msbuild.exe argument.

This led us to the conclusion that the second argument passed to the load method becomes the
target process for the injection. We also noted the use of ZwUnmapViewOfSection, indicating
that this style of injection is process hollowing. MITRE ATT&CK defines process hollowing:

“Adversaries may inject malicious code into suspended and hollowed processes in order
to evade process-based defenses. Process hollowing is a method of executing arbitrary
code in the address space of a separate live process.”

We believe that MSBuild was likely targeted as it is often allowed to execute by default
application whitelisting tools, including Microsoft's own Applocker.

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-zwunmapviewofsection
https://attack.mitre.org/techniques/T1055/012/

11/29

With this new knowledge, we decided to move back to the main function and try to decode the
injected payload. We already noted that Base64 encoding and compression was used.

We quickly inspected the decompress method to confirm the compression type—in this case, it
was Gzip.

12/29

Combining the above information together, we were able to decode the next payload using
CyberChef. This resulted in another MZ header for an executable file. We saved this file and
named it stage4.bin. Note that this payload would likely have been injected into the msbuild.exe
process.

Stage4.bin

Loading up stage4.bin, we performed some basic static analysis and determined that it was not
another .NET file, so we weren’t able to use Dnspy.

Below, we can see the detected compiler using DIE, which suggested that it was written in
C++/C and not .NET.

13/29

Using PeStudio, we noticed this exported function, which stood out to us as it indicated that this
was likely another loader (given away by the term “ReflectiveLoader”).

We noted this and kept going.

Browsing further, we noticed this reference in the debug section of the file. This contained
another PDB path, and a very git-like folder structure.

14/29

Some googling of keywords in the PDB path led us to believe that the file was likely an execute-
assembly loader, which is an open-source re-implementation of the Cobalt Strike execute-
assembly module:

If the GitHub repository is anything to go by, this is an extremely well-featured and interesting
loader that incorporates some really cool evasion tactics. We could almost dedicate an entire
blog to the capabilities of this loader, but today, we’ll stick to its loading capabilities and try to
focus on finding the next payload.

Within the rest of the GitHub repository documentation, there was this particular tidbit (see
below) which really stood out. It indicated the structure of embedded payloads, which should be
in the format of “0|0|0|0|1|sizeofpayload.b64_encoded_compressed_payload”. (Note: The
payload is going to be in Gzip compressed and Base64 encoded format.)

https://github.com/med0x2e/ExecuteAssembly

15/29

This was super interesting because there was a very large string within the file, which matched
that exact description (and was 64983 bytes in size—more than enough room for another
payload).

We copied that string into CyberChef and re-implemented the decoding routine (Base64 and
Gzip decompress), which resulted in yet another executable file.

16/29

You know the drill by now—we saved this file and named it stage5.bin.

Stage5.bin

Performing our usual static analysis of our latest file, we soon realized that it was another .NET
(yay). Luckily, we could jump back into Dnspy and view the source code.

Moving into Dnspy, we noted that there weren’t many functions this time—only six in total:

17/29

Navigating to the main function, we noted two large obfuscated strings:

The first one was just Base64 encoded and turned out to be an anti-malware scan interface
(AMSI) patching script. Implemented by Microsoft, AMSI provides a framework for security
tooling to monitor PowerShell script activity. The goal of an AMSI patch is to bypass this
framework and reduce the chances of an antivirus or EDR detecting any malicious PowerShell
activity. (Later, we’ll see that the malware does use PowerShell scripts, so this patch likely
allows them to execute without being detected.)

Below, we can see the full AMSI patching script, which was lightly obfuscated.

https://www.cyberark.com/resources/threat-research-blog/amsi-bypass-patching-technique

18/29

We were able to decode the script, which loosely translated to this below.

The second string was far more interesting, as it incorporated a custom encoding routine
alongside the Base64 and compression that we’ve been so far accustomed to. This was an
indication that we need more than just CyberChef alone to decode our next payload.

In order to get a better understanding of the obfuscation, we inspected the Cipher method and
found the encoding routine. It didn’t look standard, and clearly, it was something custom-built—
although not extremely complicated to decode. Routines like this are often used to evade
automated analysis, as the non-standard nature hinders some automated tooling—often
requiring manual intervention and analysis to decode properly.

19/29

Below, we can see the full custom routine, which takes an encoded string, a key and an
encipher flag.

Browsing back to our main function, we quickly found the key “avyhk” and encipher flag, which
was set to false.

We decided not to pursue CyberChef for this. After some careful inspection and analysis, we
were able to re-implement the routine using the equivalent Python code included below.

20/29

Using our new Python script, we wrote a wrapper around our cipher function and we were able
to dump the decoded content to a new file. Using this, we ended up with another executable file:
stage6.bin.

Stage6.bin

We saved and loaded the stage6.bin file into PeStudio and DIE for some static analysis and saw
that we had another .NET file. (Yay for Dnspy again!)

21/29

Overall, we didn’t find anything of particular use within PeStudio, so we moved on to Dnspy. We
were able to determine that the file was a remote access Trojan (RAT), likely from the URSU
family of malware.

This malware had all the typical functionality of a RAT, which included the ability to gather and
enumerate system information, as well as download files and commands from a remote
command-and-control server.

Analysis of the RAT

Below, we can see a graphic overview of the functionality of the final RAT payload.

https://blog.talosintelligence.com/2020/03/threat-roundup-0306-0313.html

22/29

Decrypting the Configuration

After determining that this malware was likely a RAT, we decided to look for indicators of the C2
server and any configuration settings that we could use as indicators of compromise. Analyzing
the RAT code within Dnspy, we found an “InitializeSettings” method that was loading config data
from values encrypted with AES256, and then encoding using Base64.

