Snakes on a Domain: An Analysis of a Python Malware
Loader

@ huntress.com/blog/snakes-on-a-domain-an-analysis-of-a-python-malware-loader

Hackers and snakes—oh my! What do they have in common? Both are shady characters that
can hide in plain sight, just waiting for the right moment to strike.

But how do you know if you have any unwanted pests nearby? Often, you just need to go
looking for them—and that’s exactly what we did. Along the way, we found a very shady Python
(and coincidentally, a friendly RAT) just waiting to strike.

Join us on our journey as we show just how important it is to keep your yard—both the real one
with green grass and the virtual one with bytes and binaries—clean and tidy. Otherwise, you
never know what kind of shady creatures may be lurking in the shadows.

What Happened?

We recently investigated a suspicious link file persisting in a user’s startup folder. The file was
named “sysmon.Ink” and looked a bit fishy. After some quick initial investigation, we found that
the link was executing a malicious Python script that was used to inject a remote access Trojan
(RAT) onto the system.

Along the way, we encountered a total of six consecutive payloads and some new offensive
tooling which we found pretty interesting. Towards the end, we also experimented with some
custom scripts for de-obfuscating data and extracting configuration from the final RAT, resulting

in some juicy indicators of compromise (IOCs) with 0 detections on VirusTotal (as of June 2021).

1/29

https://www.huntress.com/blog/snakes-on-a-domain-an-analysis-of-a-python-malware-loader

Let's Dive In

Before we go too much further, here’s a visual representation of the malware we encountered.

PERSISTENCE a\ﬁ HUNTRESS

Redirects to ctfmon.exe

update.py

STAGING

|

Stage 1 Stage 2
(Python) (Python)

Stage 4
(Ex-Assembly
Loader)

Stage 3
(-NET DLL)

Stage 5 Stage 6
(.NET DLL) (.NET EXE)

PAYLOAD

Remote Access Trojan

We stumbled upon a suspicious file (sysmon.Ink) that appeared to reside in a user’s startup
directory. The nature of the startup directory is to hold files that automatically run when a user
logs into the computer. Since it looks just like a normal folder, all you need to do is copy and
paste a file into the folder, and boom—you can persist, or stick around, between reboots.

This provides an easy way for legitimate programs to stick around and keep running. Given its
simplicity and stealth, it's a common place that attackers will place malware and malicious files
that they want to stick around.

Want to learn more about persistence? Download our eBook Persistence: The Key to
Cybercriminal Stealth, Strategy and Success.

2/29

https://www.huntress.com/resources/ebook/persistence-the-key-to-cybercriminal-stealth-strategy-and-success

Here’s a snippet of what we saw:

c:\\users\
<username>\appdata\roaming\microsoft\windows\startmenu\programs\startup\sysmon.Ink

This is a .Ink file (also known as a shortcut file), which redirects to another file or command on
the system. Inspecting the.Ink file can tell us where it points to.

When we inspected sysmon.Ink, we found that it was redirecting to a suspicious “ctfmon.exe”
with “update.py” passed as an argument. Both were residing in a suspicious-looking directory:

c:\users\<username>\appdata\roaming\PpvcbBQh\ctfmon.exe
c:\Users\<username>\AppData\Roaming\PpvcbBQh\update.py

So, we retrieved the files and did some analysis.

File Analysis

First, we noticed that the hash of ctfmon.exe had 0 detections on VirusTotal, which we found
interesting at first but were able to understand after looking at the file’s information. (Typically we
can’t trust file version information without a valid signature, but in this case, the information
made sense).

The information suggested that ctfmon.exe is a renamed Python interpreter—specifically, an
IronPython interpreter, which utilizes a branch of Python with access to .NET libraries. This
allows Python code to access deep Windows OS functionality typically reserved for .NET or
PowerShell. This was interesting and provided enough information to confidently move on to the
Python file.

IE/] No security vendors flagged this file as malicious

3e442cdab13415aedf80bBalcfad4181bf4b85c548c043b88334e4067ddé600ab

ctfmon.exe

assembly detect-debug-environment direct-cpu-clock-access peexe runtime-modules
X Community v

Score

DETECTION DETAILS RELATIONS BEHAVIOR COMMUNITY

We can see that the original file ctfmon.exe had 0 detections on VirusTotal, as technically it's a
legitimate interpreter and not a malicious file.

3/29

https://ironpython.net/

Below, we can see the file description, indicating that it was a renamed IronPython interpreter.
Alternatively, we could have also discovered this information using PeStudio or a similar tool.

Signature Verification

A File is not signed

File Version Information

Copyright ® IronPython Contributors
Product IronPython
Description IronPython Windows Console

Criginal Name ipyw.exe
Internal Name ipyw.exe
File Version 27111000

IronPython :osre

IronPython Interactive *Ox
IronPython is an open-source implementation of the Python Filescope: _main_~ 9% & §

. » import clr| .
programming language which is tightly integrated with .NET. Ty .
IronPython can use .NET and Python libraries, and other A2 binascii E

. . bytesi
NET languages can use Python code just as easily. <L st

‘@ clean

4 clr H

This was enough information to determine the purpose of the ctfmon.exe file, so we moved on
to the Update.py file, which we’ll refer to as stage1.py.

Stage1.py

We first moved the Python file into a text editor within a Virtual Machine just in case it was
malicious—and spoiler alert: it was.

