
1/20

By imp0rtp3 August 12, 2021

Uncovering Tetris – a Full Surveillance Kit Running in
your Browser

imp0rtp3.wordpress.com/2021/08/12/tetris/

Executive Summary

A Chinese state sponsored threat actor is targeting Chinese-speaking opposition through
waterholed websites.
The Campaign uses a modular and custom JS surveillance framework, dubbed “Tetris”,
implementing a wide range of browser feature.
Almost all of Tetris’ components have zero AV detections.
Tetris exploits vulnerabilities is 58 widely used websites, including Aliexpress, Baidu, QQ
and Tmall.
Three different waterholed websites have been found, there are indications to at least 5
more.

Introduction

This report is based on exemplary work by @felixaime, who found 2 waterholed websites which
triggered all this research.

https://imp0rtp3.wordpress.com/2021/08/12/tetris/

2/20

As of the time of this writing, all the components of the framework are undetected by AV, except
a 2 stage detected by “Ikarus”. This report includes several detection and prevention ideas
and indicators, for the web users and for developers.

Update 22/08/21 – Added 3 wateholed site, additional web users mitigations.

Tetris Attack Chain

Waterholed sites

Felix has found two sites containing links to the malicious domain googledrivers[.]com. The
sites both appear to be independent newsblogs. Both are focused on China, one site on its
actions against Taiwan and Hong-Kong written in Chinese and still updated and the other about
general atrocities done by the Chinese government, written in Swedish and last updated 2016.

Update 22/08/21 – @k3yp0d Found a third waterholed site, the site is the Chinese language
subdomain of an organization doing artificial intelligence research and consultation but also
reports on Chinese aggressive actions, e.g. indirect support to the Taliban. Interestingly, the
English-language site was not infected, although it appears to be hosted on the same
WordPress instance.

nd

rd

https://twitter.com/k3yp0d

3/20

1st site waterhole link

2nd site waterhole script
As seen in the code snippets, the waterhole is embedded differently in each site. Moreover,
while the first site has every page infected with the script, The second has the waterhole only
on its homepage. I believe this difference stems from the first site being managed by
WordPress and thus enabling the attackers to inject their script tag in the default heading.

301 redirection response to /s/02Bl
Both links redirect to a second path in the same domain (Status 301 redirection). The path is
the same except the value of ‘ver’ GET argument, which I later discovered is called Project ID
by the Tetris developers.

Jetriz

Jetriz is a Javascript script which has undergone massive obfuscation. After deobfuscation(see
Appendix D), it turns out most of the script is an obfuscated version of the known JS
frameworks “fetch.js” and “core.js”. Each time the script is requested from the server a different

4/20

uid variable is set for it, so there is no common hash.

Update 13/08/21 – Arkbird introduced me to a public obfuscation framework named plainly
“Javascript obfuscator” available here. The framework has different options which allow the
attacker to choose the sophistication of the obfuscated script. It is highly likely this framework
was used to obfuscate the Tetris scripts.

The custom functions of the script are simple:

1. Anti-debugging (the script detects if the developer tools sidebar is opened).
2. Basic browser information extraction.
3. Sending of the browser information, the current time and the sid back to the server.

{
 device:"PC",
 language:"zh_CN",
 engine:"Blink",
 browser:"Chrome",
 os:"Windows",
 osVersion:"10.0",
 version:"91.0.4472.124"
}

Jetriz before deobfuscation, not much fun to read:(
The response to the request depends on whether the browsers’ language is Chinese. If it’s not
then “<h1>Not Found</h1>” is returned. If it is Chinese then the server responses with Swid.

Swid

On First sight, Swid looks exactly like Jetriz – same obfuscation, similar size and it even shared
functionality. A closer look reveals that although it shares the anti-debug and redirection
functions of Jetriz, its main logic is different. Moreover, it depends on environment variables set

https://twitter.com/Arkbird_SOLG
https://obfuscator.io/

5/20

in Jetriz – the browser information object and the projId. Interestingly, the sid is no longer
regarded.
The Script has two main functions:

1. Injecting itself to any new page opened
2. Loading, managing and running plugins

Link Hijacker

The mechanism used by the script is pretty simple: it registers a callback for every link of the
same domain clicked. Once a user clicks a link the callback neutralizes the original browser
event that should have occurred (redirecting the user to a new path) and instead performs the
same mechanism itself. Before loading the next page, it appends to it a <script> tag with
Jetriz’s url as source. That way, as long as the user stays in the same website, the attacker
can run its code.

