
1/29

August 1, 2021

BazarCall to Conti Ransomware via Trickbot and Cobalt
Strike

thedfirreport.com/2021/08/01/bazarcall-to-conti-ransomware-via-trickbot-and-cobalt-strike/

Intro

This report will go through an intrusion that went from an Excel file to domain wide
ransomware. The threat actors used BazarCall to install Trickbot in the environment which
downloaded and executed a Cobalt Strike Beacon. From there the threat actor discovered
the internal network before moving laterally to a domain controller for additional discovery. A
couple days later, the threat actors came back and executed Conti ransomware across the
domain.

Unfamiliar with BazaCall/BazarCall? Read more here from @MsftSecIntel, @dreadphones,
& @JCearbhall and here from @Unit42_Intel & @malware_traffic.

Summary

In this intrusion, we observed a number of interesting techniques being leveraged by the
threat actors. The threat actors were able to go from initial access to the deployment of Conti
ransomware in a matter of hours. The Conti operators chose to wait a couple days before

https://thedfirreport.com/2021/08/01/bazarcall-to-conti-ransomware-via-trickbot-and-cobalt-strike/
https://www.microsoft.com/security/blog/2021/07/29/bazacall-phony-call-centers-lead-to-exfiltration-and-ransomware/
https://twitter.com/MsftSecIntel
https://twitter.com/dreadphones
https://twitter.com/JCearbhall
https://unit42.paloaltonetworks.com/bazarloader-malware/
https://twitter.com/Unit42_Intel
https://twitter.com/malware_traffic

2/29

ransoming the environment. Even though most of the techniques aren’t new or advanced,
they have proven to be effective. We have observed the same techniques in other intrusions
and understanding these techniques will allow defenders to disrupt such intrusion activity
and deny it in their own networks.

The Trickbot payload came from a phishing campaign associated with BazarCall, delivering
weaponized XLSB files. Upon execution, certutil.exe was copied to %programdata% and
renamed with random alphanumeric characters. Certutil was used to download and load the
Trickbot DLL into memory. Trickbot was automatically tasked to inject into the wermgr.exe
process and use its well-known “pwgrab” module to steal browser credentials. As part of
further automated tasking, Trickbot performed an initial reconnaissance of the environment
using native Windows tools such as nltest.exe and net.exe.

First hands-on activity was observed two hours after initial compromise, when Trickbot
downloaded and executed Cobalt Strike Beacons. To guarantee execution on the beachhead
host, multiple payloads were used. One of the Cobalt Strike Beacons was the same payload
and command and control infrastructure as used in a prior case. The initial access method
for that case was IcedID, which shows that the threat actors utilize various initial access
methods to get into environments and accomplish their goals.

Once access through Cobalt Strike was established, the threat actors immediately
proceeded with domain enumeration via Nltest, AdFind, BloodHound, and PowerSploit.
Presence was then expanded on the beachhead by using a PowerShell loader to execute
additional Beacons.

We observed the threat actors having technical issues. One example being with a Beacon
unsuccessfully injecting into a process. It is unclear if this was an untrained actor, or there
was a configuration issue.

Fifteen minutes after domain enumeration, we observed successful lateral movement to two
endpoints on the network. Ten minutes after lateral movement, a PowerShell Cobalt Strike
loader executed as a service on a server. Even though the execution was not successful, the
threat actors kept trying, a total of eight times, until it finally worked. Windows Defender real-
time monitoring was then disabled, the LSASS.exe process was dumped using SysInternals
ProcDump, and privilege was escalated to “SYSTEM” using named pipe impersonation.

Almost four hours after initial execution, the threat actors pivoted to a domain controller using
domain admin credentials and executed a Cobalt Strike Beacon. Once they had domain
controller access, ntdsutil was used to take a snapshot of “ntds.dit”, saved under
“C:\Perflogs\1”, for offline password hash extraction. This is a technique that we don’t see
very often, but effective nevertheless.

https://twitter.com/ffforward/status/1403086116463562753
https://thedfirreport.com/2021/07/19/icedid-and-cobalt-strike-vs-antivirus/
https://docs.microsoft.com/en-us/sysinternals/downloads/procdump
https://blog.cobaltstrike.com/2014/04/02/what-happens-when-i-type-getsystem/
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/cc753343(v=ws.11)

3/29

The threat actors then reran many of the same discovery techniques that were previously
executed on the beachhead, including AdFind and BloodHound. This was the last observed
hands-on-keyboard activity for awhile.