This led us to a relatively small script with a large obfuscated string and some obfuscated
variable names. We can see the full script in this screenshot:

4/29

GALHF+fnp zgsadh m94fjpNcHBecX FEbIEALL+F

=qs lmwdwoqic.deco
qkn]ﬂ

This wasn’t super pleasant to read, so we cleaned it up a bit and added comments, which left
this script:

encoded_string_payload " 8 G4 fhZyfntSLGUDdXp+cXMs iy BALHF+fnp70Cx7 fzgsadNler XYWFmO4f jpNcHBe
num_12

decoded_string payload = base64.b64ddeco ncoded_string_payload)
decoded_array_payload=bytearray(decoded_string_payload)
final_arra

r value in ¢ d:

final_array_pay (value-num_12)

final nal_array_payload.dec

If we inspect closer, we can see that the script achieves four main things:

Base64 decodes an obfuscated string

It converts the Base64-decoded string into a bytearray of hex values
Then, it decreases the value of each byte by 12 (decimal)

Finally, it executes the resulting data

By copying out the obfuscated string and recreating the logic in CyberChef, we were able to
retrieve another Python script—which we saved and named as stage2.py. The decoding logic
can be seen below:

5/29

— length: 734173 —
Recipe B e A Input st + O 0 =

QFpPdU1zXFNShmE8+YoBleYRBX2NeeG56XnxwVHdzcHlihW8+eTJud jx1WVOAg1h2TYFZT1VZbnlsg *
GZgPHVEZHhOb1ROF21 JWnRWUILIChNVBAGIUTXVYhKBATIVNC1xUXoVWZ FOBX2NBelWEF TkBuY4SBb4
Alphabet Y8dXBkVoFbelp2bVNigGVkiWYBuY3h2b31Fhma+Z jxYY1qCbmBE8dGE+PIFwd 1VIXHMBVIVPTXNVUIS
A-Za-z@-9+/= GZmNaPWOSeDxxYEBaT IVNCIVPTXNVUISFZmRSPWZKKjxmY15db314Pml jhHhmPmKGVVROEGSTQYZC
X1Y9b31A0mB+kntmYz18b4U9gG1 jWoVuP1gCZnpdgGU+RYBbeVKGhb19BP ImFVT dQXXtzVUSNCIVPT
XNVUISFZmRSPWZ kW xmy155cVNidnBkXnxuPkFZZmRmeGSPTnomZGZ4blASdWVkW1 ZuemaCbTSihy
Remove non-alphabet chars VITj1tYVI2ZT5ihmeGPHVmaY)
/bz5hdviGQFpPdU1zVUINCcIVQg4 JvelKE cGNihnBTYndhVFZBcH14F2Z jecHhvhkBaT3VNC1VPTURY
P1p4ZT9ihWlkXkFcczxXVUSNRFg

From Base64

SUB /¥oVWZFo8X2NBel6GOFpPdoOCZWRahmE jPXVUVHCITUINTULINTUINTUINTULNTUINTUINTULINTUIN

TUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTULINTUINT

ey NECIMAL » UANTUINTUINTUINTUINTUINTUINTULNTUINTUINTULNTUINLhZ +clWlwhUlwbYBtOnSxfHhtb3EeL
12 e

BUOCWUTS41FhYWc3GASUSTeodxfoA6UN57el5tf 3FCQF+AfnVECZRUbYBTNRZTF31ITXS
JeXlueIUBWHttcDRzeYAIFhaAhXxxL EksbX9501NgGCFFHEBLNVEdNFvEHE +01x+e3N+bXkuNUcK
FoCFFHEGU3GAWXGAdHEWNCSZ bXVEL jUSVXgCe3dxNE1vgHWCbYB 7S jpPfnFtgHFVen+AbXpvc TSAR
XxxNTgsWnt6c TVHFg==

ime: 351ms

Output 28 e a I_|:| 3 H
import clr S
from _winreg import *

import errno, os, _winreg

clr.AddReference("System”™)
from System.Reflection import *
from System import *

Stage2.py

We copied the resulting script out of CyberChef and opened up stage2 in a text editor, where we
quickly noticed another obfuscated string, as well as some imported libraries related to
reflection. (In case you’re not familiar, reflection is a common technique used to execute code
from memory without needing to save it to disk—in this case, the “something” would be the
obfuscated string containing malware.)

Based on this information, we assumed that the script was decoding the string and loading the
results into memory for execution.

AAAATUgAATANNIbgBTMBhVGhpCyBwemOncomFtIGNhE

6/29

https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/reflection

In the middle of the above screenshot, we can observe two main operations used to decode the

string:

¢ Replacing all “I” exclamation marks with the letter “A”

o Base64 decoding the results

This didn’t seem too complicated, so we moved back to CyberChef and recreated the decoding

logic. This resulted in the appearance of an MZ header, indicating that we had successfully

decoded the data and retrieved an executable file. We saved this file and named it stage3.bin.

Recipe S I Input li:ﬂ:; Ssmi + O] 0 =
o - - - - -

Find / Replace & 11| AAAAAAAAAAAAAAAAAAAAAARAAAAARAAAAAARAAAALAAAAAAAAAARAAAAAASAAAAAAAAAAAAARAAAS

AAASAAAAAAAAL

Finel
!

