
1/23

August 11, 2021

DirtyMoe: Rootkit Driver
decoded.avast.io/martinchlumecky/dirtymoe-rootkit-driver/

by Martin ChlumeckýAugust 11, 202138 min read

Abstract

In the first post DirtyMoe: Introduction and General Overview of Modularized Malware, we have
described one of the complex and sophisticated malware called DirtyMoe. The main observed
roles of the malware are Cryptojacking and DDoS attacks that are still popular. There is no doubt
that malware has been released for profit, and all evidence points to Chinese territory. In most
cases, the PurpleFox campaign is used to exploit vulnerable systems where the exploit gains the
highest privileges and installs the malware via the MSI installer. In short, the installer misuses
Windows System Event Notification Service (SENS) for the malware deployment. At the end of
the deployment, two processes (workers) execute malicious activities received from well-
concealed C&C servers.

As we mentioned in the first post, every good malware must implement a set of protection, anti-
forensics, anti-tracking, and anti-debugging techniques. One of the most used techniques for
hiding malicious activity is using rootkits. In general, the main goal of the rootkits is to hide itself
and other modules of the hosted malware on the kernel layer. The rootkits are potent tools but
carry a high risk of being detected because the rootkits work in the kernel-mode, and each
critical bug leads to BSoD.

The primary aim of this next article is to analyze rootkit techniques that DirtyMoe uses. The main
part of this study examines the functionality of a DirtyMoe driver, aiming to provide complex
information about the driver in terms of static and dynamic analysis. The key techniques of the
DirtyMoe rootkit can be listed as follows: the driver can hide itself and other malware activities on
kernel and user mode. Moreover, the driver can execute commands received from the user-
mode under the kernel privileges. Another significant aspect of the driver is an injection of an
arbitrary DLL file into targeted processes. Last but not least is the driver’s functionality that
censors the file system content. In the same way, we describe the refined routine that deploys
the driver into the kernel and which anti-forensic method the malware authors used.

https://decoded.avast.io/martinchlumecky/dirtymoe-rootkit-driver/
https://decoded.avast.io/author/martinchlumecky/
https://decoded.avast.io/martinchlumecky/dirtymoe-1/
https://decoded.avast.io/martinchlumecky/dirtymoe-1/

2/23

Another essential point of this research is the investigation of the driver’s meta-data, which
showed that the driver is code-signed with the certificates that have been stolen and revoked in
the past. However, the certificates are widespread in the wild and are misused in other malicious
software in the present.

Finally, the last part summarises the rootkit functionally and draws together the key findings of
digital certificates, making a link between DirtyMoe and other malicious software. In addition, we
discuss the implementation level and sources of the used rootkit techniques.

1. Sample

The subject of this research is a sample with SHA-256:
 AABA7DB353EB9400E3471EAAA1CF0105F6D1FAB0CE63F1A2665C8BA0E8963A05

 The sample is a windows driver that DirtyMoe drops on the system startup.

Note: VirusTotal keeps a record of 44 of 71 AV engines (62 %) which detect the samples as
malicious. On the other hand, the DirtyMoe DLL file is detected by 86 % of registered AVs.
Therefore, the detection coverage is sufficient since the driver is dumped from the DLL file.

Basic Information

File Type: Portable Executable 64
File Info: Microsoft Visual C++ 8.0 (Driver)
File Size: 116.04 KB (118824 bytes)
Digital Signature: Shanghai Yulian Software Technology Co., Ltd. (上海域联软件技术有限公
司)

Imports

The driver imports two libraries FltMgr and ntosrnl . Table 1 summarizes the most
suspicious methods from the driver’s point.

Routine Description

FltSetCallbackDataDirty A minifilter driver’s pre or post operation calls the routine to
indicate that it has modified the contents of the callback
data structure.

FltGetRequestorProcessId Routine returns the process ID for the process requested
for a given I/O operation.

FltRegisterFilter FltRegisterFilter registers a minifilter driver.

ZwDeleteValueKey
 ZwSetValueKey

 ZwQueryValueKey
 ZwOpenKey

Routines delete, set, query, and open registry entries in
kernel-mode.

ZwTerminateProcess Routine terminates a process and all of its threads in
kernel-mode.

ZwQueryInformationProcess Retrieves information about the specified process.

3/23

MmGetSystemRoutineAddress Returns a pointer to a function specified by a routine
parameter.

ZwAllocateVirtualMemory Reserves a range of application-accessible virtual
addresses in the specified process in kernel-mode.

Table 1. Kernel methods imported by the DirtyMoe driver
At first glance, the driver looks up kernel routine via MmGetSystemRoutineAddress() as a form
of obfuscation since the string table contains routine names operating with VirtualMemory ;
e.g., ZwProtectVirtualMemory() , ZwReadVirtualMemory() , ZwWriteVirtualMemory() .
The kernel-routine ZwQueryInformationProcess() and strings such as services.exe ,
winlogon.exe point out that the rootkit probably works with kernel structures of the critical

windows processes.

2. DirtyMoe Driver Analysis

The DirtyMoe driver does not execute any specific malware activities. However, it provides a
wide scale of rootkit and backdoor techniques. The driver has been designed as a service
support system for the DirtyMoe service in the user-mode.

The driver can perform actions originally needed with high privileges, such as writing a file into
the system folder, writing to the system registry, killing an arbitrary process, etc. The malware in
the user-mode just sends a defined control code, and data to the driver and it provides higher
privilege actions.

Further, the malware can use the driver to hide some records helping to mask malicious
activities. The driver affects the system registry, and can conceal arbitrary keys. Moreover, the
system process services.exe is patched in its memory, and the driver can exclude arbitrary
services from the list of running services. Additionally, the driver modifies the kernel structures
recording loaded drivers, so the malware can choose which driver is visible or not. Therefore, the
malware is active, but the system and user cannot list the malware records using standard API
calls to enumerate the system registry, services, or loaded drivers. The malware can also hide
requisite files stored in the file system since the driver implements a mechanism of the minifilter.
Consequently, if a user requests a record from the file system, the driver catches this request
and can affect the query result that is passed to the user.