Link hijacking mechanism
Of course, if it were up to the attackers, they would have hijacked all links, and not just links to
the same website. Unfortunately for them, CORS prevents that. Cross-Origin Resource Sharing
is a mechanism implemented in every browser and enables servers to decide which (if any)
other domains can access their content. This way, the attacker cannot implant a script in a web
page in which he wasn’t given access to.

Plugin Manager

Swid contains a quite impressive plugin manager, built in a modular way and even giving an
API for the plugins to use. Although very easy to implement, the manager can’t run the plugins
periodically, and they only run once.

communications

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

6/20

The plugin manager initiates a websocket connection to the server using the public socket.io
framework ver. 2.2.0. The client also uses a specific namespace in the socket named
“/zSocket”. The websocket connection is based on the current http(s) connection – so a long as
the http connection to the server is encrypted so is the websocket.
Once connected, the client sends every 5 seconds a “heartbeat” message, which contains the
projId and the browser information collected by Jetriz. Because websockets are asynchronous
the client doesn’t have to wait for any response and can send a message while still handling
the other.

Plugin Loading

The main client message callback is “task”. A “task” message contains a plugin that the plugin
manager should run. Each task contains:

pluginId – 24 characters long hex string
data – javascript code of the plugin
pluginType – always 0
run – always empty

Interestingly, “data” is run immediately when getting a new task. it does not run the plugin itself
but rather returns a function which is called to run the plugin. The function is called with 3
parameters – The plugin managers’ context, the “run” argument and a dictionary containing the
pluginId and pluginType.

“task” message parsing and running
Plugin API

The plugin managers create a dictionary of 29 functions to be used by the plugins easily by
referencing the plugin managers’ context. Many of the functions are not used by any of the
plugins I found. Please See Appendix C for the complete function list.

 Moreover, the manager enables the different plugins to use a unified way to send information
back to the server. By calling the “callback” function the plugins can send back the data they
collected to the server. The callback message contains 6 fields:

1. userSocketId (internal ID of socket.io, doesn’t work in version 2.2.0)
2. data – response data
3. msg – always empty
4. status – always true
5. type – type of data, “string” (for json) or “object”
6. save – always true

7/20

Plugins

Once the server gets the first heartbeat, it sends between 11 to 15 different plugins at once.
 The plugins are generally much lighter obfuscated but the degree of obfuscation varies. All

plugin have the same class creation mechanism. This plugin class has always at least 2
functions: “run” which runs the main logic of the plugin and “callback” or “report” which, well,
report back to the server. The numbering of the plugins was done by me randomly, and doesn’t
have to do with the order of arrival (which wasn’t consistent since the protocol is
asynchronous).

Plugins 0-7

These plugins use a known but not a widely used technique called JSONP-hijacking. The
technique enables exfiltrating the logged-in user account information from vulnerable sites.
While it doesn’t give the attacker a password or any authentication token, it enables him to
identify the victims and to assess his interest in them.

The Implementation is quite easy – the attacker needs to load the relevant JSONP address as
a script ($.getScript()) and to set the name of the callback function inside the url of the JSONP.
The callback function will be called once the JSONP is loaded and will get as argument the
user data.

Plugin 0 gathers information from 58 different sites. 57 of those sites are very popular Chinese
sites, like qq and baidu. There are approximately 30 different attributes the attacker tries to
exfiltrate, which differ from site to site. The common attributes are userid, real name and phone
number. A complete list of the sites and attributes is available in APPENDIX C.

NYT JSONP callback function

A site that stands out is the New York Times. The JSONP vulnerability look like it enables the
attacker to get the user id and the name of the logged-in reader.

