
1/12

Statically unpacking a simple .NET dropper
malcat.fr/blog/statically-unpacking-a-simple-net-dropper/

Sample:

15180ee9f6a8682b24a0d5cb0491bb4e09d457bfab5a24ec1fcb077dab59773b (Bazaar, VT)

Infection chain:

.NET dropper -> .NET dropper + Reflective DLL -> Loki

Difficulty:

Easy

Introduction

Today we will try to unpack a simple 2-layers .NET dropper using static analysis only. The
goal of most malware packer/obfuscator is not to be hard to crack: it is to circumvent AV
detection for a while, and eventually get replaced by a new one afterwards. And at the very
end of the packer food chain are packers written in VB, .NET and AutoIT: they are
particularly cheap and easy to crack. The sample we are about to analyse is no exception
and will make a good introduction to Malcat's decryption algorithms.

A quick glance at the file metadata tells us immediately that the file is suspicious. A VB.NET
application from Microsoft with a 2013 copyright but freshly compiled... sure, those version
informations are 100% not fake.

https://malcat.fr/blog/statically-unpacking-a-simple-net-dropper/
https://bazaar.abuse.ch/sample/15180ee9f6a8682b24a0d5cb0491bb4e09d457bfab5a24ec1fcb077dab59773b/
https://www.virustotal.com/gui/file/15180ee9f6a8682b24a0d5cb0491bb4e09d457bfab5a24ec1fcb077dab59773b

2/12

Figure 1: Fake

version information
Let us cut the overview right there as we will directly focus on the packed payload.

Locating the payload

Most .NET packers embed one or more encrypted assemblies. .NET assemblies are not
small, they have to be put somewhere. They are usually put inside .NET resources
(sometimes insides pictures), .NET static arrays or strings. For this sample, Malcat has
already spotted a 800KB+ hexadecimal string inside the program (HugeStringHexa), which is
kind of unusual.

3/12

Figure 2: A look at the anomalies
This is confirmed in the Strings view (shortcut: F6), which tells us than more than 90% of the
file is made of strings, and that our big hexadecimal string is by far the biggest one (the size
412768 is given in characters, so actual size for UTF16 is twice as much, about 824KB).
Moreover, it has exactly one code reference, which is always a good indicator for packed
data:

Figure 3: Big hexa string
If we follow the string reference in the Code view (right-click on the string, and then choose
Cross-references sub-menu) we land on the code snippet presented below. By looking at the
names of the method and package there, we can infer that the application we are analyzing
was most likely a clean .NET software that has been only slightly modified to include a
couple of malicious methods. This is a technique commonly used by obfuscators to evade
AV heuristics.

The content of the method also tells us that we won't have to start our VM for now. In fact,
the hexadecimal string seems to be decrypted using a simple XOR algorithm using the key
"wnhILKQcVU" :

4/12

Figure 4: String decryption

Decrypting the first layer

Malcat comes with several decryption algorithms which we will use on the string. First, right-
click on the big hexa string and chose the Transform... sub-menu. We will apply the
following transformations (in order):

change text encoding from UTF-16le to UTF-8: we get an ascii hexadecimal string
hex decode the hexadecimal string: we get the raw bytes
decrypt using the XOR algorithm and the key "wnhILKQcVU"

After these three pass, we obtain ... a base64 string, so the job is still not finished. Using
Malcat's transformations, we can easily decode the base64 string. The result is identified by
Malcat as a ... GZIP archive. Sure, after encoding your payload in hexa and base64, now
you start to care about storage efficiency. But ok, Malcat can handle GZIP archives just fine.
Just double-click the content stream inside the files tab to finally obtain ... a new PE file!

5/12

Figure 5: Unpacking the first layer
At this point we can discard the rest of the application: the payload we just decrypted made
for more than 90% of the file and the packer authors cared enough to pack it several time.
So it's pretty safe to assume that we got everything there was to see there.

Decrypting the second layer

The second layer is also a .NET executable which also contains stolen VersionInformations
(claims to be WallpaperChanger.dll). This time, there seem to be more than one packed
content:

we see a high-entropy .net resource named Tesla of about 60Kb
one big base64 string of about 185Kb at offset 0x100131da
two small hexadecimal strings of ~100 bytes

The rest of the application seem to be a clean app, with a few added malicious methods
inside the class
WallpaperChanger.QsJAksvOJQZGMrkQGUrJCZfDxJspOiApOTEDEDQQQBBEDh . So we will

save us some time and not analyze the code, and instead focus on the packed data: the big
resource and the big base64 string. Let us start with the resource.

6/12

Figure 6: Second layer overview
When adding a resource to a .NET program under VisualStudio, a standard resource getter
name get_<resource_name> is often created. So we will go into the symbols list (shortcut:
F5), hit Ctrl+F and look for Tesla . There is exactly one method named
WallpaperChanger.Properties.Resources.get_Tesla at offset 0x1000278c . The

getter has only one code reference at address 0x100026dc which looks promising:

Figure 7: the method decrypting resource + strings
We see two different decryption methods called there:

the method AESDecrypt used to decrypt the .NET resource Tesla
the method RijndaelDecrypt used to decrypt the two small base64 strings we
spotted earlier.

7/12

The big base64 string does not seem to be decrypted there. Since the small strings seem to
be of little interest, let us focus on the method AESDecrypt first.

