
1/13

A BazarLoader DGA that Breaks Down in the Summer
johannesbader.ch/blog/a-bazarloader-dga-that-breaks-during-summer-months/

André Tavares sent me a Bazar Loader sample whose Domain Generation Algorithm (DGA)
shows some interesting behavior. In May, it generates valid domain names with the
eponymous top level domain .bazar:

https://johannesbader.ch/blog/a-bazarloader-dga-that-breaks-during-summer-months/
https://twitter.com/andretavare5

2/13

But as soon as June comes around, some generated domains contain invalid characters:

3/13

And as it gets to July, all domain names are invalid (with very few exceptions):

4/13

The DGA also fails during August and September. But when October rolls around, all
domains are valid again. This continues until next June, when the DGA has problems all over
again.

This short blog post explores what causes the DGA to stop working properly in the summer,
of all times.

The Sample Examined

I reverse engineered the DGA of the following sample:

MD5
5f11f2db1295fa419b190bd7478d9b23

SHA1
96d6c37fa0046a8dc1c520249dc94122e0fb3f52

SHA256
86d2aa04988befc74eccca5d99550f67093969b31aafa11cdce3476a4c59ba74

Size

5/13

248 KB (254474 Bytes)

Compile Timestamp
2021-07-13 08:22:30 UTC

Links
MalwareBazaar, Cape, VirusTotal

Filename
5f11f2db1295fa419b190bd7478d9b23.dll (MalwareBazaar), (VirusTotal)

Detections
MalwareBazaar: BazaLoader, Virustotal: 47/75 as of 2021-08-05 11:35:35 -
Gen:Variant.Razy.892983 (MicroWorld-eScan), Trojan.Agent (CAT-QuickHeal),
Backdoor.Win64.Bazdor.ah (Sangfor), Backdoor:Win64/Bazdor.ae3c68af (Alibaba), Trojan (
0057f6941) (K7GW), Trojan (0057f6941) (K7AntiVirus), W64/Trojan.FRTN-3244 (Cyren),
Win64/BazarLoader.AP (ESET-NOD32), generic.ml (Paloalto), Backdoor.Win64.Bazdor.ah
(Kaspersky), Gen:Variant.Razy.892983 (BitDefender), Win64:DropperX-gen [Drp] (Avast),
Gen:Variant.Razy.892983 (Ad-Aware), Gen:Variant.Razy.892983 (B) (Emsisoft),
Trojan.Agent.Win64.8672 (Zillya), Artemis!Trojan (McAfee-GW-Edition), Trojan.Agent.dkxh
(Jiangmin), TR/Redcap.ntozn (Avira), malware (ai score=88) (MAX), Win32.Troj.Undef.
(kcloud) (Kingsoft), Trojan.Win64.Agent.oa (Gridinsoft), Trojan:Win64/Cobaltstrike.A!MSR
(Microsoft), Backdoor.Win64.Bazdor.ah (ZoneAlarm), Gen:Variant.Razy.892983 (GData),
Trojan.Win64.Convagent (VBA32), Gen:Variant.Razy.892983 (ALYac), Trojan.Bazar
(Malwarebytes), Trojan.Agent!v7VRXZm6ckQ (Yandex), Trojan.Win64.Bazarloader (Ikarus),
Win64:DropperX-gen [Drp] (AVG), Trj/CI.A (Panda)

I have unpacked it to the following state:

MD5
7c64ea7c4a229414b6048d18ab0836fd

SHA1
f10621be9bfee0152931f7790c2cbff022611f62

SHA256
d15dbfb7ef0511556a3527cc98d09145a56302bdd19a6083ee6d007af3352434

Size
113 KB (116224 Bytes)

Compile Timestamp
2021-07-12 13:27:57 UTC

Links
MalwareBazaar, Cape, VirusTotal

Detections

https://bazaar.abuse.ch/sample/86d2aa04988befc74eccca5d99550f67093969b31aafa11cdce3476a4c59ba74/
https://www.capesandbox.com/analysis/172120/
https://www.virustotal.com/gui/file/86d2aa04988befc74eccca5d99550f67093969b31aafa11cdce3476a4c59ba74
https://bazaar.abuse.ch/sample/d15dbfb7ef0511556a3527cc98d09145a56302bdd19a6083ee6d007af3352434/
https://www.capesandbox.com/analysis/175373/
https://www.virustotal.com/gui/file/d15dbfb7ef0511556a3527cc98d09145a56302bdd19a6083ee6d007af3352434