Two days later, the Cobalt Strike Beacon on the domain controller was once again actively
engaged by the threat actors. Psexec, with two separate batch files, were used to execute
Conti ransomware on all domain-joined Windows hosts. This final deployment was executed
around 6:45 UTC on a Monday morning.

From the point the threat actors returned, to ransom deployment, it was less than 30
minutes. This would give defenders little time to act if they had not identified and contained
the activity from the first day of the Trickbot infection.

Services

We offer multiple services including a Threat Feed service which tracks Command and
Control frameworks such as Cobalt Strike, Metasploit, Empire, PoshC2, etc. More
information on this service and others can be found here. Two of the Cobalt Strike servers
used in this intrusion were added to our Threat Feed on 6/3/21 and the other one was added
on 6/11/21

We also have artifacts available from this case such as pcaps, memory captures, files, event
logs including Sysmon, Kape packages, and more, under our Security Researcher and
Organization services.

Timeline

https://thedfirreport.com/services/
https://thedfirreport.com/services/
https://thedfirreport.com/services/
https://www.patreon.com/thedfirreport

4/29

5/29

Analysis and reporting completed by @_pete_0 and @kostastsale.

Reviewed by @RoxpinTeddy and 1 unnamed contributor.

Initial Access

The initial access was achieved as a result of the user opening what appeared to be a
benign workbook, a lure, requiring little user interaction.

The workbook contained hidden and password protected worksheets, these were malicious.
Module functions also indicated code designed to obfuscate and hide true values and
functions.

https://twitter.com/_pete_0
https://twitter.com/Kostastsale
https://twitter.com/RoxpinTeddy

6/29

This document and the following DLL were noted as being associated to a BazarCall
campaign by @ffforward.

1/ Today #BazarCall dropped #TrickBot gtag mon311 from their brand new website
/zonerphoto.us. I guess the gangs increased activity is to show that they are alive and
well without that random programmer? pic.twitter.com/CVfcn7b9mJ

— TheAnalyst (@ffforward) June 10, 2021

Execution

From the xlsb document, the following execution chain occurs. Including copying the
Windows CertUtil program and using that to collect further Trickbot payloads.

We observed a second stage execution using regsvr32 to load a DLL from the user’s
AppData\Local\Temp folder.

Almost immediately an outbound IPv4 address lookup was requested via HTTP. This is
usually undertaken to identify the compromised environment, and to facilitate C2. The user
agent refers to Curl – and used again for another stage of the intrusion.

On the beachhead, multiple executables were saved in a temp directory and then pushed
into memory by TrickBot process “wermgr.exe”. The executables were identified as Cobalt
Strike and communicated over port 443 to C2 88.80.147[.]101.

https://twitter.com/ffforward
https://twitter.com/hashtag/BazarCall?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/TrickBot?src=hash&ref_src=twsrc%5Etfw
https://t.co/CVfcn7b9mJ
https://twitter.com/ffforward/status/1403086116463562753?ref_src=twsrc%5Etfw
https://tria.ge/210610-xr9avxf7f6/behavioral2
https://thedfirreport.com/wp-content/uploads/2021/07/4641-02.png

7/29

A PowerShell download cradle was then used to execute Cobalt Strike Beacon in memory:

Privilege Escalation

Named pipe impersonation was used to escalate to SYSTEM privileges – a common Cobalt
Strike capability:

We observed several attempts by the threat actor trying to escalate to SYSTEM – ultimately
succeeding, as evident in several new services running under the Local SYSTEM context:

https://thedfirreport.com/wp-content/uploads/2021/07/10-PrivEsc-Named_pipe_impersonation.png

8/29

Service creation events System Event ID 7045, coupled with unusual commands and service
names are a strong indication of privilege escalation activity. RedCanary provided useful
background on GetSystem capabilities of offensive security tools and methods of detection.

Defense Evasion

Trickbot made extensive use of process injection to hide in benign operating system
processes. It first injected into wermgr.exe and then later into svchost.exe.

Another defense evasion technique employed by Cobalt Strike, was to disable Windows
Defender. WMIC was used to remotely execute ‘def.bat’. The contents of ‘def.bat’:

Set-MpPreference -DisableRealtimeMonitoring $true

Credential Access

Trickbot made use of esentutl to gather MSEdge history, webcache, and saved passwords
using TrickBot’s “pwgrab” module.

https://redcanary.com/blog/getsystem-offsec/

9/29

LSASS was dumped remotely using ProcDump. The execution took place from the
beachhead using WMIC.