The driverconsists of 10 main functionalities as Table 2 illustrates.

Function Description

Driver
Entry

routine called by the kernel when the driver is loaded.

Start
Routine

is run as a kernel thread restoring the driver configuration from the system
registry.

4/23

Device
Control

processes system-defined I/O control codes (IOCTLs) controlling the driver from
the user-mode.

Minifilter
Driver

routine completes processing for one or more types of I/O operations;
QueryDirectory in this case. In other words, the routine filters folder
enumerations.

Thread
Notification

routine registers a driver-supplied callback that is notified when a new thread is
created.

Callback of
NTFS
Driver

wraps the original callback of the NTFS driver for IRP_MJ_CREATE major
function.

Registry
Hiding

is hook method provides registry key hiding.

Service
Hiding

is a routine hiding a defined service.

Driver
Hiding

is a routine hiding a defined driver.

Driver
Unload

routine is called by kernel when the driver is unloaded.

Table 2. Main driver functionality
Most of the implemented functionalities are available as public samples on internet forums. The
level of programming skills is different for each driver functionality. It seems that the driver author
merged the public samples in most cases. Therefore, the driver contains a few bugs and unused
code. The driver is still in development, and we will probably find other versions in the wild.

2.1 Driver Entry

The Driver Entry is the first routine that is called by the kernel after driver loading. The driver
initializes a large number of global variables for the proper operation of the driver. Firstly, the
driver detects the OS version and setups required offsets for further malicious use. Secondly, the
variable for pointing of the driver image is initialized. The driver image is used for hiding a driver.
The driver also associates the following major functions:

1. IRP_MJ_CREATE , IRP_MJ_CLOSE – no interest action,
2. IRP_MJ_DEVICE_CONTROL – used for driver configuration and control,
3. IRP_MJ_SHUTDOWN – writes malware-defined data into the disk and registry.

The Driver Entry creates a symbolic link to the driver and tries to associate it with other malicious
monitoring or filtering callbacks. The first one is a minifilter activated by the
FltRegisterFilter() method registering the FltPostOperation() ; it filters access to the

system drives and allows it to hide files and directories.

5/23

Further, the initialization method swaps a major function IRP_MJ_CREATE for
\FileSystem\Ntfs driver. So, each API call of CreateFile() or a kernel-mode function
IoCreateFile() can be monitored and affected by the malicious MalNtfsCreatCallback()

callback.

Another Driver Entry method sets a callback method using
PsSetCreateThreadNotifyRoutine() . The NotifyRoutine() monitors a kernel process

creation, and the malware can inject malicious code into newly created processes/threads.

Finally, the driver tries to restore its configuration from the system registry.

2.2 Start Routine

The Start Routine is run as a kernel system thread created in the Driver Entry routine. The Start
Routine writes the driver version into the SYSTEM registry as follows:

Key: HKLM\SYSTEM\CurrentControlSet\Control\WinApi\WinDeviceVer
Value: 20161122

If the following SOFTWARE registry key is present, the driver loads artifacts needed for the
process injecting:

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Installer\Secure

The last part of Start Routine loads the rest of the necessary entries from the registry. The
complete list of the system registry is documented in Appendix A.

2.3 Device Control

The device control is a mechanism for controlling a loaded driver. A driver receives the
IRP_MJ_DEVICE_CONTROL I/O control code (IOCTL) if a user-mode thread calls Win32 API
DeviceIoControl() ; visit [1] for more information. The user-mode application sends
IRP_MJ_DEVICE_CONTROL directly to a specific device driver. The driver then performs the

corresponding operation. Therefore, malicious user-mode applications can control the driver via
this mechanism.

The driver supports approx. 60 control codes. We divided the control codes into 3 basic groups:
controlling, inserting, and setting.

Controlling

There are 9 main control codes invoking driver functionality from the user-mode. The following
Table 3 summarizes controlling IOCTL that can be sent by malware using the Win32 API.

IOCTL Description

0x222C80 The driver accepts other IOCTLs only if the driver is activated. Malware in the
user-mode can activate the driver by sending this IOCTL and authorization code
equal 0xB6C7C230 .

6/23

0x2224C0 The malware sends data which the driver writes to the system registry. A key,
value, and data type are set by Setting control codes.
used variable: regKey, regValue, regData, regType

0x222960 This IOCTL clears all data stored by the driver.
used variable: see Settingand Insertingvariables

0x2227EC If the malware needs to hide a specific driver, the driver adds a specific driver
name to the
listBaseDllName and hides it using Driver Hiding.

0x2227E8 The driver adds the name of the registry key to the WinDeviceAddress list and
hides this key
using Registry Hiding.
used variable: WinDeviceAddress

0x2227F0 The driver hides a given service defined by the name of the DLL image. The
name is inserted into the listServices variable, and the Service Hiding technique
hides the service in the system.

0x2227DC If the malware wants to deactivate the Registry Hiding, the driver restores the
original kernel
GetCellRoutine() .

0x222004 The malware sends a process ID that wants to terminate. The driver calls kernel
function
ZwTerminateProcess() and terminates the process and all of its threads

regardless of malware privileges.

0x2224C8 The malware sends data which driver writes to the file defined by filePath
variable; see Setting control codes
used variable: filePath, fileData

Table 3. Controlling IOCTLs
Inserting

There are 11 control codes inserting items into white/blacklists. The following Table 4
summarizes variables and their purpose.

White/Black
list

Variable Purpose

Registry
HIVE

WinDeviceAddress Defines a list of registry entries that the malware wants
to hide in the system.

Process
Image File
Name

WinDeviceMaker Represents a whitelist of processes defined by process
image file name. It is used in Callback of NTFS Driver,
and grants access to the NTFS file systems. Further, it
operates in Minifilter Driver and prevents hiding files
defined in the WinDeviceNumber variable. The last use
is in Registry Hiding; the malware does not hide
registry keys for the whitelisted processes.

7/23

WinDeviceMakerB Defines a whitelist of processes defined by process
image file name. It is used in Callback of NTFS Driver,
and grants access to the NTFS file systems.