Replace

A

Global Case
V . . e
match insensitive

Dot

D matches

all
From Base64
Alphabet

A-Za-z@8-9+/=

Remove non-alphabet chars

Multiline
v

matching

Stage3.bin

AAAAACABAAAAAEAACAGAAAAFAAATAAAAARAAAAAAAAAAAAAAEAAQAAADEAAT AAAAAAAAAAAAAAAAA
AAAEAAAAAATAAAAAAAAAAAAAAAAAAAAAAAAE AAQARAGEAATAAAAALAAAALAAAAAAAAAEALAAAAKWD
AACOAAYAHAMAALAAARAAAAARAAHAMBAAAAVEBTAFBAVEBFAFTAUWBIAEBATEETAEKATEBGAESARAARA
LBE7
JAAAAEAAAABAAAAAAAAAAEAAAAAADSAAAAAAAAABAAAAAEAAAAAALAAAAANAAAAAABEAAAAAQBWAG
EACEBGAGKADABIAEKAbEBMAGBAAAAAACOABAAAAFQACEBhAGAACHBSAGEAdABPAGBADEAALARRAAC
WBHWCAARABAFMAdABYAGKADEBNAEYAAQBSAGUASQBUAGYADWAAAF ECAAABADAAMAAWADAAMAABAGIA
MAAAABOAAQABAEMADWE TAGBAZQBUAHQACWAAAAAAAAATAAEAAQBDAGSADOBWAGEADEBSAESAYQBTA
GUAARARAAAAAALGARKAAQBGAGKADABIAEQAZQBIAGMACEBPAHAACABPAGEAbEAARAAAZQBUAGOAZD
BJAHQAbWBYARAAAAAWAAEAAQBGAGKADABIAFYATQEYAHMASQBVAGSAAAAALADEAL BAWACSAMAAUADA
AAAAGAABAAQE JAGAADABLAHIAbgBhAGWATgBhAGBAZQAAAGKADEBGAGUAYWBBAGSAC gAUAGUAEABL
ALAAAABTABIAAQBMAGUAZ WBhAGHAQWE vAHAAEQBYAGKAZ WBOAHDAAABDAGBACABSAHIAQBNAGEA
AAgAKKATAAgADIAMAAYADEAAAAGAAEAAQBMAGUAZWEBhAGWAVABYAGEAZABLAGBAYQBYAGSACWARAAA
AAAAAAAFTANOARAFRAr eRNAGr AAORUAGFARARGAGKAhART AGAAYORT AGIIALARNAGAAASR] AGMAAAR
time: 168ms

o . ra

Output #- wength: s0s: @ [0 0@ 0
MZ.ooinennas L A [Be e e e e e e e e..
1!, .LI!This program cannot be run in DOS mode.
- S PE..d.../¢¥).ou..tn T @
....................................... -
M arraaissssrrErrs i eraaraanas a..
............................ 2
.................. 2 - S T T T T

rsrc
—en - L Ho...

a#..

a c

Saving stage3 as an executable file, we were able to do some basic inspection using PeStudio

and Detect-It-Easy (DIE). This quickly led us to the conclusion that this was a .NET file and
likely another stager (based on the presence of a path referencing injector.pdb).

Below, we can see that DIE recognized the file as a .NET executable, which meant we could
use Dnspy or ILspy for analysis.

7/29

https://en.wikipedia.org/wiki/DOS_MZ_executable
https://github.com/horsicq/Detect-It-Easy

Il Detect It Easy v3.01 - | *

File name

C:YWsers\IEUser Desktopctfmon\stage 3. bin
File type Entry point Base address MIME
PEG4 > Disasm 00000001 40000000 Memory map [Hagh 1
=N

PE = 3 NET

| Strings

meDateStamp

SizeQfimage Re ——
Entropy
0002 2104-12-19 14:14:07 li IT | .
Hex

X
SCAn Endianness Made Architecture Type

Detect It Easy(DiE) LE 64 AMDE4 GUI

library MET{w4.0.30319)[-]
linker Microsoft Linker(42,.00[GUIB4]

Options

Exit

Below, we can also see the PDB path with references to “injector.pdb”, indicating that this is
likely another stager doing some kind of injection:

property value

md5 D1EF1979D6EAABICEBF1D1DEDFAABLTS

shal C995A9754C347B2453A52153823TES0BIFFBDEB4

shal3b DO4ATAFTE2361C3T0BIDI0CDABFECBCTODFTADBOESC2695E813634740CA60E82
age 1

size 89 (bytes)

format R5D5

debugger-stamp =

path pcbd\releaselinjector.pdb

guid

Since we now knew that this was a .NET file, we moved over to Dnspy where we could view the
source code of the file. This can be seen below.

8/29

https://en.wikipedia.org/wiki/Program_database

b= PE
pem Type References
[" "B References
P}
4 {} injector
Fr ﬁx 02000004
b - Base r:1|.: and Intemaces
- Derrved _.} =

P M Baze Type and Interfaces
D - Derrved -_.[_l:_

Just looking at the function names alone, we got a strong indication of what the file was going to
do. We can see functions indicative of Injection (VirtualAlloc, WriteProcessMemory, etc.),
Dynamic Library/Function loading (GetProcAddress, LoadLibrary) and decoding (compress,
decompress, base64_encode). Without looking at the code in detail, we could already assume
the core functionality: an obfuscated payload is going to be decoded and injected into a
process.