6/13

MalwareBazaar: BazaLoader, Virustotal: 40/75 as of 2021-08-05 19:07:37 -
Trojan.Win32.Razy.4!c (Lionic), Gen:Variant.Razy.891147 (MicroWorld-eScan),
Gen:Variant.Razy.891147 (FireEye), Backdoor.Bazdor.Win64.3 (Zillya),
Backdoor:Win64/Bazdor.9312a6ac (Alibaba), Trojan (0057f6941) (K7GW), Trojan (
0057f6941) (K7AntiVirus), W64/Trojan.QFLC-7900 (Cyren), Win64/BazarLoader.AP (ESET-
NOD32), Backdoor.Win64.Bazdor.ax (Kaspersky), Gen:Variant.Razy.891147 (BitDefender),
Gen:Variant.Razy.891147 (Ad-Aware), BehavesLike.Win64.Trojan.ch (McAfee-GW-Edition),
Gen:Variant.Razy.891147 (B) (Emsisoft), Trojan.Win64.Bazarloader (Ikarus),
TR/Redcap.rlvgc (Avira), malware (ai score=81) (MAX), Win32.Hack.Undef.(kcloud)
(Kingsoft), Trojan.Win64.Agent.oa (Gridinsoft), Trojan:Win32/Tiggre!rfn (Microsoft),
Gen:Variant.Razy.891147 (GData), Backdoor.Win64.Bazdor (VBA32),
Gen:Variant.Razy.891147 (ALYac), Trojan.Bazar (Malwarebytes),
Win64.Backdoor.Bazdor.Ajls (Tencent), W64/BazarLoader.AP!tr (Fortinet), Trj/CI.A (Panda)

The Domain Generation Algorithm

The DGA can be easily be located in the unpacked sample based on the .bazar TLD, for
example with this Yara rule:

rule BazarDGA
{
 strings:
 $bazar_tld= { 2E [4-12] 62 [4-12] 61 [4-12] 7A [4-12] 61 [4-12] 72 }

 condition:
 $bazar_tld
}

The rule triggers at the following location, which adds the top level domain to the generated
domain (pointed to by rax) at the end of the DGA function:

Here is how the DGA works:

7/13

1. BazarLoader divides the letters – except J, which was omitted for unknown reasons –
into two character classes:

the 6 vowels aeiouy
the 19 consonants bcdfghklmnpqrstvwxz

2. The two sets are then combined into all 2⋅6⋅19 ordered pairs that contain one vowel
and one consonant: ab , ba , eb , be , ib , bi , ob , bo , …, oz , zo , uz ,
zu , yz , zy .

3. These 228 pairs are then rearranged with a permutation that is hard-coded into the
malware. The permutation is the seed of the BazarLoader DGA and offers the
possibility to generate a different set of domains with the same algorithm. The
permutation is stored as an array of 228 bytes that represent the one-line notation of
the permutation. So for example, a permutation of 27, 119, 38, … would place the first
pair ab at position 27, the second pair ba at 119, and so on (0 being the first
position).

4. Four pairs are then picked from the 228 permutated pairs, and strung together to form
the 8 letter long second level domain. Which pairs are selected depends on the current
date. The date is formatted as %m%y , where %m is the zero-padded month and %y
is the two digit year. For example, December 5, 2035 would be 1235 . The four digits,
e.g., 1, 2, 3 and 5, then define which pairs will be selected for the first, second, third
and fourth pair respectively.

5. The first pair is selected by first splitting the pairs into groups of 19 pairs. The first digit
derived from the current date then serves as the index of the groups to select. Since
the first digit can only be 0 or 1, only two groups are possible

BazarLoader then picks a pair at random from the 19 pairs of the given group.

1

8/13

6. The second pair is selected like the first pair, except the groups are picked based on
the second date digit. This digit can be any value from 0 to 9, so ten different groups
are possible:

7. For the third pair, the groups only have a size of 4 pairs. Since the third date digit
represents the decade, the same group will be selected for years to come.

9/13

8. The fourth pair is also picked from groups of 4 pairs, based on the least significant
digit of the year.

9. The four picked pairs are concatenated into an 8-letter second level domain, and the
top level domain .bazar is appended.

As can be seen from the illustrations above, pairs at higher positions are selected only as a
second pair and only during the summer months. And that is exactly what causes the bug.

