
1/11

By Gijs Rijnders August 5, 2021

Analysis of the BlackMatter ransomware
tesorion.nl/en/posts/analysis-of-the-blackmatter-ransomware/

In late July, BleepingComputer stated that the notorious DarkSide ransomware gang has
rebranded as BlackMatter. DarkSide disappeared after the high-profile attack on Colonial
Pipeline this year, but they seem to be back under a new name.

We recently came across a sample of the BlackMatter ransomware, posted by GrujaRS. As
not yet much information is available on this ransomware, we decided to write about its
inner workings and technical details. As expected, we found some similarities between
DarkSide and BlackMatter.

BlackMatter employs slight obfuscation such as dynamic API resolving and basic string
encryption mechanisms. In this blog, we will give a general overview of the ransomware.
Furthermore, we will discuss the obfuscations, as well as the file encryption and some other
details.

Overview

https://www.tesorion.nl/en/posts/analysis-of-the-blackmatter-ransomware/
https://www.bleepingcomputer.com/news/security/darkside-ransomware-gang-returns-as-new-blackmatter-operation/
https://twitter.com/grujars/status/1421780825490837504?s=21
https://chuongdong.com/reverse%20engineering/2021/05/06/DarksideRansomware/

2/11

The BlackMatter ransomware sample we analyzed is a 32-bit Windows executable. Files
encrypted by it get the extension: ‘.5rzS1NTSv’, and the ransom note as shown is
displayed to the user.

Like many ransomwares do, BlackMatter also creates a mutex upon startup to prevent
multiple instances from running in parallel. In the upcoming sections, we will discuss
several aspects of the ransomware in detail.

Dynamic Win32 API resolving

A common practice to avoid disclosing information about a malware’s behavior is to
resolve Win32 API function addresses at runtime. This way, function names are not
visible in the Import Address Table (IAT) of the binary, and static analysis tools cannot
gain information from those. BlackMatter also employs this dynamic Win32 API resolving.
It resolves the addresses of functions it uses first after starting. In the screenshot below,
we see that it first resolves the HeapCreate and HeapAlloc functions, and proceeds to
load functions from more than 10 different libraries.

https://www.tesorion.nl/wp-content/uploads/2021/08/blackmatter_ransom_note.png

3/11

If we zoom in on the ‘decrypt_and_resolve_funcs’ function, we find that it decrypts and
resolves multiple hashes from a given block. BlackMatter contains a block of encrypted
hashes for each library it requires functions from, followed by a trailing 0xCCCCCCCC.
Each encrypted hash is first decrypted by a 32-bit XOR with key: 0x22065FED. After
decryption, the hash is resolved. The hash of a function name is computed using two
similar hash functions H and H , where H computes the hash of a Unicode library
name (including NULL terminator) and H computes the hash of an ASCII function name
(including NULL terminator). The two hash functions, both performing ROR-13
operations, are given in the screenshot below.

The hash for a function name is then computed by first calling x = H for the library name.
The initial value for this hash is zero. To compute the final hash, H is then called using
‘x’ as the initial value.

0 1 0

1

0

1

https://www.tesorion.nl/wp-content/uploads/2021/08/api_resolve_overview.png
https://www.tesorion.nl/wp-content/uploads/2021/08/hash_functions.png

4/11

For each Win32 API function it resolves, BlackMatter manually creates a so called ‘call
stub’ for the function. This stub is a small block of Assembly code that proxies or relays
an API function call. Sometimes a call stub solely jumps to the required API function, but
in other cases it performs some additional operations such as decryption or decoding. In
the screenshot below, we see that after resolving ‘func_addr’, the call stub is created.

When an API function is called, the call stub is called instead. The actual function
address remains encrypted in memory, and the call stub decrypts it before relaying the
call. As we can see in the screenshot below, the call stub is quite simple. It decrypts the
function address using the same 32-bit XOR we previously encountered. The value
0xDEADBEEF in the screenshot is a placeholder for the actual API function address.

String encryption

String encryption is commonly employed in malware to thwart static analysis.
BlackMatter also employs a simple string encryption algorithm, like what was used for
API resolving. Throughout the code, encrypted strings are constructed on the stack by
DWORDs instead of characters. The resulting buffers are decrypted inline using a simple
XOR. The string decryption algorithm is given in the screenshot below.

https://www.tesorion.nl/wp-content/uploads/2021/08/create_call_stub.png
https://www.tesorion.nl/wp-content/uploads/2021/08/api_call_stub.png

5/11

Obtaining the configuration

BlackMatter also contains an embedded configuration, and it is encoded in a similar way
DarkSide encoded theirs. In this case, the configuration is located in the “.rsrc” segment.
The configuration starts with a 32-bit initial state value for the decryption algorithm. In this
case, this value is 0xFFCAA1EA. A DWORD indicating the size is next, followed by the
encrypted configuration. The decryption algorithm is shown in the screenshot below and
is based on a slightly customized linear congruential generator.

The decrypted content is then decompressed using the aPlib algorithm. The decrypted
and decompressed configuration starts with an RSA-1024 public key. Furthermore, the
configuration includes a few Base64-encoded strings that contain:

Command & control hostnames
AES-128 encryption key for command & control
Names of services to kill
File and directories to avoid
Ransom note (also encrypted with the algorithm above)

https://www.tesorion.nl/wp-content/uploads/2021/08/string-encryption.png
https://www.tesorion.nl/wp-content/uploads/2021/08/config-decrypt.png
https://github.com/snemes/aplib

6/11

File encryption

Naturally, we want to know how the file encryption process works in the BlackMatter
ransomware. Like DarkSide, the BlackMatter ransomware first kills blacklisted processes
and services, empties the recycle bins for all drives, and deletes shadow copies. It then
finds files on the filesystem to encrypt.