Browsing to the main function, we quickly found the encoded payload. Combined with the
preceding function calls (Load, Decompress, Base64), we can assume that the data is being
Base64 decoded and then decompressed and loaded into memory.

Below, we can see the encoded string and related function calls:

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya

Towards the end of the encoded data, we also observed a reference to msbuild.exe. This
became important later, as it turned out to be the second argument passed to the Mandark.Load
method.

Next, we browsed to the Mandark.Load method to find out what else was happening—and to
determine the significance of that msbuild.exe argument.

This led us to the conclusion that the second argument passed to the load method becomes the
target process for the injection. We also noted the use of ZwUnmapViewOfSection, indicating
that this style of injection is process hollowing. MITRE ATT&CK defines process hollowing:

“Adversaries may inject malicious code into suspended and hollowed processes in order
to evade process-based defenses. Process hollowing is a method of executing arbitrary
code in the address space of a separate live process.”

We believe that MSBuild was likely targeted as it is often allowed to execute by default
application whitelisting tools, including Microsoft's own Applocker.

10/29

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-zwunmapviewofsection
https://attack.mitre.org/techniques/T1055/012/

Load(byte[L string, string) : void X

[] payloadBuffer, ’ args)

(payloadBuffer,) ;
payloadBuffer, num
payloadBuffer, num 4 4 :
payloadBuffer, num + 24 + 16);
(payloadBuffer, num + 4 + 2);

Lam 3 (payloadBuffer, num 1
nums payloadBuffer, num + 24 +
[] lpStartupInfo T1p47;:

L)
LIPS

text host;

num2, 122880, G4UY;
6, payloadBuffer, nSize, @L);

numd +

(payloadBuffer, num
. {
[ar

[mumll];

(payloadBuffer, srcOffset,

With this new knowledge, we decided to move back to the main function and try to decode the
injected payload. We already noted that Base64 encoding and compression was used.

We quickly inspected the decompress method to confirm the compression type—in this case, it
was Gzip.

[] result;
G s e —r2 ~eamf MemoryStream(gzip), CompressionMode
[] buffer [4896] ;

Stream memoryStream =

Combining the above information together, we were able to decode the next payload using
CyberChef. This resulted in another MZ header for an executable file. We saved this file and
named it stage4.bin. Note that this payload would likely have been injected into the msbuild.exe
process.

i B start: 216364 jengin: 716364 —
Red) a - . Input End: 21s3es lines: 1 + D E . =
pe P

length: 8

/7V7TBLUbIg6Za]dHPXjUcMS61hBLauop4KallDXImrbRn27 gHEfdaao9Rj1T10z65AdZIPZYDTgd ™
FAXdFGv6]JelWvdeviwoptf1pq7pbb2jd

Alphabet /MWe3tel TvWRPtZjPdHves584TuCUbrPf15jZtSN5sKPSEDBCNaCcZAEGYALSEEF 1S IKWAVSBY2W3
A-Za-z0-94+/= - bYDfshDcdhEk7DLIYHFFSKK1EL1UgIa1IzaUTfqRzQaRekejbJoHNEq7gnQDzwpkQgpEOXUSI0OSZT
BCSViOMAUPTMAPPgkgvSQBBANIEMX FUDR
/gRtz9BuXi+hzVWetda2ttHOPtodRvumaNtc59GqClgkoDVNEKRrOBERYYNBRGSIBtAsmRWzaipmz
Remove non-alphabet chars WyabbNrok1g]s3En]qZ0Td5q2RVrKglWDWrablt rti3gDW2EmtqZdbcau2SXbGrtmLX7Kbdtrt236
b22E7sqZ3Zc5t35k7FqTqKU30a8Kku
JI1SUWIPypxS4UdV+FCNNmmbdmkfviimCZ3SjMap7Sbeilt1FbfmNt 22237 LkWEIvC2DI7GWEsq8
Gunzip Q@ mn DAF3tX0217X63sUBZtaUy/z5h7v1) yKX/UVv+Y3/bbfofs+8cd+ak
/9z2GeXgNWfBSrCm2iWqejrvalf2EBMjzABTmt IZSVZBFV3]1V3VrbsasoyeSzBvxPD6FBTPudtFelo
MLE97mtFxeh7BPBI7k
/+VelUTDc+QnnEdSRCK31EIJEagi+REXEORNOLETRETEIYWEGUS Ikx FAGmYoXuYo@dG] DkEx T zMmY
IpmpIpm6pZNzuzY
/ZMYo7M2]y¥gTkzOUuwREUyZEul6pZImdayeRayRFVsTK7VmFmcLtmhLtmxzbHngY11EaTFPTTGSGC
ZyjtHkMZ41161KYHtukIGMUKCIiQzxUMWZazh3H+d9BFyWz2R1eIsGF+t4iT

From Base64 S n

/3x%aEybGLMxhitj3Px+vTzS5T/ /AILFXUIAGAQA W
- time: gems

OQutput #- length: 263288 B I_D M HH
MZ.......... 3 P R e..... .. ~
it .LI!This program cannot be run in DOS mode.

 JP Z+21.0...0.0.0.., o {,...0..

L PIs AP, J...86A..0. .2 B 2 J..@:...].

{300:300e30rT,0054..7..0 1..© J..@;...7..05y..7..@ J..Rich.]
e PE..d...