Update 16/08/21 – After though examination by the NYT security team it turns out the name of
the user cannot be accessed via this request, but solely its uid and subscriptions.

http://capec.mitre.org/data/definitions/111.html

8/20

Plugins 1-7 are used to exfiltrate user data specifically from one specific website each, using
the same technique. While all the domains in those plugins appear and are already queried in
plugin 0, the plugins use more complicated techniques and site-specific vulnerabilities to
access more comprehensive user data.
The sites queried by the plugins are:

P1 – 163.com basic user info query
P2 – employer.58.com – get “enterpriseinfo“
P3 – jd.com JSONP request embedded in iframe
P4 – sohu.com JSONP request embedded in iframe
P5 – hupu.com JSONP request embedded in iframe
P6 – qq.com – JSONP exploiting music access API of qq that leaks comprehensive user
data.
P7 – baidu.com – complicated JSONP request utilizing a vulnerability enabling the
attacker to run code in the context of the iframe. The plugin had also additional
obfuscation (possibly because it used a newer version of the obfuscator).

Plugin 8

The plugin collects geolocation data. The collection happens through regular browser query, so
the accuracy can vary depending on the type of network access and whether the device has
GPS. The browser gives some value representing accuracy.
It is worth noting that this plugin would cause the browser to request permission from the
victim unless the victim has granted the waterholed website that permission before.

Plugin 9

The plugin gets the internal IP(s) of the victim through the use of WebRTC api.

Plugin 10

The plugin attempts to take one photo of the victim using the webcam of the device, if present.
Similarly to plugin 8, this could make the browser request permission from the victim.

Plugin 11

The plugin uses the public javascript library fingerprint2. The result, excluding pixel ration,
memory information and devices information is hashed and sent back to the server.
Additionally, it loads icons of 11 Chinese security research sites, the purpose of that is unclear.

Plugin 12

The plugin is used to capture anything the user types in the waterholed domain.
The plugin does that by registering a callback on any <input> and <textarea> tags in the
document and reports their textual data back to the server.

Plugin 13

The plugin checks if the victim is using TOR by trying to access a favicon with an onion
address. It is worth mentioning that on a victim not running TOR this could trigger a DNS
request to an onion address (see detection).

9/20

Plugin 14

The plugin tries to connect to websockets at localhost. If the connection succeeds all data
transferred through the socket is forwarded to the attackers’ server. This known but relatively
new technique allows Tetris to exfiltrate developer information and even API secrets. This
article is an excellent explanation of the technique.

 The Following table shows the ports tried by the plugin and their default use:

Port Service

3000 webpack-dev server, core component in React.js development

3001 socket.io secure websocket common port

7000 Used in eventletexamples, Default in RSocket – binary protocol able to run on WS

8000 Used in many examples, likely to be used by several frameworks

9856 reload (node module)

Plugin 15

The plugin collects very comprehensive OS information, including battery status, ad blocker
status, hardware concurrency support and browser plugins. Additionally, it requests the
localstorage for the current site.

Additional Attack chains

Discovery

The two links used in the waterholed sites originally found were very similar: /s/02Bl & /s/02Bn.
This prompted me to try similar combinations. Through this basic approach I was able to find 7
additional redirection URIs (/s/02Bj was also found later in the 3 waterholed site).

original URI Redirected path

rd

https://hackernoon.com/how-to-steal-secrets-from-developers-using-websockets-dw3p3zgk
http://eventlet.net/doc/examples.html
http://eventlet.net/doc/examples.html
https://rsocket.io/
https://www.npmjs.com/package/reload
https://www.npmjs.com/package/reload

10/20

/s/02Bi /public/jquery.min.js?ver=607fd694d0dfb600379f3bb9

/s/02Bj /public/jquery.min.js?ver=6085111875349500318504f6

/s/02Bk /public/x/jquery.min.js?ver=6085111875349500318504f6

/s/02Bl /public/jquery.min.js?ver=60851543c3baea002ff24ff4

/s/02Bm /public/x/jquery.min.js?ver=60851543c3baea002ff24ff4

/s/02Bn /public/jquery.min.js?ver=60878220c25fbf0035f9876c

/s/02Bo /public/x/jquery.min.js?ver=60878220c25fbf0035f9876c

/s/02Bp public/jquery.min.js?ver=609351de045c15003a22361c

/s/02Bq /public/x/jquery.min.js?ver=609351de045c15003a22361c

In bold – URIs used in the waterholed sites.
As you can see, the redirection links alternate between public/x/jquery and public/jquery, and
keep the same projId between them. while all the public/jquery links lead to exactly the same
Jetriz script, the public/x/jquery lead to a different script, which I named Jineva.

