
1/31

Amged Wageh August 17, 2021

LockBit Ransomware Analysis Notes
amgedwageh.medium.com/lockbit-ransomware-analysis-notes-93a542fc8511

Amged Wageh

Aug 17, 2021

·

14 min read

LockBit is a relatively new family of ransomware that has been discovered for the first time in
2019, and since then, it keeps evolving in both the social and the technical aspects to keep
up with the modern ransomware, for example, in the newest versions, the ransom-note
contains a threat to the victims to leak their private data if the victim just restored his data
from a backup and didn’t pay the ransom, they explicitly reminds them with the GDPR as a
direct way of extortion, as for the technical aspect, they started using multi-threading to
enhance the performance of the malware and some other technical details that will be
described in this story .

So, let’s take a closer look at a sample that have been recently published.

Sample Info.

5761ee98b1c2fea31b5408516a8929ea

4d043df23e55088bfc04c14dfb9ddb329a703cc1

0a937d4fe8aa6cb947b95841c490d73e452a3cafcd92645afc353006786aba76

0x5E4A2B92 (Sun Feb 16 21:58:42 2020)

NOTE: This is the final payload so, we’ll directly dive into the real nefarious stuff of the
malware.

A Quick Look

By having a very quick look at the sample to get an idea of what kind of binary we’ll be
dealing with, it appears that the the section names are very normal, the entropy are a little
high for the .text and the .rdata sections but not that high, which indicates that most
probably this binary is not packed however, it applies some obfuscation techniques.

https://amgedwageh.medium.com/lockbit-ransomware-analysis-notes-93a542fc8511
https://amgedwageh.medium.com/?source=post_page-----93a542fc8511--------------------------------
https://amgedwageh.medium.com/?source=post_page-----93a542fc8511--------------------------------

2/31

The Sections Entropy

A Quick Behavioral Analysis

NOTE: I usually give the binary any arbitrary name because I don’t know yet what kind
of anti-analysis techniques are being applied so, “lockbit.exe” and “anghami.exe” are
the same binary. — just so you don’t be confused if you’ve noticed that in that
screenshots below.

By having a quick look at the process tree of the malware, we can see a bunch of
dllhost.exe executions with CLSIDs of COM objects that are known to be vulnerable to

UAC bypassing, one of them spawns the lockbit.exe process.

3/31

UAC Bypassing
Also, we can easily notice that it tries to inhibit the system recovery by deleting the shadow
copy, deleting the windows backup catalog, and modifying the boot configuration to disable
windows automatic recovery features.

The Process Tree
Neglecting the fact that we already know that we’re dealing with a ransomware, that behavior
is a quick give away that most probably this is the case.

We can also see that, for some reason, it tries to scan the network by sending a tons of ARP
requests to the entire network.

Network Scanning
And it will try to connect via port 445 (SMB)

4/31

SMB Connection
Regarding the Registry, we’ll notice a huge amount of activities that are related to registry
access and modification, but the ones that we’re most interested in are the following keys,

SOFTWARE\LockBit

SOFTWARE\LockBit\full

SOFTWARE\LockBit\Public

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\XO1XADpO01

Registry Modification
Finally, the background will be changed and all the files will be encrypted and has the
.lockbit extension.

5/31

Changing The Background
And of course, the ransom-note will be dropped.

Dropping The Ransom-Note

Analysis Notes

6/31

After performing a full static analysis to the sample and adding meaningful names to the
variables and functions, adding few comments to the important sections of code, de-
obfuscating the strings, and validating the results with a full behavioral analysis, here is some
interesting snippets from the malware that could help us understanding the behavior of it and
build detection for it.

Anti Debugging

The malware checks the NtGlobalFlag which exists in the PEB (Process Environment
Block) at offset 0x68 to know whether or no the process is being debugged. It performs a
TEST to check the value of the flag, if it equals 0x70 (which means the process is being

debugged), the execution will be transferred to a block of code that exists the process.