T 8. e [V Povanrannan @Beveerrenrnnnnanansonrnnrnnsns <1
.. pé..h...0é..d P..a

e raaeaeeaaas saaaa 1 E..

Stage4.bin

Loading up stage4.bin, we performed some basic static analysis and determined that it was not
another .NET file, so we weren’t able to use Dnspy.

Below, we can see the detected compiler using DIE, which suggested that it was written in
C++/C and not .NET.

12/29

D8l Detect it Easy v3.01 - O »

C: Woers\IELiser \Desktop\pymalware \stage4. bin

File type Entry point Dase address MIME

0000001400085 70 * Disasm Memary map |

Hash
Expaort Impaort Resources Strings
TimeDateStamp
. Entropy
2021-03-30 14:00:11

Endianness Archity

Detect It Easy(DiE) LE AMDES

compiler Microsoft Visual C/Ce+(-)[-]

linker Microsoft Linker{14.27)[GLIG4]

Options

Signatures Deep scan About

107 msec Exit

Using PeStudio, we noticed this exported function, which stood out to us as it indicated that this
was likely another loader (given away by the term “ReflectiveLoader”).

| libranes (4)
4| imports (86)
v exports (unsigned _int64 _ cdecl Reflectiveloader(void * __ptr64))
& exceptions (535)
.

- 4# relocations (806)

=4 resources (manifest)

We noted this and kept going.

Browsing further, we noticed this reference in the debug section of the file. This contained
another PDB path, and a very git-like folder structure.

property value

md3 A10393CDBA55258TCEADTI4ECACOIED

shal A 4 Fi

shal36 ET3SEDG1D20ETFIC 6L FOGDEREARTFBSASD SBABETIOCFI0163COFEIETCOI0A

age 1

size 159 (bytes)

format RSD5

debugger-stamp | (xG0639158 (Tue Mar 30 14:00:11 2021)

path chusers\useridownloads)executeassembly- mainexecuteassembly-main' executeassemn bly'xbd(nt-syscalls Pobd release) executeassembhy-xtd. pdb
guid T92A33A4-FO3B-2048-8E74-200F 851440

13/29

Some googling of keywords in the PDB path led us to believe that the file was likely an execute-
assembly loader, which is an open-source re-implementation of the Cobalt Strike execute-
assembly module:

Description:

ExecuteAssembly is an alternative of CS execute-assembly, built with C/C++ and it can be used to Load/Inject .NET
assemblies by; reusing the host (spawnto) process loaded CLR Modules/AppDomainManager, Stomping Loader/.NET
assembly PE DOS headers, Unlinking .NET related modules, bypassing ETW+AMSI, avoiding EDR hooks via NT static
syscalls (x64) and hiding imports by dynamically resolving APls via superfasthash hashing algorithm.

TLDR (Features):

® CLR related modules unlinking from PEB data structures. (use MS "ListDLLs" utility instead of PH for confirmation)
* NET Aseembly and Reflective DLL headers stomping (MZ bytes, e_lfanew, DOS Header, Rich Text, PE Header).

e Use of static hardcoded syscalls for bypassing EDR Hooks. (x64 support only for now, from WinXP to Win10
19042)

® CLR "AppDomain/AppDomainManager” enumeration and re-use (ICLRMetaHost->EnumerateLoadedRuntimes),
just set the spawnto/host process to a known Windows .NET process.

* Dynamic Resolution of WIN32 APIs (PEB) using APls corresponding hash (SuperFastHash)
* AMSI and ETW patching prior to loading .NET assemblies.

® NET assembly bytes parsing and scanning for the CLR version to load/use.

* No use of GetProcAddress/LoadLibrary/GetModuleHandle for ETW bypass.

® CLR Hosting using v4 COM API & Reflective DLL injection

If the GitHub repository is anything to go by, this is an extremely well-featured and interesting
loader that incorporates some really cool evasion tactics. We could almost dedicate an entire
blog to the capabilities of this loader, but today, we’ll stick to its loading capabilities and try to
focus on finding the next payload.

Within the rest of the GitHub repository documentation, there was this particular tidbit (see
below) which really stood out. It indicated the structure of embedded payloads, which should be
in the format of “0|0|0|0|1|sizeofpayload.b64 encoded compressed_payload”. (Note: The
payload is going to be in Gzip compressed and Base64 encoded format.)

14/29

https://github.com/med0x2e/ExecuteAssembly

C2 Support:

Was created and tested mainly on cobalt strike, however it can be used with other C2 frameworks as well (MSF ..etc),

just keep in mind that the reflective DLL DLLMAIN is expecting the one-liner payload as a parameter (IpReserved) in

the following format (with no ".");

® AMST FLAG|ETW FLAG|STOMPHEADERS FLAG|UNLINKMODULES FLAG|LL_FLAG.LENGTH FLAG.B64 ENCODED COMPRESSED
PAYLOAD [SPACE SEPARATED ARGUMENTS]

This was super interesting because there was a very large string within the file, which matched

[+]

<

<

AMSI_FLAG : O[T (either O or 1)

ETW_FLAG : O]1

STOMPHEADERS_FLAG : 0|1

UNLINKMODULES_FLAG : 0|1

LENGTH_FLAG : .NET assembly size in bytes

LL_FLAG : length_of(LENGTH_FLAG) (just bear with me here or pretend you didn't read this)
B64_ENCODED_COMPRESSED_PAYLOAD : Gzip compressed and base64 encoded .NET assembly.