WinDeviceMakerOnly Specifies a blacklist of processes defined by the
process image file name. It is used in Callback of
NTFS Driver and refuses access to the NTFS file
systems.

File names
(full path)

WinDeviceName
WinDeviceNameB

Determines a whitelist of files that should be granted
access by Callback of NTFS Driver. It is used in
combination with WinDeviceMaker and
WinDeviceMakerB. So, if a file is on the whitelist and a
requested process is also whitelisted, the driver grants
access to the file.

WinDeviceNameOnly Defines a blacklist of files that should be denied access
by Callback of NTFS Driver. It is used in combination
with WinDeviceMakerOnly. So, if a file is on the
blacklist and a requesting process is also blacklisted,
the driver refuses access to the file.

File names
(containing
number)

WinDeviceNumber Defines a list of files that should be hidden in the
system by Minifilter Driver. The malware uses a name
convention as follows: [A-Z][a-z][0-9]+\.[a-z]
{3} . So, a file name includes a number.

Process ID ListProcessId1 Defines a list of processes requiring access to NTFS
file systems. The malware does not restrict the access
for these processes; see Callback of NTFS Driver.

ListProcessId2 The same purpose as ListProcessId1. Additionally, it is
used as the whitelist for the registry hiding, so the
driver does not restrict access. The Minifilter Driver
does not limit processes in this list.

Driver
names

listBaseDllName Defines a list of drivers that should be hidden in the
system;
see Driver Hiding.

Service
names

listServices Specifies a list of services that should be hidden in the
system;
see Service Hiding.

Table 4. White and Black lists
Setting

The setting control codes store scalar values as a global variable. The following Table 5
summarizes and groups these variables and their purpose.

Function Variable Description

8/23

File Writing
(Shutdown)

filename1_for_ShutDown
data1_for_ShutDown

Defines a file name and data for the first file written
during the driver shutdown.

filename2_for_ShutDown
data2_for_ShutDown

Defines a file name and data for the second file
written during the driver shutdown.

Registry
Writing
(Shutdown)

regKey1_shutdown
regValue1_shutdown
regData1_shutdown
regType1

Specifies the first registry key path, value name,
data, and type (REG_BINARY, REG_DWORD,
REG_SZ, etc.) written during the driver shutdown.

regKey2_shutdown
regValue2_shutdown
regData2_shutdown
regType2

Specifies the second registry key path, value name,
data, and type (REG_BINARY, REG_DWORD,
REG_SZ, etc.) written during the driver shutdown.

File Data
Writing

filePath Determines filename which will be used to write
data;
see ControllingIOCTL 0x2224C8 .

Registry
Writing

regKey
regValue
regType

Specifies registry key path, value name, and type
(REG_BINARY, REG_DWORD, REG_SZ, etc.);
see ControllingIOCTL 0x2224C0 .

Unknow
(unused)

dwWinDevicePathA
dwWinDeviceDataA

Keeps a path and data for file A.

dwWinDevicePathB
dwWinDeviceDataB

Keeps a path and data for file B.

Table 5. Global driver variables
The following Table 6 summarizes variables used for the process injection; see Thread
Notification.

Function Variable Description

Process
to Inject

dwWinDriverMaker2
dwWinDriverMaker2_2

Defines two command-line arguments. If a process with
one of the arguments is created, the driver should inject
the process.

dwWinDriverMaker1
dwWinDriverMaker1_2

Defines two process names that should be injected if the
process is created.

DLL to
Inject

dwWinDriverPath1
dwWinDriverDataA

Specifies a file name and data for the process injection
defined by dwWinDriverMaker2 or dwWinDriverMaker1.

dwWinDriverPath1_2
dwWinDriverDataA_2

Defines a file name and data for the process injection
defined by dwWinDriverMaker2_2 or
dwWinDriverMaker1_2.

dwWinDriverPath2
dwWinDriverDataB

Keeps a file name and data for the process injection
defined by dwWinDriverMaker2 or dwWinDriverMaker1.

9/23

dwWinDriverPath2_2
dwWinDriverDataB_2

Specifies a file name and data for the process injection
defined by dwWinDriverMaker2_2 or
dwWinDriverMaker1_2.

Table 6. Injection variables

2.4 Minifilter Driver

The minifilter driver is registered in the Driver Entry routine using the FltRegisterFilter()
method. One of the method arguments defines configuration (FLT_REGISTRATION) and
callback methods (FLT_OPERATION_REGISTRATION). If the QueryDirectory system request is
invoked, the malware driver catches this request and processes it by its FltPostOperation() .

The FltPostOperation() method can modify a result of the QueryDirectory operations (IRP).
In fact, the malware driver can affect (hide, insert, modify) a directory enumeration. So, some
applications in the user-mode may not see the actual image of the requested directory.

The driver affects the QueryDirectory results only if a requested process is not present in
whitelists. There are two whitelists. The first whitelists (Process ID and File names) cause that
the QueryDirectory results are not modified if the process ID or process image file name,
requesting the given I/O operation (QueryDirectory), is present in the whitelists. It represents
malware processes that should have access to the file system without restriction. The further
whitelist is called WinDeviceNumber, defining a set of suffixes. The FltPostOperation()
iterates each item of the QueryDirectory. If the enumerated item name has a suffix defined in the
whitelist, the driver removes the item from the QueryDirectory results. It ensures that the
whitelisted files are not visible for non-malware processes [2]. So, the driver can easily hide an
arbitrary directory/file for the user-mode applications, including explorer.exe . The name of
the WinDeviceNumber whitelist is probably derived from malware file names, e.g,
Ke145057.xsl , since the suffix is a number; see Appendix B.

2.5 Callback of NTFS Driver

When the driver is loaded, the Driver Entry routine modifies the system driver for the NTFS
filesystem. The original callback method for the IRP_MJ_CREATE major function is replaced by a
malicious callback MalNtfsCreatCallback() as Figure 1 illustrates. The malicious callback
determines what should gain access and what should not.