Anti Debugging
Also, The malware has multiple calls to Sleep with high number of seconds, this usually
being done to avoid being automatically analyzed inside a free sandbox, as most of the free
sandboxes limit the amount of execution time to a limited number of minutes.

Token Impersonation

The malware will try to impersonate the token of the logged on user via the physical console
by firstly getting session identifier of the console session by calling
WTSGetActiveConsoleSessionId then it will pass that sessionId to
WTSQueryUserToken to obtain the primary access token of the logged user, if it fails to get

the token, it will create the process with the current security context by calling
CreateProcessW however, if it manages to get the user’s access token, it will duplicate the

token by calling DuplicateTokenEx then it will use the duplicate token to create the new
process using CreateProcessAsUserW .

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-wtsgetactiveconsolesessionid
https://docs.microsoft.com/en-us/windows/win32/api/wtsapi32/nf-wtsapi32-wtsqueryusertoken
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessw
https://docs.microsoft.com/en-us/windows/win32/api/securitybaseapi/nf-securitybaseapi-duplicatetokenex
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessasuserw

7/31

Token Impersonation
Usually malware use this technique for two reasons:

1. if the impersonated user has a higher privilege.
2. to bypass access controls.

String Obfuscation

This sample has all of its strings encrypted via a simple XOR encryption with a unique key
for each string, each encrypted sequence of bytes will have the fist byte as the key. The
malware first loads the encrypted strings onto the stack then, it runs the decryption loop. This
loop is being noticed in almost all the functions.

8/31

XOR Decryption
Here is a very simple python function I wrote to help me decrypting the strings. This function
takes the hex values as a string then it will decrypt it.

import binasciidef xor_decrypt(data): data = binascii.unhexlify(data) key = data[0]
result = '' for byte in data: result += chr(byte ^ key)return result

Debugging Messages

This malware does something very cool which is printing what seems to be debugging
messages to a hidden console window. For the malware to be stealthier as much as it could
be, all the strings are obfuscated using the same XOR encryption algorithm we discussed,
after de-obfuscating all the strings and tracking them, analyzing the sample has became
much easier.

9/31

Printing Debugging Messages

Generating And Storing the Decryption Keys

The malware uses two algorithms for the encryption which are RSA and AES.

10/31

Firstly, The malware will generate an RSA session key pair then, it will encrypt the private
key using a hard-coded public key then, it stores the encrypted key in the
SOFTWARE\LockBit\full registry key and the public key will be stored in
SOFTWARE\LockBit\Public

Creating The SOFTWARE\LockBit Reg. Key
The malware will randomly generate a new AES key for each file. Once it’s being used for
encrypting the file, the AES key will be encrypted using the RSA public session key and
appended to the end of the encrypted file. The debugging messages that we mentioned
earlier have made it easy to detect the function that will generate the session keys as the de-
obfuscated string says “ Generating session keys”!

11/31

Session Keys Generation
The following snippets show the keys storing and querying.

12/31

Querying The Keys
For generating the random numbers, LockBit will use LoadLibraryA and
GetProcAddress to dynamically load bcrypt.dll for importing the BCryptGenRandom

API for generating 32 bytes of random numbers, and if it couldn’t load the necessary
libraries, it’ll call CryptAcquireContextW and CryptGenRandom to get the job done.

Generating Random Numbers

Utilizing IOCP (Completion I/O ports)

As we mentioned earlier, LockBit has been technically evolved, one of the technical aspects
is using the Windows I/O Completion ports mechanism for providing an efficient threading
model for processing multiple asynchronous I/O requests on a multiprocessor system.

https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress
https://docs.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptacquirecontexta
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptgenrandom
https://docs.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports#:~:text=I%2FO%20completion%20ports%20provide,is%20to%20service%20these%20requests.