[SPACE SEPARATED ARGUMENTS] :.NET assembly arguments

that exact description (and was 64983 bytes in size—more than enough room for another

payload).
type (2) size (bytes) file-offset blacklist (15) wvalue (2650)
ascii B4 000020770
ascii 64983 (00020960
ascil 29 (D003 D9BA L 1
ascil 30 O=D003EFD2 JSovbad array new length@std@ @
ascii 19 (0003 FO08 - Savbad slloc@std@ B
ascil 19 D003 FO30 J&Vexception@std D&
ascil 15 OD003F058 LJAVtype info@@
ascii 21 (0003 FOT8 JiVlogic emorBstd B
ascii 22 00003 FOAD JAVlength error@std @3
ascii 16 (D003 FOCE JAV com error@@
asgii 23 (D003 FOFD JAVBad exception@ad@ B
ascii 134 OD003IBCBC x : !
ascii 23 (D003 D942 xecutedssembly-xEd.di|
ascii 12 (00030078 - EERMEL32 dl|
asgii 9 (0003DDAB . le32 dli
ascii 12 (D003DDB2 OLEAUT32.dII
ascii 1 00030004 mscoreedll

We copied that string into CyberChef and re-implemented the decoding routine (Base64 and
Gzip decompress), which resulted in yet another executable file.

15/29

From Baseld J

jrasonRredxafyal
SuiDdnit nd G
SUTE T

I xRATBCF TR 2w
M B

ipt
A-Ta-zB-Fvfm

Remove non-alphabet chars i
VEIAMDA T CQRUIVESKEXTy Baf s 05TV ed rLIvEREY
25 FoPyPHkSaRyBFOR/ +F L L T8/ TP Fy Fgiqeds
JELATPINTEIN1ST Inf 1B+ e

Gunzip n

F BB LKW IRME 5 T Sk 300 T ou] M
+PHPGrkfes.TaBL sk i Bass /MO T +uH 1
hgEcie {EIMnLn AS1 F kIVEH

PECE G EF el] kvhis
+192TGUS FBEw +e BIRY X
Fepalrwr] G

W et ESwMpeQHevL1TL
5151 swlg/weus 3L 37K

T4 jaFRLLes O Sihe R BN L e QUTX0B0E
wkras VIS nloOef 2% Prfosdit Y/ v/ fap rIP1TpIdrkabfF{owe, /i
VRLFVSdTafaby 3 L WSpE3e s/ BB TITTwPf P T BUY /S OPWIEFR20V 49T T I7 618 -

o @0 @ =

You know the drill by now—we saved this file and named it stage5.bin.

Stage5.bin

Performing our usual static analysis of our latest file, we soon realized that it was another .NET
(yay). Luckily, we could jump back into Dnspy and view the source code.

Disasm

Resources

Console

library NET (w4,

[inker icrosoft Linker(48.

Moving into Dnspy, we noted that there weren’t many functions this time—only six in total:

16/29

0 hellowrold (1.0.0.0)
|

o PE

P em Iype References

P =8 References

b {}

4 {} hellowrold
4% p

gram
B - I:._.-'__._- | —e
' dSC VYRS aliid INLEIval S

P M Denved Types

Navigating to the main function, we noted two large obfuscated strings:

The first one was just Base64 encoded and turned out to be an anti-malware scan interface

(AMSI) patching script. Implemented by Microsoft, AMSI provides a framework for security
tooling to monitor PowerShell script activity. The goal of an AMSI patch is to bypass this
framework and reduce the chances of an antivirus or EDR detecting any malicious PowerShell
activity. (Later, we’ll see that the malware does use PowerShell scripts, so this patch likely
allows them to execute without being detected.)

Below, we can see the full AMSI patching script, which was lightly obfuscated.

17/29

https://www.cyberark.com/resources/threat-research-blog/amsi-bypass-patching-technique

] s 118b($5400., $ohgy Snd0als(
]::gpa($1lsna7, $5x, Shhgy. S0

J: rwpr{Smocg, [15. (112-48
113}, (142-55), |

We were able to decode the script, which loosely translated to this below.

set-alias qBou

$56xw = Jexecutioncontext
$bhgv

fin3Ba=

$a5k908=558xw. $bhgv.$n3Ba ("

$ik349

GetProcAddress
"LoadLibrary

VirtualProtect

Add-Type $ik349

$lsna? = |]::11ib{$56xw.Sbhgv.$n38a(

$nexlpg = [|::gpa($lsna7, $58xw.$bhgv.$n38a(

$e6bhi = @

[]:ivpr($mexig, [15, (112-48), | J$e6bhi)

$bsgee = [[1] ((297-113), (142-55), (52-52), (62-55), (226-98), (
|]::Copy($bS86e, 8, fnwxig, 6)

The second string was far more interesting, as it incorporated a custom encoding routine
alongside the Base64 and compression that we've been so far accustomed to. This was an
indication that we need more than just CyberChef alone to decode our next payload.

pipeline
pipeline
Type type

("HanG

In order to get a better understanding of the obfuscation, we inspected the Cipher method and
found the encoding routine. It didn’t look standard, and clearly, it was something custom-built—
although not extremely complicated to decode. Routines like this are often used to evade
automated analysis, as the non-standard nature hinders some automated tooling—often
requiring manual intervention and analysis to decode properly.