10/23

Figure 1. Rewrite IRP_MJ_CREATE callback of the regular NTFS driver
The malicious callback is active only if the Minifilter Driver registration has been done and the
original callback has been replaced. There are whitelists and one blacklist. The whitelists store
information about allowed process image names, process ID, and allowed files. If the process
requesting the disk access is whitelisted, then the requested file must also be on the white list. It
is double protection. The blacklist is focused on processing image names. Therefore, the
blacklisted processes are denied access to the file system. Figure 2 demonstrates the
whitelisting of processes. If a process is on the whitelist, the driver calls the original callback;
otherwise, the request ends with access denied.

Figure 2. Grant access to whitelisted processes
In general, if the malicious callback determines that the requesting process is authorized to
access the file system, the driver calls the original IRP_MJ_CREATE major function. If not, the
driver finishes the request as STATUS_ACCESS_DENIED .

2.6 Registry Hiding

The driver can hide a given registry key. Each manipulation with a registry key is hooked by the
kernel method GetCellRoutine() . The configuration manager assigns a control block for each
open registry key. The control block (CM_KEY_CONTROL_BLOCK) structure keeps all control
blocks in a hash table to quickly search for existing control blocks. The GetCellRoutine()

https://decoded.avast.io/wp-content/uploads/sites/2/2021/08/Figure-01.-Rewrite-IRP_MJ_CREATE-callback-of-the-regular-NTFS-driver.png
https://decoded.avast.io/wp-content/uploads/sites/2/2021/08/Figure-02.-Grant-access-to-white-listed-processes.png

11/23

hook method computes a memory address of a requested key. Therefore, if the malware driver
takes control over the GetCellRoutine() , the driver can filter which registry keys will be
visible; more precisely, which keys will be searched in the hash table.

The malware driver finds an address of the original GetCellRoutine() and replaces it with its
own malicious hook method, MalGetCellRoutine() . The driver uses well-documented
implementation [3, 4]. It just goes through kernel structures obtained via the ZwOpenKey()
kernel call. Then, the driver looks for CM_KEY_CONTROL_BLOCK , and its associated HHIVE
structured correspond with the requested key. The HHIVE structure contains a pointer to the
GetCellRoutine() method, which the driver replaces; see Figure 3.

Figure 3. Overwriting GetCellRoutine
This method’s pitfall is that offsets of looked structure, variable, or method are specific for each
windows version or build. So, the driver must determine on which Windows version the driver
runs.

The MalGetCellRoutine() hook method performs 3 basic operations as follow:

1. The driver calls the original kernel GetCellRoutine() method.
2. Checks whitelists for a requested registry key.
3. Catches or releases the requested registry key according to the whitelist check.

Registry Key Hiding

The hiding technique uses a simple principle. The driver iterates across a whole HIVE of a
requested key. If the driver finds a registry key to hide, it returns the last registry key of the
iterated HIVE. When the interaction is at the end of the HIVE, the driver does not return the last
key since it was returned before, but it just returns NULL, which ends the HIVE searching.

https://decoded.avast.io/wp-content/uploads/sites/2/2021/08/Figure-03.-Overwriting-GetCellRoutine.png

12/23

The consequence of this principle is that if the driver wants to hide more than one key, the driver
returns the last key of the searched HIVE more times. So, the final results of the registry query
can contain duplicate keys.

Whitelisting

The services.exe and System services are whitelisted by default, and there is no restriction.
Whitelisted process image names are also without any registry access restriction.

A decision-making mechanism is more complicated for Windows 10. The driver hides the
request key only for regedit.exe application if the Windows 10 build is 14393 (July 2016) or
15063 (March 2017).

2.7 Thread Notification

The main purpose of the Thread Notification is to inject malicious code into created threads. The
driver registers a thread notification routine via PsSetCreateThreadNotifyRoutine() during
the Device Entry initialization. The routine registers a callback which is subsequently notified
when a new thread is created or deleted. The suspicious callback
(PCREATE_THREAD_NOTIFY_ROUTINE) NotifyRoutine() takes three arguments: ProcessID,
ThreadID, and Create flag. The driver affects only threads in which Create flag is set to TRUE,
so only newly created threads.

The whitelisting is focused on two aspects. The first one is an image name, and the second one
is command-line arguments of a created thread. The image name is stored in WinDriverMaker1,
and arguments are stored as a checksum in the WinDriverMaker2 variable. The driver is
designed to inject only two processes defined by a process name and two processes defined by
command line arguments. There are no whitelists, just 4 global variables.

2.7.1 Kernel Method Lookup

The successful injection of the malicious code requires several kernel methods. The driver does
not call these methods directly due to detection techniques, and it tries to obfuscate the required
method. The driver requires the following kernel methods: ZwReadVirtualMemory ,
ZwWriteVirtualMemory , ZwQueryVirtualMemory , ZwProtectVirtualMemory ,
NtTestAlert , LdrLoadDll

The kernel methods are needed for successful thread injection because the driver needs to
read/write process data of an injected thread, including program instruction.

Virtual Memory Method Lookup

The driver gets the address of the ZwAllocateVirtualMemory() method. As Figure 4
illustrates, all lookup methods are consecutively located after ZwAllocateVirtualMemory()
method in ntdll.dll .

13/23

Figure 4. Code segment of ntdll.dll with VirtualMemory methods
The driver starts to inspect the code segments from the address of the
ZwAllocateVirtualMemory() and looks up for instructions representing the constant move to
eax (e.g. mov eax, ??h). It identifies the VirtualMemory methods; see Table 7 for

constants.

Constant Method

0x18 ZwAllocateVirtualMemory

0x23 ZwQueryVirtualMemory

0x3A NtWriteVirtualMemory

0x50 ZwProtectVirtualMemory

Table 7. Constants of Virtual Memory methods for Windows 10 (64 bit)
When an appropriate constants is found, the final address of a lookup method is calculated as
follow:

method_address = constant_address - alignment_constant ;
 where alignment_constant helps to point to the start of the looked-up method.