Jineva

Jineva is a weird combination of Jetriz and Swid. Judging by its design, shared code and
obfuscation it was developed by the same team. It has 2 main differences:

1. No link hijacking logic
2. No dynamic Plugin manager, but rather a websocket client with 3 functions.

Websocket Client

Communications

The Client uses the same socket.io version as Swid. Unlike Swid, its namespace is “/sSocket“.
 The connection request contains 4 parametrs: projId, baseurl (current URL base64 encoded),

cookie (document.cookie), isRender (boolean argument, purpose unclear).
 Once connected, the client sends a heartbeat containing the projId every 5 seconds (unlike

Swid which also includes device information and language).

Functionality

There are 3 functions the server can execute on the client :
 – processGET: performs a GET request to a url given by the server using the native JS Fetch

call (or the fetchjs polyfill if the native is not available). The response is sent back to the server.

11/20

The request to the url includes credentials. in this way, the attacker can steal NTLM credentials,
cookies and authorization headers of the victim.
– processPOST: Same as processGET but sends a POST fetch request, with parameters set
by the server.
– setLS : Gets a dictionary from the server and sets Items in the locastorage according to it.

Additionally, without regards to server request, the client sends a copy of the localstorage of the
current website (window.localStorage) every 5 seconds (independently of the heartbeat)

Why A Parallel attack chain?

There are several possible explanations for the use of different chains:

1. Different Targets – Jineva is ideal for exfiltration of data from on-premise web servers
and credential stealing, While Jetriz and Swid serve more for surveillance of individuals

2. Different stages of attack – It is possible the TA uses Jineva as a second stage
designed to be used in case it deems Swid’s victim interesting. It is possible that the
Jineva link is injected into subpages of the watehole so to infect only more “interested
users”. Unfortunately I have not found any indication of that in the 2 waterholed sites I
know. I think this is less likely that Swid redirects to Jineva using the plugins, because
Jineva is accessible via a short link, which was used by the TA only for the waterholed
sites.

The use of the same projID for different attack chains is also interesting, as the projID looked at
first like a unique ID per waterholed site. I see two possible explanations:

1. The TA has a number conversion system like “1” -> “60851…”. “2” ->”60935…” etc. This
hypothesis is strengthened by the fact that the projIDs all start with “60” and move up
from “607” to “609”. It could explain why the attacker would have the same IDs, as the
same ID can mean “2nd Jetriz site” and “2nd Jineva site” depending on the path.

2. Each time the attacker creates a new wateholed website instance the server
automatically creates two links, for Jetriz and Jineva, regardless what the attacker
chooses.

Based on these hypotheses, I assess with medium confidence that there are at least 3 more
infected domains we don’t know about.

Infrastructure

I am only aware of one domain used by the group. The domain and the HTTPS certificate were
bought in April. The certificate (by “Let’s Encrypt”) was valid only for 3 months from April 20
until July 19 , was not updated and is still the server’s certificate. The attackers used the
common “openresty” web server.

th

th

12/20

While it makes sense For a TA to change domains frequently, not taking it down and leaving all
scripts there is quite surprising. Moreover, the waterholed websites are not highly visited and
thus the short term benefit from the waterhole doesn’t seem substantial.

Detection & prevention

Detection

SOC & Security Researchers

1. In some browsers, plugin 13 would cause a DNS request for an onion address. This can
be easily detected if DNS is monitored.

2. Please See Appendix B for YARA rules.

Prevention&mitigation

Web Users

1. Noscript is an excellent add-on which would have prevented a user visiting such
waterholed site prevent infection. This method comes with its problems, as it can prevent
legitimate sites from loading correctly.

2. Update 22/08/21 – Using Firefox with strict tracking protection or the latest Chromium
(see referrer policy default) based browsers (Chrome, Edge, Opera, Brave etc.) can
prevent some of plugins (mainly those using JSONP) from runnning correctly. This would
mitigate the effect of Tetris, but would not prevent it.