Below, we can see the full custom routine, which takes an encoded string, a key and an
encipher flag.

input, ey, encipher)

input
(input[]i]))

input[§1);

num?2 = (encipher

text += ((Y (Pr

text += input([j].

Browsing back to our main function, we quickly found the key “avyhk” and encipher flag, which
was set to false.

We decided not to pursue CyberChef for this. After some careful inspection and analysis, we
were able to re-implement the routine using the equivalent Python code included below.

19/29

(encoded, key, encipher):

index

flag =

num2 ord(key[index].upper()) ord(c)
num2 = ord(key[i Jower()) - ord(c)
num2 = num2 if encipher else (-num2)
text += (chr((modcustom(ord coded[j]) + num2 - ord(c),26) + ord(c

text += str(encoded[j])
num +=1

text

Using our new Python script, we wrote a wrapper around our cipher function and we were able
to dump the decoded content to a new file. Using this, we ended up with another executable file:
stage6.bin.

Stage6.bin

We saved and loaded the stage6.bin file into PeStudio and DIE for some static analysis and saw
that we had another .NET file. (Yay for Dnspy again!)

20/29

File name

Ci\sers\[EUser Deskiop\pymalware \stages. bin [i

File type Entry point Base address MIME
PE32 00411dde > Disasm 00400000 Memory map]
[Hash
LI 1

PE | Import Resources | MET

‘ Strings

SizeQfimage Res

=Datests Entropy
0003 2021-01-28 14:06:14 00016000 Manifest Version

‘ Hex .

Scan Endianness Mode chitecture Type
Detect It Easy(DiE) LE 32 3 GUI
library JNET (wd0.30319)[-]

compiler VE.MNET(-)[-]

linker Microsoft Linker(8.0)[GLI32

Options

Sionatures [] Deep scan About
-3 Lag 131 msec Exit

Overall, we didn’t find anything of particular use within PeStudio, so we moved on to Dnspy. We
were able to determine that the file was a remote access Trojan (RAT), likely from the URSU
family_of malware.

This malware had all the typical functionality of a RAT, which included the ability to gather and
enumerate system information, as well as download files and commands from a remote
command-and-control server.

Analysis of the RAT

Below, we can see a graphic overview of the functionality of the final RAT payload.

21/29

https://blog.talosintelligence.com/2020/03/threat-roundup-0306-0313.html

RAT FUNCTIONALITY

Malware Loaded

Config Settings are Decrypted

Anti-Analysis Checks
are Run

Machine Enumerated
and Mutexes Created

s Use WMI to check for
devices from Vmware or
Virtualbox

- Check if Windows XP

- Check for DebuggerFlag

- Check for sandboxie via
sbiedll.dll

- Check Disk Size > 61GB

- Check for dnspy via
presence of
"%appdata%\dnspy\
dnspy.xml"

« Check Running Antivirus

- Check User Privileges

- Check if in domain

- Get external IP

- Enumerate active
windows

Set Persistence and
Kill Processes

« Kill already running
malware processes and
further establish
persistence

- (if admin) - Create
elevated scheduled task

- (if reg user) - Create Run
Key with .bat script

W HUNTRESS

Decrypting the Configuration

Sleep and Repeat

Contact C2 and await
commands (TLS + AES)

« Update - Download new
malware file

- savePlugin - Download
and load DLL

- Unload - send kill over
pipe?

- Restart - Restart the
Process

- Self-delete - self
uninstall, remove keys
and persistence

After determining that this malware was likely a RAT, we decided to look for indicators of the C2
server and any configuration settings that we could use as indicators of compromise. Analyzing
the RAT code within Dnspy, we found an “InitializeSettings” method that was loading config data

from values encrypted with AES256, and then encoding using Base64.

Here’s the code for decrypting config data within the InitializeSettings method:

22/29

Below, we can see the AES256 encrypted and Base64-encoded values being loaded.

After playing around with the decryption code, we were able to decrypt the config and pull out
the following values—including a port number, mutex name, version and grouping numbers, as
well as three domains of C2 servers.

thm.Res256
-

windowsupdatecdn.con, gjghvgaTifigb.xyz, huugbhbvuayd.cn
“

Mutex: afg]éj3umdsuk
Fastebin: null

s, =]

Machine Enumeration

1T3GVVel1Te5]dNdT+awT 5a6defBIhV14129qE /h3ANT5+] pF+USK0HE 2 kbS 1vwod] 9}

Through a combination of queries made to the OS, mostly via WMI queries, the malware
gathered the following information to send to the C2 server:

¢ Currently running antiviruses and security products
User privileges

Whether the victim was connected to a domain
External IP of the current machine

Names of open windows and active processes

23/29

https://docs.microsoft.com/en-us/windows/win32/wmisdk/querying-wmi

Anti-Analysis Checks

After enumerating system information, the malware then executed some anti-analysis checks to
see if it was running inside of a virtual machine or analysis environment.

The malware contained several methods and functions for detecting this. These were relatively
simple and consisted of five main checks:

o DetectManufacturer: Looks for VMware or VirtualBox in hardware descriptions

+ DetectDebugger: Checks “Debugger.IsAttached” flag, also checks for the presence of a
dnspy.xml file in the %appdata% directory

o DetectSandboxie: Looks for Sandboxie drivers (sbiedll.dll)

+ IsSmallDisk: Checks if Disk Size is less than 61GB

o IsXP: Checks if the current OS is Windows XP

If any of the above checks are true, then the malware cleans up and terminates itself with the
“failFast” method.