The steps to find methods can be summarized as follow:

1. Get the address of ZwAllocateVirtualMemory() , which is not suspected in terms of
detection.

https://decoded.avast.io/wp-content/uploads/sites/2/2021/08/Figure-04.-Code-segment-of-ntdll.dll-with-VirtualMemory-methods.png

14/23

2. Each sought method contains a specific constant on a specific address
(constant_address).

3. If the constant_address is found, another specific offset (alignment_constant) is
subtracted;
the alignment_constant is specific for each Windows version.

The exact implementation of the Virtual Memory Method Lookup method is shown in Figure 5.

Figure 5. Implementation of the lookup routine searching for the kernel VirtualMemory methods
The success of this obfuscation depends on the Window version identification. We found one
Windows 7 version which returns different methods than the malware wants; namely,
ZwCompressKey() , ZwCommitEnlistment() , ZwCreateNamedPipeFile() ,
ZwAlpcDeleteSectionView() .

 The alignment_constant is derived from the current Windows version during the driver
initialization; see the Driver Entry routine.

https://decoded.avast.io/wp-content/uploads/sites/2/2021/08/Figure-05.-GetVirtualMemoryMethods.png

15/23

NtTestAlert and LdrLoadDll Lookup

A different approach is used for getting NtTestAlert() and LdrLoadDll() routines. The
driver attaches to the winlogon.exe process and gets the pointer to the kernel structure
PEB_LDR_DATA containing PE header and imports of all processes in the system. If the import

table includes a required method, then the driver extracts the base address, which is the entry
point to the sought routine.

2.7.2 Process Injection

The aim of the process injection is to load a defined DLL library into a new thread via kernel
function LdrLoadDll() . The process injection is slightly different for x86 and x64 OS versions.

The x64 OS version abuses the original NtTestAlert() routine, which checks the thread’s
APC queue. The APC (Asynchronous Procedure Call) is a technique to queue a job to be done
in the context of a specific thread. It is called periodically. The driver rewrites the instructions of
the NtTestAlert() which jumps to the entry point of the malicious code.

Modification of NtTestAlert Code

The first step to the process injection is to find free memory for a code cave. The driver finds the
free memory near the NtTestAlert() routine address. The code cave includes a shellcode as
Figure 6. demonstrates.

Figure 6. Malicious payload overwriting the original NtTestAlert() routine
The shellcode prepares a parameter (code_cave address) for the malicious code and then
jumps into it. The original NtTestAlert() address is moved into rax because the malicious
code ends by the return instruction, and therefore the original NtTestAlert() is invoked.
Finally, rdx contains the jump address, where the driver injected the malicious code. The next
item of the code cave is a path to the DLL file, which shall be loaded into the injected process.
Other items of the code cave are the original address and original code instructions of the
NtTestAlert() .

The driver writes the malicious code into the address defined in dll_loading_shellcode . The
original instructions of NtTestAlert() are rewritten with the instruction which just jumps to the
shellcode. It causes that when the NtTestAlert() is called, the shellcode is activated and
jumps into the malicious code.

Malicious Code x64

https://decoded.avast.io/wp-content/uploads/sites/2/2021/08/Figure-06.-Malicious-payload-overwriting-NtTestAlert-routine-1.png

16/23

The malicious code for x64 is simple. Firstly, it recovers the original instruction of the rewritten
NtTestAlert() code. Secondly, the code invokes the found LdrLoadDll() method and

loads appropriate DLL into the address space of the injected process. Finally, the code executes
the return instruction and jumps back to the original NtTestAlert() function.

The x86 OS version abuses the entry point of the injected process directly. The procedure is very
similar to the x64 injection, and the x86 malicious code is also identical to the x64 version.
However, the x86 malicious code needs to find a 32bit variant of the LdrLoadDll() method. It
uses the similar technique described above (NtTestAlert and LdrLoadDll Lookup).

2.8 Service Hiding

Windows uses the Services Control Manager (SCM) to manage the system services. The
executable of SCM is services.exe . This program runs at the system startup and performs
several functions, such as running, ending, and interacting with system services. The SCM
process also keeps all run services in an undocumented service record (SERVICE_RECORD)
structure.

The driver must patch the service record to hide a required service. Firstly, the driver must find
the process services.exe and attach it to this one via KeStackAttachProcess() . The
malware author defined a byte sequence which the driver looks for in the process memory to find
the service record. The services.exe keeps all run services as a linked list of
SERVICE_RECORD [5]. The malware driver iterates this list and unlinks required services defined

by listServices whitelist; see Table 4.

The used byte sequence for Windows 2000, XP, Vista, and Windows 7 is as follows: {45 3B E5
74 40 48 8D 0D} . There is another byte sequence {48 83 3D ?? ?? ?? ?? ?? 48 8D 0D}
that is never used because it is bound to the Windows version that the malware driver has never
identified; maybe in development.

The hidden services cannot be detected using PowerShell command Get-Service , Windows
Task Manager, Process Explorer, etc. However, started services are logged via Windows Event
Log. Therefore, we can enumerate all regular services and all logged services. Then, we can
create differences to find hidden services.

2.9 Driver Hiding

The driver is able to hide itself or another malicious driver based on the IOCTL from the user-
mode. The Driver Entry is initiated by a parameter representing a driver object (DRIVER_OBJECT)
of the loaded driver image. The driver object contains an officially undocumented item called a
driver section. The LDR_DATA_TABLE_ENTRY kernel structure stores information about the loaded
driver, such as base/entry point address, image name, image size, etc. The driver section points
to LDR_DATA_TABLE_ENTRY as a double-linked list representing all loaded drivers in the system.

https://www.nirsoft.net/kernel_struct/vista/DRIVER_OBJECT.html
https://www.nirsoft.net/kernel_struct/vista/LDR_DATA_TABLE_ENTRY.html
https://www.nirsoft.net/kernel_struct/vista/LDR_DATA_TABLE_ENTRY.html

17/23

When a user-mode application lists all loaded drivers, the kernel enumerates the double-linked
list of the LDR_DATA_TABLE_ENTRY structure. The malware driver iterates the whole list and
unlinks items (drivers) that should be hidden. Therefore, the kernel loses pointers to the hidden
drivers and cannot enumerate all loaded drivers [6].