13/31

Creating Completion I/O Ports
The malware has each function of its behavior separated in a subroutine, it creates an I/O
completion port by calling CreateIoCompletionPort then, it will enter a loop to create a
bunch of threads by calling either one of the undocumented and more stealthier following
APIs NtCreateThreadEx or RtlCreateUserThread and it will set the entry point of each
thread to one of the subroutines. After that, NtSetInformationThread will be called for
setting the thread priority for each created thread.

https://docs.microsoft.com/en-us/windows/win32/fileio/createiocompletionport
http://pinvoke.net/default.aspx/ntdll/NtCreateThreadEx.html
http://pinvoke.net/default.aspx/ntdll/RtlCreateUserThread.html
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-ntsetinformationthread

14/31

Threads Creation

Privilege Escalation

Firstly, LockBit checks its privileges by getting the process token by calling
NtOpenProcessToken then, it queries that token via NtQueryInformationToken after

that, it creates a user security identifier (SID) that matches the administrator group by
passing WinBuiltinAdministratorsSid to CreateWellKnownSid . Finally, it calls
CheckTokenMembership to check whether the current process privileges include the

Administrator privileges or not.

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-ntopenprocesstoken
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-ntqueryinformationtoken
https://docs.microsoft.com/en-us/windows/win32/api/securitybaseapi/nf-securitybaseapi-createwellknownsid
https://docs.microsoft.com/en-us/windows/win32/api/securitybaseapi/nf-securitybaseapi-checktokenmembership

15/31

Checking Privileges
If it doesn’t include the Administrator privileges, LockBit will perform a UAC bypassing by
calling a windows COM objects that can auto-elevate, and for masquerading, LockBit
implements a publicly available function called supMasqueradeProcess which allows the
malware to conceal its process information by injecting into a process that runs in a trusted
directory, it choose explorer.exe to be its target.

https://docs.microsoft.com/en-us/windows/security/identity-protection/user-account-control/how-user-account-control-works
https://docs.microsoft.com/en-us/windows/win32/com/the-component-object-model#:~:text=A%20COM%20object%20is%20one,an%20interface%20are%20called%20methods.
https://github.com/hfiref0x/UACME/blob/master/Source/Akagi/sup.c

16/31

supMasqueradeProcess Implementation

17/31

For the actual UAC bypassing, LockBit will call CoGetObject with the following CLSIDs:

{3E5FC7F9–9A51–4367–9063-A120244FBEC7}

{D2E7041B-2927–42fb-8E9F-7CE93B6DC937}

Calling CoGetObject

18/31

Querying The CLSIDs and Creating The dllhost.exe procsses

Killing Processes

LockBit calls CreateToolhelp32Snapshot for getting a snapshot of the running processes
then, it uses Process32First and Process32Next to enumerate the snapshot. For each
process, it’ll compare its name against a list of a process, and if it matches, it well pass the
process handle that it got by calling OpenProcess to TerminateProcess to terminate the
process. The list of the processes was also encrypted using XOR .

https://docs.microsoft.com/en-us/windows/win32/api/tlhelp32/nf-tlhelp32-createtoolhelp32snapshot
https://docs.microsoft.com/en-us/windows/win32/api/tlhelp32/nf-tlhelp32-process32first
https://docs.microsoft.com/en-us/windows/win32/api/tlhelp32/nf-tlhelp32-process32next
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-terminateprocess

19/31

Process Termination

20/31

Process Names After Being Decrypted In Memory
And here is a list of the process that will be terminated if exists:

wxServerwxServerViewsqlmangrRAguisuperviseCultureDefwatchwinwordQBW32QBDBMgrqbupdateax
CloudAdobe Desktop ServiceCoreSyncAdobe CEF HelpernodeAdobeIPCBrokersync-
taskbarsync-
workerInputPersonalizationAdobeCollabSyncBrCtrlCntrBrCcUxSysSimplyConnectionManagerSim
exp-engine-
serviceTeamViewer_ServiceTeamViewertv_w32tv_x64TitanVSsmsnotepadRdrCEForacleocssddbsnm