Below, we can see the names of the anti-analysis functions being called.

None of them were particularly interesting or complex, and all followed a similar structure to the
screenshot below.

Final Persistence: Run Keys and Scheduled Tasks

Once the anti-analysis checks were completed, the malware established further persistence via
scheduled tasks and run keys, depending on the current privilege level.

24/29

If admin privileges were available, then an elevated scheduled task is created. This would allow
the malware to persist with admin-level privileges across reboots, without the need for UAC
prompts each time.

If only standard user privileges were available, a .bat script would be placed into the current
user’s run key, which would provide persistence with standard user privileges.

Using these indicators, we were able to find other artifacts left by the malware and develop
detections that could be used to alert on similar activity.

You can check for similar persistence via scheduled tasks and run keys by regularly reviewing
the following run key and scheduled task locations:

« HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run
o HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run
¢ c:\windows\system32\tasks

(Alternatively, sign up for a free trial and we’ll take a look for you!)

C2 Commands and Functionality

Once persistence had been established, the malware then contacted the command and control
servers for further commands. These commands could be...

o Update: Download new malware via PowerShell, start it, then kill the current process
SavePlugin: Download and load a remote DLL

Unload: Send a kill command over a named pipe

Restart: Kill the current process and force a restart via a scheduled task
Self-delete: Remove all persistence and kill the current process

Some short snippets of this functionality are in the screenshots below:

25/29

https://www.huntress.com/trial

(msgPack.] ("Ha » msgPack.
(msgPack] Hash™) » msgPack.

(MsgPack msgPack2 Packet. . \sgPack>())

flag = msgPack2 msgPack.

flag

1ag

Packet .R (msgPack2);

(msgPack, "55[—’::.(.‘)_;

n namedPipeClientStream

namedPipeClientStream
treamiriter streamWriter treamiriter(namedPipeClientStream);
value "kill"™;
streambiriter = =(value):
streamWriter.Fl B F

namedPipeClientStream.Close();

VirusTotal Check of Domains: 0/3

At the time of initial analysis (May 2021), all of the domains had 0/85 detections on VirusTotal—
although one of them was marked as suspicious by one vendor.

(i) 3detected files communicating with this domain

windowsupdatecdn.cn

?

% Community N
Score

@ No security vendors flagged this domain as malicious

gjghvga7ffgb.xyz
?
dga
% Community o
Score
DETECTION DETAILS COMMUNITY
Forcepoint ThreatSeeker (i) Suspicious AL

27/29

'|/ MNo security vendors flagged this domain as malicious

huugbbvuay4.cn
7
dga
% Community Y.
Score
DETECTION DETAILS COMMUNITY

Recommendations and Final Comments

That wraps up our analysis of this malware. We hope you enjoyed it as much as we did.
Hopefully, you learned something new and will soon be able to implement some of these
analysis techniques for yourself.

As we saw, even a relatively simple payload (like a RAT) can be implemented in a way that is
highly complex and difficult to detect, especially when using customized or unique files and
domains that slip past automated security tooling. Although automated tooling has its place, the
days are gone where you can rely on such tooling alone.

You should make sure that proactive and human-driven methods of threat hunting are built into
your security stack alongside layered tooling to hinder and decrease the likelihood of a
successful compromise.

To wrap things up, we'd like to make a few recommendations for dealing with this type of
malware:

« Avoid relying on static signatures to detect malicious activity. This applies for both
network and file-based indicators of compromise. All running executables and domains in
this investigation were “legitimate” and likely would not be blocked on hash alone.

* Monitor and manually review suspicious files executing from runkeys, scheduled tasks
and persistent startup folders.

* Monitor for process creation events where a Python file is being passed to a non-
Python or text editor executable.

+ Inspect any suspicious or non-standard process creation events. Baseline which
processes are expected to launch msbuild.exe, and alert on anything outside of this
baseline.

28/29

https://www.huntress.com/blog/what-is-human-powered-threat-hunting

+ When analyzing suspicious files and domains, make sure to incorporate manual
analysis and decoding into your process. Avoid relying solely on automated tooling
such as VirusTotal or online sandboxes.

Indicators of Compromise

¢ Domains:
o windowsupdatecdn[.]Jch
o gjghvga7ffgb[.]xyz
o huugbbvuay4[.]lcn
¢ Hashes:
o ctfmon.exe:
3e442cda613415aedf80b8a1cfad181bf4b85¢c548c043b88334e4067dd6600a6
o Update.py:
dd1fa3398a9cb727677501fd740d47e03f982621101cc7e6ab8dac457dca9125
o stage2:
2CCADFC32DB49E67E80089F30C81F91DFFF4B20B8FC61714DF9E2348542007FD
o stage3:
4591EDA045E3587A714BB11062EB258F82EE6F0637E6AA4D90F2D0B447A48EF7
o stage4:
4417298524182564AED69261B6C556BDCE1E5B812EDC8A2ADDFC21998447D3C6
o stage5:
9B775DFC58B5F82645A3C3165294D51C18F82EC1B19AC8A41BB320BEE92484ED
o stage6:
169F5DBCD664C0B4FD65233E553FF605B30E974B6B16C90A1FB03404F1B01980

29/29