3. Visiting less-known or less-trusted sites in incognito mode can mitigate the effect an
infection has and the amount of data it can harvest, but would not prevent it.

4. Using proxy, VPN or TOR can also make it harder for the threat actor to target or identify
you, but would not prevent an infection.

Web Developers

1. The TA was able to use the waterholed sites only because their Access-control list was
set to “*”. Changing that setting and verifying it periodically would prevent that. This is a
great resource containing explanations about it.

Attribution

I asses with high confidence that the TA is working on behalf of the Chinese government. This
assessment is based on several reasons:

1. Victimology – Based on the type of waterholed websites and the fact that the attackers
search for Chinese keyboard it is reasonable that the TA is interested in Chinese
opposition movements, activists and supporters. Naturally, this interest is almost exclusive
to China.

https://noscript.net/
https://support.mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop#w_adjust-your-global-enhanced-tracking-protection-settings
https://developers.google.com/web/updates/2020/07/referrer-policy-new-chrome-default
https://enable-cors.org/server.html

13/20

2. Language – There are several occurrences of short sentences written in Chinese in the
plugins. While this could be a false flag, its presence specifically in the plugins, where
there is also no complicated obfuscation, raises doubts about that, as it looks like the TA
did not foresee any researcher accessing these scripts. Moreover, there are several
places with bad English – sometimes in a way that is unlikely to be intentional – instead of
accessing the “dependencies” folder, the server has a “dependence” folder. More similar
errors are seen in the plugins.

3. Similarity – plugin 0 used by the TA has a strong resemblance to a report published by
AlienVault in 2015 . While the report doesn’t include samples, the use of wide JSONP-
hijacking against a subset of the Chinese sites used in plugin 0 hints at some connection
between both operations. The report attributes this attack to china.

Conclusion

An Analysis and comparison of the different techniques used by the actor lead to 3 interesting
conclusions:

1. Separation between teams – Some parts of the attack chain are done quite
professionally – several stages, obfuscation anti-debugging, generic URL path with a
unique GET argument and a modular plugin manager. Other parts seem to be done
unprofessionally – “dependece” path, huge dead code, invalid certificate, the sending of
15 plugins at once, plugins that cause permission requests from the user and redirection
links that enable brute forcing. I believe these inconsistencies show us that there is a
strong separation between the team developing the code infrastructure (Jetriz and Swid)
and the team operating the specific server and writing some of the plugins.

2. Experience with public discoveries – The obfuscation used by the TA, randomization of
some paths and multi-stage design hint that the TA had several encounters with AV
detections or publications in the past. It is possible that the TA learnt from mistakes of
colleagues or reports by the cybersecurity industry alone.

3. Type of use – It is unclear why the TA chose to keep the server running with an invalid
certificate. I see 2 possible explanations:

 a) The TA had been denied access by the cloud provider but the provider didn’t care to
take down its server.

 b) This specific campaign wasn’t effective and thus the team didn’t actively continue it.
They did not take down the server because they either did not care for the code to be
found (because it was written by another team, or didn’t see this as a risk), or that they
thought that it still could have some value in the future.

Summary

Tetris accomplishes to take the most out of the browser sandbox, and illustrates its almost
inherent vulnerability. As browser implement more and more capabilities, which were reserved
for executables, It’s likely we will see more similar frameworks.

https://cybersecurity.att.com/blogs/labs-research/watering-holes-exploiting-jsonp-hijacking-to-track-users-in-china

14/20

A state spying on its citizens and dissidents is not new – for some states that is even their top
priority. Still, the amount of such cyber-espionage campaigns published is relatively low. From
lack of telemetry, to the nonexistent incentive of most of the private and public sector to prevent
it, many campaigns remain hidden and serve as a powerful tool for authoritarian governments.

This research is based alone on the finding of the two waterholed sites by Felix. There are still
several open questions: How widespread are infections? Are there more sophisticated plugins?
Does the actor utilize a sanbdox-escape exploit at some point? What are the other waterholed
sites?

I believe that by collaboration we can answer some of these questions. As cybersecurity
experts, we have the ability to contribute to those who do not have the privilege to live in a
democratic and liberal state, and providing them with a little more freedom.