Here’s the code for decrypting config data within the InitializeSettings method:

23/29

Below, we can see the AES256 encrypted and Base64-encoded values being loaded.

After playing around with the decryption code, we were able to decrypt the config and pull out
the following values—including a port number, mutex name, version and grouping numbers, as
well as three domains of C2 servers.

Machine Enumeration

Through a combination of queries made to the OS, mostly via WMI queries, the malware
gathered the following information to send to the C2 server:

Currently running antiviruses and security products
User privileges
Whether the victim was connected to a domain
External IP of the current machine
Names of open windows and active processes

https://docs.microsoft.com/en-us/windows/win32/wmisdk/querying-wmi

24/29

Anti-Analysis Checks

After enumerating system information, the malware then executed some anti-analysis checks to
see if it was running inside of a virtual machine or analysis environment.

The malware contained several methods and functions for detecting this. These were relatively
simple and consisted of five main checks:

DetectManufacturer: Looks for VMware or VirtualBox in hardware descriptions
DetectDebugger: Checks “Debugger.IsAttached” flag, also checks for the presence of a
dnspy.xml file in the %appdata% directory
DetectSandboxie: Looks for Sandboxie drivers (sbiedll.dll)
IsSmallDisk: Checks if Disk Size is less than 61GB
IsXP: Checks if the current OS is Windows XP

If any of the above checks are true, then the malware cleans up and terminates itself with the
“failFast” method.

Below, we can see the names of the anti-analysis functions being called.

None of them were particularly interesting or complex, and all followed a similar structure to the
screenshot below.

Final Persistence: Run Keys and Scheduled Tasks

Once the anti-analysis checks were completed, the malware established further persistence via
scheduled tasks and run keys, depending on the current privilege level.

25/29

If admin privileges were available, then an elevated scheduled task is created. This would allow
the malware to persist with admin-level privileges across reboots, without the need for UAC
prompts each time.

If only standard user privileges were available, a .bat script would be placed into the current
user’s run key, which would provide persistence with standard user privileges.

Using these indicators, we were able to find other artifacts left by the malware and develop
detections that could be used to alert on similar activity.

You can check for similar persistence via scheduled tasks and run keys by regularly reviewing
the following run key and scheduled task locations:

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run
c:\windows\system32\tasks

(Alternatively, sign up for a free trial and we’ll take a look for you!)

C2 Commands and Functionality

Once persistence had been established, the malware then contacted the command and control
servers for further commands. These commands could be...

Update: Download new malware via PowerShell, start it, then kill the current process
SavePlugin: Download and load a remote DLL
Unload: Send a kill command over a named pipe
Restart: Kill the current process and force a restart via a scheduled task
Self-delete: Remove all persistence and kill the current process

Some short snippets of this functionality are in the screenshots below:

https://www.huntress.com/trial

26/29

VirusTotal Check of Domains: 0/3

At the time of initial analysis (May 2021), all of the domains had 0/85 detections on VirusTotal—
although one of them was marked as suspicious by one vendor.

27/29

28/29

Recommendations and Final Comments

That wraps up our analysis of this malware. We hope you enjoyed it as much as we did.
Hopefully, you learned something new and will soon be able to implement some of these
analysis techniques for yourself.

As we saw, even a relatively simple payload (like a RAT) can be implemented in a way that is
highly complex and difficult to detect, especially when using customized or unique files and
domains that slip past automated security tooling. Although automated tooling has its place, the
days are gone where you can rely on such tooling alone.

You should make sure that proactive and human-driven methods of threat hunting are built into
your security stack alongside layered tooling to hinder and decrease the likelihood of a
successful compromise.

To wrap things up, we’d like to make a few recommendations for dealing with this type of
malware:

Avoid relying on static signatures to detect malicious activity. This applies for both
network and file-based indicators of compromise. All running executables and domains in
this investigation were “legitimate” and likely would not be blocked on hash alone.
Monitor and manually review suspicious files executing from runkeys, scheduled tasks
and persistent startup folders.
Monitor for process creation events where a Python file is being passed to a non-
Python or text editor executable.
Inspect any suspicious or non-standard process creation events. Baseline which
processes are expected to launch msbuild.exe, and alert on anything outside of this
baseline.

https://www.huntress.com/blog/what-is-human-powered-threat-hunting

29/29

When analyzing suspicious files and domains, make sure to incorporate manual
analysis and decoding into your process. Avoid relying solely on automated tooling
such as VirusTotal or online sandboxes.

Indicators of Compromise

Domains:
windowsupdatecdn[.]cn
gjghvga7ffgb[.]xyz
huugbbvuay4[.]cn

Hashes:
ctfmon.exe:
3e442cda613415aedf80b8a1cfa4181bf4b85c548c043b88334e4067dd6600a6
Update.py:
dd1fa3398a9cb727677501fd740d47e03f982621101cc7e6ab8dac457dca9125
stage2:
2CCADFC32DB49E67E80089F30C81F91DFFF4B20B8FC61714DF9E2348542007FD
stage3:
4591EDA045E3587A714BB11062EB258F82EE6F0637E6AA4D90F2D0B447A48EF7
stage4:
4417298524182564AED69261B6C556BDCE1E5B812EDC8A2ADDFC21998447D3C6
stage5:
9B775DFC58B5F82645A3C3165294D51C18F82EC1B19AC8A41BB320BEE92484ED
stage6:
169F5DBCD664C0B4FD65233E553FF605B30E974B6B16C90A1FB03404F1B01980

