
1/16

A step-by-step analysis of the new malware used by
APT28/Sofacy called SkinnyBoy

cybergeeks.tech/skinnyboy-apt28/

Summary

The malware extracts configuration information about the machine that it infects using the
systeminfo command, and then it retrieves the list of processes by spawning a tasklist
process. The content of the following directories, along with the processes’ output, is
base64-encoded and exfiltrated to the C2 server updaterweb[.]com:

Desktop folder
C:\Program Files
C:\Program Files (x86)
C:\Users\<User>\AppData\Roaming\Microsoft\Windows\Start
Menu\Programs\Administrative Tools
C:\Users\<User>\AppData\Roaming
C:\Users\<User>\AppData\Roaming\Microsoft\Windows\Templates
C:\WINDOWS
C:\Users\<User>\AppData\Local\Temp

The user agent used during the network communication is set to “Opera”, and the following
is the structure of the POST request: “id=<hostname>#Username#<Serial number in
decimal>¤t=1&total=1&data=<data to be exfiltrated>”. The “cmd=y” command is used
to download a DLL file from the C2 server, which is loaded using the LoadLibraryW API, and
the first ordinal function is executed.

Analyst: @GeeksCyber

Technical analysis

SHA256: ae0bc3358fef0ca2a103e694aa556f55a3fed4e98ba57d16f5ae7ad4ad583698

The DLL has 2 exports (DllEntryPoint and RunMod). We have used rundll32.exe to run the
DLL by calling the RunMod function:

Figure 1
The malware creates an unnamed event object by calling the CreateEventW API:

https://cybergeeks.tech/skinnyboy-apt28/
https://twitter.com/GeeksCyber

2/16

Figure 2
Two new threads are created by the process using the CreateThread function:

Figure 3

Figure 4
The GetMessage routine is utilized to retrieve a message from the thread’s message queue:

Figure 5
The malicious process enumerates all the messages, and it breaks the loop if the message
is equal to 0x16 (WM_ENDSESSION – inform the application whether the session is
ending):

3/16

Figure 6

Thread activity – StartAddress function

The malware creates an anonymous pipe using the CreatePipe API:

Figure 7
GetStartupInfoA is used to retrieve the content of the STARTUPINFO structure from when
the calling process was created:

Figure 8

4/16

The binary creates a new process that runs the systeminfo command, which displays
configuration information about the computer and its OS:

Figure 9
The pipe created earlier is used as an inter-process communication mechanism. The output
of the systeminfo command is read via a ReadFile function call:

Figure 10

Figure 11

The list of processes is retrieved by creating a new process that runs the tasklist command:

5/16

Figure 12
The output of the tasklist command is transmitted to the main process using the ReadFile
API:

Figure 13

Figure 14

The binary gets the path of the Desktop folder using the SHGetFolderPathW routine:

Figure 15
The process enumerates the files/directories from the Desktop directory using the
FindFirstFileW and FindNextFileW functions:

6/16

Figure 16

Figure 17
The binary adds 18 characters of “#” before and after the folder name, as following:

Figure 18

The list of files and directories extracted before is concatenated with the above string, as
shown in figure 19:

Figure 19

The following directories are also targeted by the backdoor: “C:\Program Files”, “C:\Program
Files (x86)”, “C:\Users\<User>\AppData\Roaming\Microsoft\Windows\Start
Menu\Programs\Administrative Tools”, “C:\Users\<User>\AppData\Roaming”, “C:\Users\
<User>\AppData\Roaming\Microsoft\Windows\Templates”, “C:\WINDOWS” and “C:\Users\
<User>\AppData\Local\Temp”. The SHGetFolderPathW function is utilized to obtain some of
these folder names (0x2a = CSIDL_PROGRAM_FILESX86, 0x30 = CSIDL_ADMINTOOLS,
0x1a = CSIDL_APPDATA, 0x15 = CSIDL_TEMPLATES and 0x24 = CSIDL_WINDOWS):

Figure 20

7/16

Figure 21

Figure 22

Figure 23

Figure 24
The GetTempPathW API is utilized to retrieve the path of the %TEMP% directory:

Figure 25
The file initializes the use of the WinINet functions using the InternetOpenW API (the user
agent is hard-coded as “Opera”):

Figure 26

8/16

The send and receive timeouts are set to 600 seconds using the InternetSetOptionW routine
(0x6 = INTERNET_OPTION_CONTROL_RECEIVE_TIMEOUT and 0x5 =
INTERNET_OPTION_CONTROL_SEND_TIMEOUT):

Figure 27

Figure 28
The malicious process establishes a connection to the C2 server updaterweb[.]com on port
443:

Figure 29
The NetBIOS name of the local computer is retrieved using the GetComputerNameA API:

Figure 30
GetUserNameA is utilized to extract the name of the user associated with the current thread:

Figure 31
The malware extracts the volume serial number of the root of the current directory via a
function call to GetVolumeInformationW:

9/16

Figure 32
The process decrypts some important strings using the XOR algorithm, the keys being
“CEJ&V%$84k839y92m” and “qpzoamxiendufbtbf3-#$*40fvnpwOPDwdkvn”. The strings
“id=%s#%s#%u&cmd=y” and “id=%s#%s#%u¤t=%s&total=%s&data=” have been
computed:

Figure 33

Figure 34

10/16

The output of the systeminfo command + output of the tasklist command + the list of targeted
directories and their content are base-64 encoded using the CryptBinaryToStringA API (0x1 =
CRYPT_STRING_BASE64):

Figure 35

Figure 36

The HttpOpenRequestW routine is utilized to create an HTTP POST request handle:

Figure 37
The malware adds one HTTP request header (“application/x-www-form-urlencoded”) to the
HTTP request handle:

Figure 38

11/16

The request is sent to the HTTP server using the HttpSendRequestExW API, as displayed in
figure 39:

Figure 39
In the case of failing to connect to the C2 server on port 443, the process tries to connect on
port 80:

Figure 40
The information extracted before is exfiltrated to the C2 server (id=<hostname>#Username#
<Serial number in decimal>¤t=1&total=1&data=<base-64 encoded data computed
above>):

Figure 41
The thread sets the event created earlier to the signaled state:

Figure 42
Thread activity – sub_6BD71960 function

This thread sets the event created earlier now to the nonsignaled state using the ResetEvent
routine:

12/16

Figure 43
There is a similar workflow starting with calling the InternetOpenW function up until
connecting to the C2 server on port 443 (or port 80 if the first one is unsuccessful). The
POST request is different this time because it contains the “cmd=y” command that is used to
download a DLL file:

Figure 44
The malware queries the server to determine the amount of data available using the
InternetQueryDataAvailable routine:

Figure 45
The potential DLL file is read from the handle using the InternetReadFile API (the first 4
bytes would represent the data size and there will also be 32 bytes that represent the
SHA256 hash value of the content, as we’ll describe in the upcoming paragraphs):

Figure 46
The expected DLL is base64-encoded because the process tries to decode it using the
CryptStringToBinaryA function (0x1 = CRYPT_STRING_BASE64):

13/16

Figure 47

Figure 48
CryptAcquireContextA is utilized to acquire a handle to the Microsoft RSA and AES
Cryptographic Provider (0x18 = PROV_RSA_AES):

Figure 49
The CryptCreateHash routine is used to create a handle to a CSP (cryptographic service
provider) hash object (0x800c = CALG_SHA_256):

Figure 50
After the base64-encoded DLL file is decoded, then the malware hashes the buffer that is
supposed to contain a DLL file using the SHA256 algorithm:

Figure 51

14/16

The hash value is extracted by calling the CryptGetHashParam API, as shown in figure 52
(0x2 = HP_HASHVAL):

Figure 52

Figure 53

The malicious process verifies if the hash value computed above coincides with a 32-byte
buffer that comes with the DLL file (of course that the response is emulated in our case, but
we can adjust it to pass the comparison):

Figure 54

Figure 55
GetTempPathW is utilized to retrieve the path of the %TEMP% directory:

Figure 56
The malicious process creates a file called fvjoik.dll in the %TEMP% directory, as shown
below:

15/16

Figure 57
The newly created file is populated with the potential DLL downloaded from the C2 server:

Figure 58
The DLL file is loaded into the address space of the current process using the LoadLibraryW
routine:

Figure 59
The malware will execute the exported function with ordinal 1, as highlighted in the next
figure:

Figure 60
After the function finishes, there is a call to WinExec that deletes the DLL file created earlier:

Figure 61
The process communicates again with the C2 server, and we believe that it transmits the
result of the DLL execution (we won’t go into too much details here because it’s pretty much
the same activity described so far). The parameters of the request are again as follows: “id=

16/16

<hostname>#Username#<Serial number in decimal>¤t=1&total=1&data=<data to be
transmitted>”.

Main thread activity

The main thread sets the event created before to the signaled state:

Figure 62
The malware retrieves the termination status of the 2 threads using the
GetExitCodeThread API:

Figure 63

Figure 64
References

MSDN: https://docs.microsoft.com/en-us/windows/win32/api/

VirusTotal:
https://www.virustotal.com/gui/file/ae0bc3358fef0ca2a103e694aa556f55a3fed4e98ba57d16f
5ae7ad4ad583698/detection

Fakenet: https://github.com/fireeye/flare-fakenet-ng

Cluster25: https://cluster25.io/wp-content/uploads/2021/05/2021-05_FancyBear.pdf

INDICATORS OF COMPROMISE

C2 server: updaterweb[.]com

SHA256: ae0bc3358fef0ca2a103e694aa556f55a3fed4e98ba57d16f5ae7ad4ad583698

User-Agent: Opera

https://docs.microsoft.com/en-us/windows/win32/api/
https://www.virustotal.com/gui/file/ae0bc3358fef0ca2a103e694aa556f55a3fed4e98ba57d16f5ae7ad4ad583698/detection
https://github.com/fireeye/flare-fakenet-ng
https://cluster25.io/wp-content/uploads/2021/05/2021-05_FancyBear.pdf