You are welcome contact me if you have any new finding or questions regarding Tetris.

Appendix A – Mitre ATT&CK® Techniques

Matrix

The Techniques are also available as JSON and Excel in my git repository.

https://github.com/imp0rtp3/Research/tree/master/2021-08-12%20Tetris

15/20

Notable Techniques

Hide Atrifacts (T1564)
Network Service Scanning (T1046) – plugin 14 Tries to connect to 5 different ports of
the host to discover services and exfiltrate their traffiic.
Software Discovery (T1518) – Plugin 15 discovers browser plugins and adblockers
installed by the user.
System Network Configuration Discovery (T1016) – Plugin 13 checks whether the
system is configured to connect through TOR, Plugin 9 discovers the internal IP.
Data From local System (T1005) – Plugin 15 exfiltrates localstorage and cookies of the
waterholed website from the browser.

Appendix B – Detection

Yara Rules

Rules detecting Tetris components.
 Rule detecting the fingerprint2 library – can be used for legitimate purposes..

IOCs

googledrivers[.]com
 45.77.103[.]201

Samples & Hashes

The hashes of the various components of the framework all depend on projId and some on sid,
except the plugins. I have uploaded the raw scripts to virustotal and to my repository both the
raw and deobfuscated versions of them (with some of my comments and more readable
variables).
I have not uploaded plugins 0-7 to any platform, as I believe their value for more threat actors is
bigger than their value for security researchers.

 Any company that was targeted by the plugins can contact me directly and once verified I
would send the relevant code used to exploit their site.

VirusTotal Links

Jetriz
Swid
Jeniva

Plugins Hashes

0e10230dacf24c762c5b931fbb9d7f810b3761cacc06823b0422338f818235b4 – plugin 0
22a36d03806d4db34654aba285585e1a76459cd41e3c109a9f24738533710634 – plugin
1
ced981f8f9b321949d880df65142d7a6931ed862b02b72ffe36b1ebed4c848a2 – plugin 2

https://github.com/imp0rtp3/yara-rules/blob/main/2021-08-12%20Tetris/tetris_advanced.yar
https://github.com/imp0rtp3/yara-rules/blob/main/2021-08-12%20Tetris/tetris_advanced.yar
https://github.com/imp0rtp3/yara-rules/blob/main/2021-08-12%20Tetris/tetris_advanced.yar
https://github.com/imp0rtp3/yara-rules/blob/main/2021-08-12%20Tetris/fingerprint2.yar
https://github.com/imp0rtp3/Research/tree/master/2021-08-12%20Tetris/samples
https://www.virustotal.com/gui/file/94705d794aa28addf33b48383f6371614de97bd5572bf81c73fd12f726c475d4/detection
https://www.virustotal.com/gui/file/a43ecad9d65ac298e1409d75ed6414f90c1543850002997aedf6e4e78cbeedcc/detection
https://www.virustotal.com/gui/file/bfcd10ca12d04cb1cc14e7a7a1c1a040faea6e22a914a1a3386d77f2bf97b755/detection

16/20

1491de46915a6781a3fe82b371d3236a616d89da213f77e2d07c780ca7e65da5 – plugin 3
d1b87b6de14091a70291e04541ecb07a0b6ca4cb848cb8906fcf6059a0ae15e4 – plugin 4
6ea2189452b9fcb072bd2d09c9a03ba3c43118382b5687c010783defc27f4b62 – plugin 5
cd2795f34c37ff5b7dac60e8f618631bdf14f88d017f0073eb8133068e21d150 – plugin 6
78a0b96ca39944a04a7981a13cff76a9f9a3bc285f347ebeae1274c128358ea7 – plugin 7
b1b50a18e8a166f47416a73a5e19351ea042bf2c7fb4e3088a5e457d7b8ff05b – plugin 8
f3ab3203289c30e4e137f73696ab46d7434769c6965583d69b8b297845f9aefc – plugin 9
8b623691edc5ba724405acac4e2f446c977670dca4488b6526852101dca76e52 – plugin
10
4dfa39a06ea81d0a80df2002c643ae07f1bb8a4c608133741d972589a9f874f0 – plugin 11
cae143b302ce23c361bc6cb0ff612ad44cb47e1d15fadc64991d3cec89e42892 – plugin 12
46e47db6175296c2768d13779173684d742a702caa7e71d7bb998f5ef1f29467 – plugin
13
c7653aa63e5c1723c4bd63b7a78f2219e84495502c97313b287f95877064df96 – plugin 14
88f45be2b5117e8d554261e31e02c0e5812c87cfa664472fd43558c3f5603258 – plugin 15