The file encryption process is set up using I/O completion ports. These completion ports
provide an efficient model for handling many concurrent I/O operations on a system with
multiple CPUs. An I/O completion port is created with a given number of threads using
the CreateIoCompletionPort function. After creation, a queue is created internally, to
which threads can push completion statuses. One can queue a status using the
PostQueuedCompletionStatus function, and a thread can pull this status from the queue
using the GetQueuedCompletionStatus function.

A user-defined data context structure can be attached to a status to keep track of
variables during encryption if its first member is an OVERLAPPED structure. Using the
completion status queue, a control flow of I/O actions can be constructed. The file
encryption function in the BlackMatter ransomware uses the state numbers 0 to 3 to
create a control flow. This control flow is shown in the screenshot below.

https://docs.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports

7/11

As we can see, the encryption starts with a zero: read the next data block from the file.
The status then switches to 1: encrypting the block of data previously read and writing it
back to the file. The file footer is written when the status is set to 2, and when all I/O
tasks have been completed, the encryption is finished with status number 3.

The user-defined context structure is created in the screenshot below. It contains for
example the number of bytes to encrypt in a file. If the file is smaller than 1MiB, the entire
file is encrypted. If the file is larger, the first 1MiB is encrypted.

https://www.tesorion.nl/wp-content/uploads/2021/08/encrypt-function.png

8/11

Files are encrypted using the Salsa20 stream cipher algorithm, and the corresponding
keys are encrypted using RSA-1024. If we zoom in on the ‘inits_salsa20_state’ function,
we find that the Salsa20 matrix is initialized at random without a key and nonce. In the
screenshot below, the matrix is constructed using 8-byte random values. The nonce is
left at zero.

BlackMatter first checks whether the CPU inside the victim’s system supports the
RDRAND instruction. If so, the next random number is generated by combining two calls
to this instruction. If the victim’s CPU does not support RDRAND, the CPU timestamp
counter is used instead. The next random number is then constructed by combining the
lower 32 bits of two timestamp counters. One is rolled 13 bits to the left, and one 13 bits
to the right. The screenshot below shows how these random numbers are generated.

https://www.tesorion.nl/wp-content/uploads/2021/08/init-completion-ctx.png
https://www.tesorion.nl/wp-content/uploads/2021/08/init-salsa20-state.png

9/11

The random Salsa20 matrix is encrypted with the RSA-1024 public key included in the
configuration and written to the footer in the encrypted file. The footer contains some
more information about the file, such as its original size and a magic value that allows
BlackMatter to identify already encrypted files. The file encryption process is also quite
like DarkSide’s.

Command & control

BlackMatter contacts command & control hosts to collect information about the victim.
The hostnames it contacts are stored in the embedded configuration we previously
discussed. BlackMatter first attempts to contact the command & control hosts using
HTTPS and falls back to HTTP if it fails. The sent HTTP POST requests target a
randomly generated URI consisting of key/value pairs with characters from the Base64
alphabet. The HTTP data associated to the requests also consists of similar key/value
pairs. The difference is: one of the pairs contains encrypted data.

https://www.tesorion.nl/wp-content/uploads/2021/08/random-values.png

10/11

The HTTP requests are facilitated by the WinInet library, including functions such as
InternetOpenW, InternetConnectW and HttpSendRequestW. An interesting characteristic
of the requests is the User-Agent header. BlackMatter contains multiple hardcoded user
agents, from which it randomly selects one to use in its connections. The user agents are
shorter than the default ones, as we can see in the screenshot below.

As we previously mentioned, the encrypted victim information is placed in one of the
key/value pairs in the HTTP POST data. The position of the pair in the string is randomly
determined. We can determine which pair to decrypt by Base64-decoding each pair in
the data string and checking the size of the results. We attempt decryption on all pairs
having a size aligned to a 16-byte boundary. The encryption algorithm used here is AES-
128 in ECB mode (independent block-by-block encryption). The key is placed in the
configuration, starting 16 bytes after the RSA-1024 public key. In the sample we
analyzed, the key is (hex-encoded): A6F330B09CD47B4FB9214F7836AA46AD. After
decrypting, we get the following JSON object.

As we can see, we analyzed version 1.2 of BlackMatter. The object contains host and
user information, such as identifiers for the victim, computer name and username, and
available disk space on the infected system. The information in the JSON object is

https://www.tesorion.nl/wp-content/uploads/2021/08/user_agents.png
https://www.tesorion.nl/wp-content/uploads/2021/08/decrypted-json.png

11/11

similar to what DarkSide sent to their command & control hosts, as they also collected
system, user and disk information.

Conclusion

In this blog, we presented a detailed analysis of the BlackMatter ransomware. Others
suggested that BlackMatter is a rebrand of the DarkSide ransomware, and the code
similarities we found support this suggestion. The sample is available for download at
MalwareBazaar.

Indicators of Compromise (IoCs)

Indicator Description

22d7d67c3af10b1a37f277ebabe2d1eb4fd25afbd6437d4377400e148bcc08d6 BlackMatter
ransomware

paymenthacks[.]com C2

mojobiden[.]com C2

© 2022 Tesorion Cybersecurity Solutions. All Rights Reserved. | RSS NL | RSS EN

https://bazaar.abuse.ch/sample/22d7d67c3af10b1a37f277ebabe2d1eb4fd25afbd6437d4377400e148bcc08d6/
https://www.tesorion.nl/nl/feed/
https://www.tesorion.nl/en/feed/