2.10 Driver Unload

The Driver Unload function contains suspicious code, but it seems to be never used in this
version. The rest of the unload functionality executes standard procedure to unload the driver
from the system.

3. Loading Driver During Boot

The DirtyMoe service loads the malicious driver. A driver image is not permanently stored on a
disk since the service always extracts, loads, and deletes the driver images on the service
startup. The secondary service aim is to eliminate evidence about driver loading and eventually
complicate a forensic analysis. The service aspires to camouflage registry and disk activity. The
DirtyMoe service is registered as follows:

Service name: Ms<volume_id>App ; e.g., MsE3947328App
Registry key: HKLM\SYSTEM\CurrentControlSet\services\<service_name>
ImagePath: %SystemRoot%\system32\svchost.exe -k netsvcs
ServiceDll: C:\Windows\System32\<service_name>.dll, ServiceMain
ServiceType: SERVICE_WIN32_SHARE_PROCESS
ServiceStart: SERVICE_AUTO_START

3.1 Registry Operation

On startup, the service creates a registry record, describing the malicious driver to load; see
following example:

Registry key: HKLM\SYSTEM\CurrentControlSet\services\dump_E3947328
 ImagePath: \??\C:\Windows\System32\drivers\dump_LSI_FC.sys

 DisplayName: dump_E3947328

At first glance, it is evident that ImagePath does not reflect DisplayName , which is the
Windows common naming convention. Moreover, ImagePath prefixed with dump_ string is
used for virtual drivers (loaded only in memory) managing the memory dump during the
Windows crash. The malware tries to use the virtual driver name convention not to be so
conspicuous. The principle of the Dump Memory using the virtual drivers is described in [7, 8].

ImagePath values are different from each windows reboot, but it always abuses the name of
the system native driver; see a few instances collected during windows boot: dump_ACPI.sys ,
dump_RASPPPOE.sys , dump_LSI_FC.sys , dump_USBPRINT.sys , dump_VOLMGR.sys ,
dump_INTELPPM.sys , dump_PARTMGR.sys

3.2 Driver Loading

https://www.nirsoft.net/kernel_struct/vista/LDR_DATA_TABLE_ENTRY.html

18/23

When the registry entry is ready, the DirtyMoe service dumps the driver into the file defined by
ImagePath . Then, the service loads the driver via ZwLoadDriver() .

3.3 Evidence Cleanup

When the driver is loaded either successfully or unsuccessfully, the DirtyMoe service starts to
mask various malicious components to protect the whole malware hierarchy.

The DirtyMoe service removes the registry key representing the loaded driver; see Registry
Operation. Further, the loaded driver hides the malware services, as the Service Hiding section
describes. Registry entries related to the driver are removed via the API call. Therefore, a
forensics track can be found in the SYSTEM registry HIVE, located in
%SystemRoot%\system32\config\SYSTEM . The API call just removes a relevant HIVE pointer,

but unreferenced data is still present in the HIVE stored on the disk. Hence, we can read
removed registry entries via RegistryExplorer.

The loaded driver also removes the dumped (dump_ prefix) driver file. We were not able to
restore this file via tools enabling recovery of deleted files, but it was extracted directly from the
service DLL file.

Capturing driver image and register keys

The malware service is responsible for the driver loading and cleans up of loading evidence. We
put a breakpoint into the nt!IopLoadDriver() kernel method, which is reached if a process
wants to load a driver into the system. We waited for the wanted driver, and then we listed all the
system processes. The corresponding service (svchost.exe) has a call stack that contains the
kernel call for driver loading, but the corresponding service has been killed by EIP registry
modifying. The process (service) was killed, and the whole Windows ended in BSoD. Windows
made a crash dump, so the file system caches have been flushed, and the malicious service did
not finish the cleanup in time. Therefore, we were able to mount a volume and read all wanted
data.

3.4 Forensic Traces

Although the DirtyMoe service takes great pains to cover up the malicious activities, there are a
few aspects that help identify the malware.

The DirtyMoe service and loaded driver itself are hidden; however, the Windows Event Log
system records information about started services. Therefore, we can get additional information
such as ProcessID and ThreadID of all services, including the hidden services.

WinDbg connected to the Windows kernel can display all loaded modules using the lm
command. The module list can uncover non-virtual drivers with prefix dump_ and identify the
malicious drivers.

https://ericzimmerman.github.io/#!index.md

19/23

Offline connected volume can provide the DLL library of the services and other supporting files,
which are unfortunately encrypted and obfuscated with VMProtect. Finally, the offline SYSTEM
registry stores records of the DirtyMoe service.

4. Certificates

Windows Vista and later versions of Windows require that loaded drivers must be code-signed.
The digital code-signature should verify the identity and integrity of the driver vendor [9].
However, Windows does not check the current status of all certificates signing a Windows driver.
So, if one of the certificates in the path is expired or revoked, the driver is still loaded into the
system. We will not discuss why Windows loads drivers with invalid certificates since this topic is
really wide. The backward compatibility but also a potential impact on the kernel implementation
play a role.

DirtyMoe drivers are signed with three certificates as follow:

Beijing Kate Zhanhong Technology Co.,Ltd.
 Valid From: 28-Nov-2013 (2:00:00)

 Valid To: 29-Nov-2014 (1:59:59)
 SN: 3C5883BD1DBCD582AD41C8778E4F56D9

 Thumbprint: 02A8DC8B4AEAD80E77B333D61E35B40FBBB010A0
 Revocation Status: Revoked on 22-May- 2014 (9:28:59)

Beijing Founder Apabi Technology Limited
 Valid From: 22-May-2018 (2:00:00)

 Valid To: 29-May-2019 (14:00:00)
 SN: 06B7AA2C37C0876CCB0378D895D71041

 Thumbprint: 8564928AA4FBC4BBECF65B402503B2BE3DC60D4D
 Revocation Status: Revoked on 22-May- 2018 (2:00:01)

Shanghai Yulian Software Technology Co., Ltd. (上海域联软件技术有限公司)
 Valid From: 23-Mar-2011 (2:00:00)

 Valid To: 23-Mar-2012 (1:59:59)
 SN: 5F78149EB4F75EB17404A8143AAEAED7

 Thumbprint: 31E5380E1E0E1DD841F0C1741B38556B252E6231
 Revocation Status: Revoked on 18-Apr- 2011 (10:42:04)

The certificates have been revoked by their certification authorities, and they are registered as
stolen, leaked, misuse, etc. [10]. Although all certificates have been revoked in the past,
Windows loads these drivers successfully because the root certificate authorities are marked as
trusted.