URIs

/public/jquery.min.js?ver=607fd694d0dfb600379f3bb9
/public/jquery.min.js?ver=6085111875349500318504f6
/public/jquery.min.js?ver=60878220c25fbf0035f9876c
/public/jquery.min.js?ver=609351de045c15003a22361c
/public/jquery.min.js?ver=60851543c3baea002ff24ff4
/public/x/jquery.min.js?ver=6085111875349500318504f6
/public/x/jquery.min.js?ver=60851543c3baea002ff24ff4
/public/x/jquery.min.js?ver=60878220c25fbf0035f9876c
/public/x/jquery.min.js?ver=609351de045c15003a22361c
/s/02Bi
/s/02Bj
/s/02Bk
/s/02Bl
/s/02Bm
/s/02Bn
/s/02Bo
/s/02Bp
/s/02Bq
/zSocket
/sSocket
/public/dependence/jquery/3.1.1/jquery.min.js
/public/dependence/fingerprint2.min.js
/public/dependence/jquery/1.12.4/jquery.min.js

Appendix C – Plugins

17/20

Plugins API calls

addIEMeta – Add an Internet Explorer Compatible Meta tag.
addNoRefererMeta – Set any page request or redirection to be without Referer.
ajaxPromise – Perform basic Ajax request.
base64Decode – Decode buffer from base64 to string.
base64Encode – Encode buffer to base64.
createElement – Create a DOM element in the <body> of a document of the attackers
choosing.
createHiddenElement – Create element with no visibility and 0 dimensions.
crossOriginJsonp – See noRefererJsonp.
debounce – Common function used in JS to prevent fast numerous repetitious running of
same function.
SwidIframe – Create an Iframe with the dimensions of the windows, overshadowing any
other element
getHighestZindex – Get highest Z-Index in the document, used to calculate how to create
an element in the foreground.
getLang – Get browser language the function distinguishes between two “types” of
Chinese – mainland Chinese and Hong Kong, Taiwan or Mongol Chinese
hasJquery – Check whether window has jquery with Minor version above 8. (Maybe used
when older jquery ver. 1 were used by the TA).
hiddenIframe – Create invisible iframe with zero dimensions.
hiddenImg – Create invisible img with zero dimensions.
iframe – Create an iframe element with attacker controlled parameters.
img – Create an img element with attacker controlled parameters. if projId is not present
in the img URL the function appends it as ?ver=<projId>.
ipec – See xsrf.
isIE – Check for ActiveXObject in the windows.
loadCSS – Load a css file.
loadJS – Load a JS file.
noRefererJsonp – Create hiddenIframe and loads a script URl in it. crossOriginJsonp
does the same except it sets the iframe‘s referrerPolicy as ‘origin‘.
random – Return random number.
removeCSS – Remove all CSS from windows.
rewriteLink – Rewrite all links in the document to a URL of the attackers’ choosing.
scriptViaIframe – Embed a script in a an Iframe of the attackers’ choosing. if projId is not
present in the img URL the function appends it as ?ver=<projId>.
scriptViaWindow – Same as scriptViaIframe but the script is embedded in a windows of
the attackers choosing.
xsrf – Perform a CSRF\XSRF attack by submitting an invisible form with attacker
controlled parameters. ipec does the same except it uses textarea instead of input and
works only with POST requests.

*Calls in bold are used directly or indirectly by the plugins I know.

18/20

JSONP-vulnerable Sites Accessed by Plugin 0

Sites in bold are also queried by Plugin 1-7.