The Bug - A Faulty Permutation

The DGA is implemented exactly as described above. The hard-coded permutation,
however, is incorrect:

57 63 3A 29 25 0E 1E 5C 04 77 5F 37 02 03 28 51
61 28 39 64 12 1C 49 30 3D 74 06 07 49 0B 10 33
56 10 57 19 4A 3B 2C 2E 36 71 1B 68 24 15 67 5A
50 20 45 6E 4C 54 2F 2B 54 62 4A 0B 59 35 51 23
4D 08 01 45 1A 0A 7B 27 72 55 0C 08 5B 1F 60 32
3C 29 3B 2E 2A 70 3A 0F 17 48 14 2C 4B 25 4E 42
44 15 03 05 7C 26 16 06 24 5A 0D 32 46 39 35 5F
4F 6F 11 0C 34 5B 47 59 4E 42 5D 5E 1C 66 52 53
3F 30 38 21 44 18 00 58 56 1E 40 2A 4B 3E 55 13
3E 65 05 0F 1D 09 36 21 22 6D 2D 12 6A 40 17 19
3F 34 11 2F 5D 63 5E 6B 31 61 69 22 26 33 0D 7A
1D 4D 16 75 7D 0A 4F 02 07 64 79 58 14 1A 53 62
0E 41 18 01 31 2B 47 1F 76 5C 09 04 60 43 37 13
3D 3C 41 48 2D 43 52 38 73 27 23 46 4C 1B 50 6C
78 20 7E 00

For the permutation to be valid, i.e., bijective, it would need to contain all numbers from
0x00 to 0xe3 (227). But the largest number in the above list of numbers is only 0x7E

(126). Possibly the wrong data type was chosen when generating the permutation. For
example, a signed char to store the numbers 1-228.

Instead of permuting the pairs, the DGA places them all in the first 127 places. Some pairs
will therefore be overwritten by another pair placed in the same spot. For instance the first
pair ab is placed at position 0x57 (first number of the “permutation”) . But since 0x57
appears a second time (35th number of the “permutation”), the pair ab will be overwritten.

10/13

Similarly, all spots above 127 are never filled. So with the actual “permutation” applied, the
illustration for picking the second pair looks as follows, where ? denotes undefined
memory:

All pairs in July, August and September are undefined and will likely result in invalid domains.
In June, only 13 out of 19 pairs are undefined, hence some domains come out correct. All
other months are not affected by the bug.

Reimplementation in Python

11/13

The following Python script will generate all possible domains for a given date. When it is run
for months affected by the bug, the resulting domains will contain two ?? that represent
characters from undefined memory.

12/13

from datetime import datetime
import argparse
from collections import namedtuple

Param = namedtuple('Param', 'block idx')
pool = (
 "yzewevmeywreomvi"
 "ekwyavygontowaer"
 "udsoyrexvuamtyse"
 "weesuvizpituiqow"
 "uzoretzemuultiaz"
 "icukoqiwolxuykos"
 "upwiymitisneroxe"
 "yxanlekyixxirasi"
 "asxoapuxqaohezwo"
 "oxdigyquziutpave"
 "zohexyvyguqyqidy"
 "ovynumunuwsusyen"
 "xaatyvusivaripfy"
 "oftesaysozuregin"
 "alifkazaadytwuub"
 "zuvoothymivazy"
)

pool +=(10*19*2 - len(pool))*"?"

def dga(date):
 seed = date.strftime("%m%Y")
 params = [
 Param(19, 0),
 Param(19, 1),
 Param(4, 4),
 Param(4, 5)
]

 ranges = []
 for p in params:
 s = int(seed[p.idx])
 lower = p.block*s
 upper = lower + p.block
 ranges.append(list(range(lower, upper)))

 domains = set()
 for indices in product(*ranges):
 domain = ""
 for index in indices:
 domain += pool[index*2:index*2 + 2]
 domain += ".bazar"
 domains.add(domain)

 return domains

if __name__ == "__main__":
 parser = argparse.ArgumentParser()

13/13

 parser.add_argument(
 "-d", "--date", help="date used for seeding, e.g., 2020-06-28",
 default=datetime.now().strftime('%Y-%m-%d'))
 args = parser.parse_args()
 d = datetime.strptime(args.date, "%Y-%m-%d")
 for domain in dga(d):
 print(domain)

Characteristics of the DGA

The following table summarizes the properties of the BazarLoader DGA when it is working as
intended, i.e., October through May.

property value

type TDD (time-dependent-deterministic)

generation scheme arithmetic

seed current date

domain change frequency every month

unique domains per month 5776

sequence random selection, might pick domains multiple times

wait time between domains none

top level domain .bazar

second level characters a-z, without j

regex [a-ik-z]{8}.bazar

second level domain length 8

1. note that the letters used in the illustrations are randomly placed and not the actual
letter pairs that BazarLoader uses. ↩