Decrypting the Tesla resource

It looks like the authors of the packer were not satisfied with the security offered by XOR
encryption and chose to step up their game:

Figure 8: the method AESDecrypt
The code is pretty straightforward: the string "eرбF开ق艾A私اвдPءぎ迪" is first encoded in
utf16-BE and then hashed using the SHA256 algorithm. The result will be used as KEY for
the AES algorithm. No IV is defined, since the encryption mode is set to ECB. At the end, the
resource content is decrypted using AES. We could easily recover the decrypted content
using a debugger there, but since the code is pretty straightforward, we can also do
everything statically inside Malcat. First, we need to compute the AES key. We can simulate
what the code is doing using the following script:

import hashlib
raw_bytes = "eرбF开ق艾A私اвдPءぎ迪".encode("utf-16-be")
print(hashlib.sha256(raw_bytes).hexdigest())
->
"ab6edf45e299a7b2968a9d7cd013c1164efc6165508d691f085b7d9462ee945b"

8/12

Hit F8 to enter the script editor, remove the example script, paste this content and you will
see the result in the output window. Copy the key in the clipboard and you are ready to
decrypt the resource using Malcat's AES transform:

Figure 9: decrypting the Tesla resource
What we get is a reflexive PE injector .NET DLL rightly named RunPE.dll . This is the kind
of utility assembly which is used by dropper to inject their payload into a running process.
Interesting, but it's definitely not our payload.

Decrypting the base64 string

Our next payload candidate is the big 185kb base64-encoded string located at address
0x100131da . There is again only on code location referencing this string at address
0x1000208c . We can see that the string is decrypted using the method RijndaelDecrypt

this time using the key "wnhILKQcVU" . This is the same key which was used in the first
layer for the XOR encryption.

9/12

Figure 10: the RijndaelDecrypt method
This time the block cipher is used in CBC mode (the default in .NET) and the key generation
is based on the Rfc2898 (aka PBKDF2) algorithm. If we have a look at the offical
documentation, we can see that the constructor of the class Rfc2898DeriveBytes takes
two inputs:

a key, which in our case would be the string "wnhILKQcVU" (encoded in UTF-8 by
default, since no encoding is specified)
a salt, which looks like a 8 bytes array initialized with the value of the field
DD5783BCF1E9002BC00AD5B83A95ED6E4EBB4AD5

The class Rfc2898DeriveBytes is then used to generate a given number of bytes (32 and
then 16 in this case) which are used as key and IV for the cipher. Regarding the Rijndael
algorithm, we can see that in the .NET core implementation, it defaults to AES256. This is
good news for us, this means that the only thing we have to figure out is how to generate the
key and IV. Again, we could debug the sample, but where is the fun in that? We will rewrite it
in python instead.

First thing first, we have to retrieve the salt value (an 8 bytes array) which is located in the
field DD5783BCF1E9002BC00AD5B83A95ED6E4EBB4AD5 . By clicking on the field in the Code
view, we can see its definition in the FieldTable structure. This field has three important
flags set: HasRVA , Static and InitOnly which indicates that this is a static initialized
variable. Also the HasRVA flag tells us that the field has an entry inside the .NET
FieldRVA table.

https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.rfc2898derivebytes?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.rijndaelmanaged?view=net-5.0

10/12

Figure 11: the field holding the salt value
The FieldRVA table has only one entry for field number 0x15 (aka 21) which is our field
(the field DD5783BCF1E9002BC00AD5B83A95ED6E4EBB4AD5 is at index 20 aka 0x14 in the
FieldTable , but Field references start at 1 because 0 is reserved).

Figure 12: the corresponding FieldRVA entry
The format of the data stored depends on the field type (and whether or not a ClassLayout
exists). But we are dealing with a very simple 8 bytes array here, so reading the initial value
is very simple: it is { 1, 2, 3, 4, 5, 6, 7, 8 } , our salt.

Next, we need to emulate the behavior of the class Rfc2898DeriveBytes . We will use the
Cryptodome python package which comes bundled with Malcat and its PBKDF2 algorithm.

Go into the script editor (shortcut: F8) and paste the following code:

from Cryptodome.Protocol.KDF import PBKDF2
pwd = "wnhILKQcVU".encode("utf8")
salt = bytes(range(1, 9)) # content of
DD5783BCF1E9002BC00AD5B83A95ED6E4EBB4AD5
data = PBKDF2(pwd, salt, 32 + 16)
print(data[:32].hex()) # the first 32 bytes are used for the key
-> "34ca280dd207ea1e1915f7ccdc5d59344c55c6863947e507e982a337bdc57742"
print(data[32:].hex()) # the next 16 bytes are used for the IV
-> "be77bdd5564bbc0c4da984f89d88213d"

Now that we know both the key and the IV, we can decrypt the string at offset 0x100131da
using the usual steps:

Right-click on the string from the code view or the strings view and chose Transform..

11/12

Change encoding from utf16 to utf8
Base64 decode the result
AES decrypt the result in CBC mode using the key and IV found above
Base64 decode the result ...
Extract the GZipped content
We get a new PE file!

The PE file looks like a native infostealer and is detected as Loki on VirusTotal. While a lot of
its content is in plain text, some strings and configurations are still encrypted. The decryption
process may be the subject of another blog post.

Figure 13: the final payload: Loki infostealer

Conclusion

We have seen how to navigate inside a .NET program, look for possible payload locations
and how to use the different decryption algorithms inside Malcat to extract the stages of the
malware. We also introduced the python script engine of Malcat, even if we just scratched
the surface there (a scripting example which makes use of the bindings will be the subject of
a future blog post).

Statically unpacking a sample, while more complicated than debugging, offer many
advantages:

we get better quality dumps

https://www.virustotal.com/gui/file/85a7353b7657a5837c2c355b3ff114cb0936789777ed704a0edd1230cb8d5d8a/details

12/12

we don't care about anti-debugging and anti-sandboxing tricks
the scripts which were developed can be reused on other samples in the future
it forces us to better understand the packing logic, and makes us less likely to miss
something

I hope you enjoyed this first tutorial, feel free to share with us your remarks or suggestions!