5. Summarization and Discussion

We summarize the main functionality of the DirtyMoe driver. We discuss the quality of the driver
implementation, anti-forensic mechanisms, and stolen certificates for successful driver loading.

20/23

5.1 Main Functionality
Authorization

The driver is controlled via IOCTL codes which are sent by malware processes in the user-mode.
However, the driver implements the authorization instrument, which verifies that the IOCTLs are
sent by authenticated processes. Therefore, not all processes can communicate with the driver.

Affecting the Filesystem

If a rootkit is in the kernel, it can do “anything”. The DirtyMoe driver registers itself in the filter
manager and begins to influence the results of filesystem I/O operations; in fact, it begins to filter
the content of the filesystem. Furthermore, the driver replaces the NtfsCreatCallback()
callback function of the NTFS driver, so the driver can determine who should gain access and
what should not get to the filesystem.

Thread Monitoring and Code injection

The DirtyMoe driver enrolls a malicious routine which is invoked if the system creates a new
thread. The malicious routine abuses the APC kernel mechanism to execute the malicious code.
It loads arbitrary DLL into the new thread.

Registry Hiding

This technique abuses the kernel hook method that indexes registry keys in HIVE. The code
execution of the hook method is redirected to the malicious routine so that the driver can control
the indexing of registry keys. Actually, the driver can select which keys will be indexed or not.

Service and Driver Hiding

Patching of specific kernel structures causes that certain API functions do not enumerate all
system services or loaded drivers. Windows services and drivers are stored as a double-linked
list in the kernel. The driver corrupts the kernel structures so that malicious services and drivers
are unlinked from these structures. Consequently, if the kernel iterates these structures for the
purpose of enumeration, the malicious items are skipped.

5.2 Anti-Forensic Technique

As we mentioned above, the driver is able to hide itself. But before driver loading, the DirtyMoe
service must register the driver in the registry and dump the driver into the file. When the driver is
loaded, the DirtyMoe service deletes all registry entries related to the driver loading. The driver
deletes its own file from the file system through the kernel-mode. Therefore, the driver is loaded
in the memory, but its file is gone.

The DirtyMoe service removes the registry entries via standard API calls. We can restore this
data from the physical storage since the API calls only remove the pointer from HIVE. The
dumped driver file is never physically stored on the disk drive because its size is too small and is
present only in cache memory. Accordingly, the file is removed from the cache before cache
flushing to the disk, so we cannot restore the file from the physical disk.

5.3 Discussion

21/23

The whole driver serves as an all-in-one super rootkit package. Any malware can register itself in
the driver if knowing the authorization code. After successful registration, the malware can use a
wide range of driver functionality. Hypothetically, the authorization code is hardcoded, and the
driver’s name can be derived so we can communicate with the driver and stop it.

The system loads the driver via the DirtyMoe service within a few seconds. Moreover, the driver
file is never present in the file system physically, only in the cache. The driver is loaded via the
API call, and the DirtyMoe service keeps a handler of the driver file, so the file manipulation with
the driver file is limited. However, the driver removes its own file using kernel-call. Therefore, the
driver file is removed from the file system cache, and the driver handler is still relevant, with the
difference that the driver file does not exist, including its forensic traces.

The DirtyMoe malware is written using Delphi in most cases. Naturally, the driver is coded in
native C. The code style of the driver and the rest of the malware is very different. We analyzed
that most of the driver functionalities are downloaded from internet forums as public samples.
Each implementation part of the driver is also written in a different style. The malware authors
have merged individual rootkit functionality into one kit. They also merged known bugs, so the
driver shows a few significant symptoms of driver presence in the system. The authors needed
to adapt the functionality of the public samples to their purpose, but that has been done in a very
dilettante way. It seems that the malware authors are familiar only with Delphi.

Finally, the code-signature certificates that are used have been revoked in the middle of their
validity period. However, the certificates are still widely used for code signing, so the private keys
of the certificates have probably been stolen or leaked. In addition, the stolen certificates have
been signed by the certification authority which Microsoft trusts, so the certificates signed in this
way can be successfully loaded into the system despite their revocation. Moreover, the trend in
the use of certificates is growing, and predictions show that it will continue to grow in the future.
We will analyze the problems of the code-signature certificates in the future post.

6. Conclusion

DirtyMoe driver is an advanced piece of rootkit that DirtyMoe uses to effectively hide malicious
activity on host systems. This research was undertaken to inspect the rootkit functionally of the
DirtyMoe driver and evaluate the impact on infected systems. This study set out to investigate
and present the analysis of the DirtyMoe driver, namely its functionality, the ability to conceal,
deployment, and code-signature.

The research has shown that the driver provides key functionalities to hide malicious processes,
services, and registry keys. Another dangerous action of the driver is the injection of malicious
code into newly created processes. Moreover, the driver also implements the minifilter, which
monitors and affects I/O operations on the file system. Therefore, the content of the file system is
filtered, and appropriate files/directories can be hidden for users. An implication of this finding is
that malware itself and its artifacts are hidden even for AVs. More importantly, the driver

22/23

implements another anti-forensic technique which removes the driver’s evidence from disk and
registry immediately after driver loading. However, a few traces can be found on the victim’s
machines.

This study has provided the first comprehensive review of the driver that protects and serves
each malware service and process of the DirtyMoe malware. The scope of this study was limited
in terms of driver functionality. However, further experimental investigations are needed to hunt
out and investigate other samples that have been signed by the revoked certificates. Because of
this, the malware author can be traced and identified using thus abused certificates.