Domain Attributes Global
Alexa
Rank

Chinese
Rank

tmall.com isLogin 3 1

qq.com userId,nickName,headURL,userHome 4 2

baidu.com userId,userName 5 3

sohu.com nickName,headURL,userHome,profile,userName 6 4

taobao.com isLogin 8 5

jd.com userName,headURL 10 7

weibo.com userId 14 8

tianya.cn userName 42 17

aliexpress.com isLogin 44 –

gome.com.cn userId,nickName,headURL 89 26

163.com nickName,headURL 97 27

nytimes.com uid,subscriptions 113 –

zol.com.cn userId 310 50

iqiyi.com userinfo,qiyi_vip_info 390 53

outbrain.com userName 419 –

58.com userName,userId,phone 468 58

zhibo8.cc userId,nickName,background,headURL 482 69

dianping.com userId,nickName 619 93

renren.com userId,nickName,userName,headURL,birth 696 94

youku.com userId,userName,sex,headURL 710 104

dangdang.com ddoy,loginTime 799 109

anjuke.com userId,userName,lastUser,profileURL 844 119

smzdm.com userId,nickName,headURL 1489 207

19/20

ifeng.com isLogin,isLogin 1607 218

7k7k.com userId,userName,nickName,headURL,level 1902 216

zhaopin.com userName 2587 289

4399.com isLogin,gameInfos 2764 254

ctrip.com userName,level 3185 346

10086.cn userName 4047 383

hupu.com userId,userName 4440 543

vip.com level,lastLogin 6074 1519

pconline.com.cn userId,nickName 7303 773

xunlei.com nickName,payName,userName 8680 2126

xcar.com.cn headURL,userName,userName 10868 1157

qunar.com isLogin 11185 1708

pcauto.com.cn userId 11410 2117

jumei.com nickName,userId 14264 1726

37.com userName,lastLoginIP,lastLoginTime 14905 1548

hexun.com userId,userName,headURL,sex 20653 2480

suning.com phone,headURL,level 28883 2845

lu.com userId,sex,realName,userName,mobile 29184 2985

tiexue.net userId,userName 31430 3235

baihe.com userId,nickName,gender,age,headURL,cityID 36791 –

bbs.360safe.com userName,userId,email,adminId,lastVisit,group 39660 –

qyer.com username,userid 43347 –

56.com userHome 48982 –

zongheng.com level,headURL 59346 –

ziroom.com userName 74364 3702

bitauto.com userId,userName 84849 –

chinaiiss.com userName 119808 –

20/20

2144.cn userId,userName,nickName 199953 –

yhd.com userName,headURL 343737 –

letv.com userId 671069 –

readnovel.com userName,headURL 1167917 –

duoshuo.com userId,userName,userHome,headURL,social_uid,email – –

aliyun.com userId – –

huihui.com uid,userName – –

daijun.com userName – –

Icons loaded by plugin 11

https[:]//www.seebug[.]org/static/images/favicon.ico
https[:]//www.vulbox[.]com/static/web/img/favicon.ico
https[:]//www.secfree[.]com/favicon.ico
https[:]//www.secpulse[.]com/favicon.ico
https[:]//zhongce.360[.]cn/favicon.ico
https[:]//bbs.ichunqiu[.]com/favicon.ico
https[:]//www.cnvd.org[.]cn/favicon.ico
http[:]//cnnvd.org[.]cn/favicon.ico
https[:]//xz.aliyun[.]com/static/icon/favicon.ico
https[:]//www.t00ls.net/favicon.ico
https[:]//bbs.pediy[.]com/view/img/favicon.ico
https[:]//www.freebuf[.]com/favicon.ico
https[:]//www.zoomeye[.]org/favicon.ico
https[:]//fofa[.]so/favicon.ico

TOR URL Accessed by Plugin 13

http[:]//bn6kma5cpxill4pe[.]onion/static/images/tor-logo1x.png – Legitimate official TOR browser
website for onion v2 (Deprecated).

APPENDIX D — Deobfuscation

Each obfuscated script starts with setting an array which consists of base64 encoded strings.
The array is then rotated. Next, a string access function is initialized, which serves throughout
the script for any string used.

 I wrote a python script to automatically deobfuscate scripts obfuscated in that way.

https://github.com/imp0rtp3/Research/blob/master/2021-08-12%20Tetris/deobfuscate.py