Stopping Services

LockBit has a list of services that will try to stop by calling OpenSCManagerA to establish a
connection to the service control manager on the local computer

 then, it loops over a list of predefined services passing each service to OpenServiceA to
check the existent of that service, if the service exists, it’ll check its status by calling
QueryServiceStatusEx and it will call ControlService with the parameter
0x00000001:

SERVICE_CONTROL_STOP to stop the service. In order to not cause any crashes to the
system, LockBit will stop all the dependent services by calling EnumDependentServicesA
before stopping the target service. Those services are mostly backup services, anti-virus
services, and other services that may lock some files due to having handles to them.

https://docs.microsoft.com/en-us/windows/win32/api/winsvc/nf-winsvc-openscmanagera
https://docs.microsoft.com/en-us/windows/win32/api/winsvc/nf-winsvc-openservicea
https://docs.microsoft.com/en-us/windows/win32/api/winsvc/nf-winsvc-queryservicestatusex
https://docs.microsoft.com/en-us/windows/win32/api/winsvc/nf-winsvc-controlservice
https://docs.microsoft.com/en-us/windows/win32/api/winsvc/nf-winsvc-enumdependentservicesa

21/31

Stopping Some Services

22/31

Services Names After Being Decrypted In Memory
Here is a list of the services that LockBit tries to stop:

wrapperDefWatchccEvtMgrccSetMgrSavRoamSqlservrsqlagentsqladhlpCulserverRTVscansqlbrows
usbarbitator64vmware-
converterdbsrv12dbeng8MSSQL$MICROSOFT##WIDMSSQL$VEEAMSQL2012SQLAgent$VEEAMSQL2012SQLBr
ExchangeMSSQL$MICROSOFT##SSEEMSSQL$SBSMONITORINGMSSQL$SHAREPOINTMSSQLFDLauncher$SBSMON

Excluding Files And Directories

To avoid any system crashes and to make sure that the system has functional browsers for
connection and negotiation, besides avoiding entering an infinite loop of encrypting the
already encrypted files and not to encrypt the ransom-notes, LockBit has a list of files,
folders, and extensions exclusions.

23/31

A List Of Exclusions
Here is the list of exclusions:

windowsintelrecycle.bintor browserwindowsntmsbuildmicrosoftall userssystem volume
informationperflogsgoogleappdatamozillamicrosoft .netmicrosoft sharedinternet
explorercommon filesopera intelwindows
journalntldrntuser.dat.logbootsec.bakautorun.infthumbs.dbiconcahce.dbrestore-my-
files.txt.386.cmd.ani.adv.theme.msi.msp.com.diagpkg.nls.diagcab.lock.mpa.cpl.mod.hta.i

Mutex Creation

24/31

For avoiding multiple infection on the same host, LockBit creates the following mutex
Global\{BEF590BE-11A6–442A-A85B-656C1081E04C} . Firstly, it will try to open that mutex

by calling OpenMutexA , if it succeeds, which means that host is already infected, it will exit
the process, otherwise, it’ll call CreateMutexA for creating the mutex then, it’ll proceed with
the rest of the malware functionality.

Mutex Creation

Persistence

In order to maintain a persistence and to service reboots, LockBit creates the following
registry key

HKCU\SOFTWARE\Microsoft\Windows\CurrentVaersion\Run\XO1XADpO01 with a value of

https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-openmutexw
https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-createmutexa

25/31

it’s path on disk.

Maintaining Persistence

After Decrypting The Key In Memory

26/31

Shutdown Prevention

In order to ensure that the encryption operation didn’t get disrupted even by shutting the
system down, LockBit will create a shutdown block reason by calling
ShutdownBlockReasonCreate .

Creating Shutdown Block Reason

Netwrok Enumeration

https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-shutdownblockreasoncreate

27/31

In order to ensure infecting as many victims as possible, LockBit scans the attached drivers
and network shares and when it finds files that meets its previously discussed requirements,
it’ll also encrypt those files.