IoCs

Samples (SHA-256)
 550F8D092AFCD1D08AC63D9BEE9E7400E5C174B9C64D551A2AD19AD19C0126B1

 AABA7DB353EB9400E3471EAAA1CF0105F6D1FAB0CE63F1A2665C8BA0E8963A05
 B3B5FFF57040C801A4392DA2AF83F4BF6200C575AA4A64AB9A135B58AA516080
 CB95EF8809A89056968B669E038BA84F708DF26ADD18CE4F5F31A5C9338188F9
 EB29EDD6211836E6D1877A1658E648BEB749091CE7D459DBD82DC57C84BC52B1

References

[1] Kernel-Mode Driver Architecture
[2] Driver to Hide Processes and Files
[3] A piece of code to hide registry entries
[4] Hidden
[5] Opening Hacker’s Door
[6] Hiding loaded driver with DKOM
[7] Crashdmp-ster Diving the Windows 8 Crash Dump Stack
[8] Ghost drivers named dump_*.sys
[9] Driver Signing
[10] Australian web hosts hit with a Manic Menagerie of malware

Appendix A

Registry entries used in the Start Routine

\\Registry\\Machine\\SYSTEM\\CurrentControlSet\\Control\\WinApi\\WinDeviceAddress
\\Registry\\Machine\\SYSTEM\\CurrentControlSet\\Control\\WinApi\\WinDeviceNumber
\\Registry\\Machine\\SYSTEM\\CurrentControlSet\\Control\\WinApi\\WinDeviceId

 \\Registry\\Machine\\SYSTEM\\CurrentControlSet\\Control\\WinApi\\WinDeviceName
 \\Registry\\Machine\\SYSTEM\\CurrentControlSet\\Control\\WinApi\\WinDeviceNameB
 \\Registry\\Machine\\SYSTEM\\CurrentControlSet\\Control\\WinApi\\WinDeviceNameOnly

\\Registry\\Machine\\SYSTEM\\CurrentControlSet\\Control\\WinApi\\WinDriverMaker1
\\Registry\\Machine\\SYSTEM\\CurrentControlSet\\Control\\WinApi\\WinDriverMaker1_2
\\Registry\\Machine\\SYSTEM\\CurrentControlSet\\Control\\WinApi\\WinDriverMaker2
\\Registry\\Machine\\SYSTEM\\CurrentControlSet\\Control\\WinApi\\WinDriverMaker2_2
\\Registry\\Machine\\SYSTEM\\CurrentControlSet\\Control\\WinApi\\WinDevicePathA

https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-device-control
https://www.codeproject.com/Articles/32744/Driver-to-Hide-Processes-and-Files
http://pstgroup.blogspot.com/2007/07/tips.html
https://github.com/JKornev/hidden
https://blogs.blackberry.com/en/2017/10/threat-spotlight-opening-hackers-door
http://www.rohitab.com/discuss/topic/41522-hiding-loaded-driver-with-dkom
https://crashdmp.files.wordpress.com/2013/05/cfp-whitepaper.pdf
https://devblogs.microsoft.com/oldnewthing/20160913-00/?p=94305
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/driver-signing
https://www.zdnet.com/article/australian-web-hosts-hit-with-a-manic-menagerie-of-malware

23/23

\\Registry\\Machine\\SYSTEM\\CurrentControlSet\\Control\\WinApi\\WinDevicePathB
\\Registry\\Machine\\SYSTEM\\CurrentControlSet\\Control\\WinApi\\WinDriverPath1
\\Registry\\Machine\\SYSTEM\\CurrentControlSet\\Control\\WinApi\\WinDriverPath1_2
\\Registry\\Machine\\SYSTEM\\CurrentControlSet\\Control\\WinApi\\WinDriverPath2
\\Registry\\Machine\\SYSTEM\\CurrentControlSet\\Control\\WinApi\\WinDriverPath2_2
\\Registry\\Machine\\SYSTEM\\CurrentControlSet\\Control\\WinApi\\WinDeviceDataA
\\Registry\\Machine\\SYSTEM\\CurrentControlSet\\Control\\WinApi\\WinDeviceDataB
\\Registry\\Machine\\SYSTEM\\CurrentControlSet\\Control\\WinApi\\WinDriverDataA
\\Registry\\Machine\\SYSTEM\\CurrentControlSet\\Control\\WinApi\\WinDriverDataA_2
\\Registry\\Machine\\SYSTEM\\CurrentControlSet\\Control\\WinApi\\WinDriverDataB
\\Registry\\Machine\\SYSTEM\\CurrentControlSet\\Control\\WinApi\\WinDriverDataB_2

Appendix B

Example of registry entries configuring the driver

Key: ControlSet001\Control\WinApi
 Value: WinDeviceAddress

 Data: Ms312B9050App ;

Value: WinDeviceNumber
 Data:

 \WINDOWS\AppPatch\Ke601169.xsl;
 \WINDOWS\AppPatch\Ke237043.xsl;
 \WINDOWS\AppPatch\Ke311799.xsl;
 \WINDOWS\AppPatch\Ke119163.xsl;
 \WINDOWS\AppPatch\Ke531580.xsl;
 \WINDOWS\AppPatch\Ke856583.xsl;
 \WINDOWS\AppPatch\Ke999860.xsl;
 \WINDOWS\AppPatch\Ke410472.xsl;
 \WINDOWS\AppPatch\Ke673389.xsl;
 \WINDOWS\AppPatch\Ke687417.xsl;
 \WINDOWS\AppPatch\Ke689468.xsl;
 \WINDOWS\AppPatch\Ac312B9050.sdb;
 \WINDOWS\System32\Ms312B9050App.dll;

Value: WinDeviceName
 Data:

 C:\WINDOWS\AppPatch\Ac312B9050.sdb;
 C:\WINDOWS\System32\Ms312B9050App.dll;

Value: WinDeviceId
 Data: dump_FDC.sys ;

Tagged asDirtyMoe, Rootkit, series

https://decoded.avast.io/tag/dirtymoe/
https://decoded.avast.io/tag/rootkit/
https://decoded.avast.io/tag/series/