 LockBit starts this function by calling GetLogicalDrives to git a bitmask representing the
currently available disk drivers then, it loops over them and passed them to
GetDriveTypeW to determine the type of the driver whether it is a removable, fixed, CD-

ROM, RAM disk, or network drive, it specifically looking for 0x4: DRIVE_REMOTE . Once it
finds a networked drive, it calls WNetGetConnectionW to retrieve the name of that network
resource, then it will do a recursive calls to WNetOpenEnumW and WNetEnumResourceW
enumerate the folders and files of that network resource.

Network Enumeration
LockBit can also access the network shares that require user credentials by calling
WNetAddConnection2W with lpUserName=0 and lpPassword=0 which automatically

sends the username and password of the currently logged in user.

https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-getlogicaldrives
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-getdrivetypew
https://docs.microsoft.com/en-us/windows/win32/api/winnetwk/nf-winnetwk-wnetgetconnectiona
https://docs.microsoft.com/en-us/windows/win32/api/winnetwk/nf-winnetwk-wnetopenenumw
https://docs.microsoft.com/en-us/windows/win32/api/winnetwk/nf-winnetwk-wnetenumresourcea
https://docs.microsoft.com/en-us/windows/win32/api/winnetwk/nf-winnetwk-wnetaddconnection2w

28/31

Connecting Over SMB

Connecting To Shares With Creds.

The Ransom Note

While LockBit is performing the encryption, it will drop a text file called Restore-My-
Files.txt which is the ransom-note.

All your important files are encrypted!Any attempts to restore your files with the
thrid-party software will be fatal for your files!RESTORE YOU DATA POSIBLE ONLY
BUYING private key from us.There is only one way to get your files back:| 1. Download
Tor browser - and install it.| 2. Open link in TOR browser - ?A0C155001DD0CBxxxEDA0D
This link only works in Tor Browser! | 3. Follow the instructions on this page ###
Attention! ### # Do not rename encrypted files. # Do not try to decrypt using third
party software, it may cause permanent data loss. # Decryption of your files with the
help of third parties may cause increased price(they add their fee to our). # Tor
Browser may be blocked in your country or corporate network. Use or use Tor Browser
over VPN. # Tor Browser user manual !!! We also download huge amount of your private
data, including finance information, clients personal info, network diagrams,
passwords and so on.Don't forget about GDPR.

The content of this file is also encrypted and it has been decrypted in memory before writing
the files.

29/31

The

Ransom-Note In Memory

Self Deleting

After a successful execution, LockBit will delete its executable for reducing the artifacts it
leaves on the infected system. In order to do that, it runs the following command C ping
1.1.1.1 -n 22 > Nul & \ <the path to the executable>

30/31

Self Deleting

Inhibiting System Recovery

As almost all ransomware does, LockBit will delete the volume shadow copies, the backup
catalog, disable automatic windows recovery, and clear the windows logs as well by running
the following commands.

/c vssadmin delete shadows /all /quiet & wmic shadowcopy delete & bcdedit /set
{default} bootstatuspolicy ignoreallfailures & bcdedit /set {default} recoveryenabled
No & wbadmin delete catalog -quiet/c vssadmin Delete Shadows /All /Quiet/c bcdedit
/set {default} recoveryenabled No/c bcdedit /set {default} bootstatuspolicy
ignoreallfailures/c wbadmin DELETE SYSTEMSTATEBACKUP/c wbadmin DELETE
SYSTEMSTATEBACKUP -deleteOldest/c wmic SHADOWCOPY /nointeractive/c wevtutil cl
security/c wevtutil cl system/c wevtutil cl application

After Decrypting The Commands In Memory

31/31

Behavioral Analysis Artifacts Of The Executed Commands

Mitre TTPs

The following is a list of the most important MITRE ATT&CK TTPs identified while analyzing
the malware.

Mitre TTPs

Thanks for reading, your comments and feedback are most welcomed 🙂