“Ntdsutil” was used to take a snapshot of ntds.dit and save it under “C:\Perflogs\1”. This
technique is useful for offline password hash extraction. This activity occurred twice. The
same batch file, ‘12.bat’, was first executed in the context of SYSTEM; and secondly, in the
context of a domain admin user. The contents of ‘12.bat’:

ntdsutil "ac in ntds" "ifm" "cr fu C:\Perflogs\1" q q

Discovery

Net and Nltest commands were used to gather network and domain reconnaissance. During
the intrusion, this activity was seen multiple times, on multiple hosts.

Other discovery commands included:

systeminfo
 nltest /dclist:<hidden>.local

 nltest /domain_trusts /all_trusts
 net localgroup Administrators

 whoami.exe" /groups

AdFind.exe and adf.bat were uploaded to the beachhead. adf.bat was used to execute:

10/29

adfind.exe -f "(objectcategory=person)"
adfind.exe -f "(objectcategory=organizationalUnit)"
adfind.exe -f "objectcategory=computer"
adfind.exe -gcb -sc trustdmp
adfind.exe -f "(objectcategory=group)"
adfind.exe -subnets -f (objectCategory=subnet)
adfind.exe -sc trustdmp

AdFind results were written to the following locations:

C:\Windows\Temp\adf\ad_group.txt
C:\Windows\Temp\adf\trustdmp.txt
C:\Windows\Temp\adf\subnets.txt
C:\Windows\Temp\adf\ad_ous.txt
C:\Windows\Temp\adf\ad_computers.txt
C:\Windows\Temp\adf\ad_users.txt

On the beachhead, Cobalt Strike executed BloodHound in memory. The results were saved
in:

"C:\Windows\Temp\Dogi"

BloodHound was later executed on the domain controller as well. Once again the results
were stored in:

"C:\Windows\Temp\Dogi"

PowerSploit was loaded into memory on the DC and the following functions were used:

Get-NetSubnet
Get-NetComputer –ping

An encoded PowerShell command was executed on the domain controller to enumerate all
AD joined hosts and save the results to:

"C:\Users\AllWindows.csv"

The decoded PowerShell command:

https://thedfirreport.com/wp-content/uploads/2021/07/13-PS-script_encoded.png

11/29

Lateral Movement

From the beachhead, WMIC was used to remotely execute ‘165.bat’ on two other hosts.

Multiple failed attempts were observed prior to the successful execution of a PowerShell
Cobalt Strike loader via a service with “SYSTEM” privileges.

Decoded Cobalt Strike shellcode, using Cyber Chef recipe:
https://github.com/mattnotmax/cyberchef-recipes#recipe-28—de-obfuscation-of-cobalt-strike-
beacon-using-conditional-jumps-to-obtain-shellcode

Command and Control

Multiple C2 channels were established, some were persistent whilst others appeared to be
single purpose – used for payload retrieval or fallback C2. Persistent C2 activity was Cobalt
Strike. The beachhead had multiple C2 channels, two of which were unique. We assess that

https://thedfirreport.com/wp-content/uploads/2021/07/14-PS-script_decoded.png
https://thedfirreport.com/wp-content/uploads/2021/07/6-Powershell-loader_LM.png
https://github.com/mattnotmax/cyberchef-recipes#recipe-28---de-obfuscation-of-cobalt-strike-beacon-using-conditional-jumps-to-obtain-shellcode
https://thedfirreport.com/wp-content/uploads/2021/07/7-PS-loader-decoded.png

12/29

the threat actors were ensuring a loss of a single source C2 wouldn’t result in losing all C2 to
the compromised environment.

We observed a payload being retrieved from a unique IPv4 address. An indication that the
threat actors were keeping C2 channels independent from payload delivery/retrieval.

Using the Curl 7.74.0 user agent:

Analysis of this binary, shows C2 activity to the following:

The binary has an unusual PDB string that indicates obfuscation:

The two persistent C2 channels were analyzed to determine the Cobalt Strike configuration.
Each C2 channel was configured as follows:

149.248.52[.]187:443
Onlineworkercz[.]com

(added to Threat Feed on 2021-06-11)

https://thedfirreport.com/services/

13/29

{
 "x86": {
 "sha1": "3f15a07cde64efda49670664af320603cf19e8a3",
 "sha256": "d4ab4ed720d674d4c8c35d48006724a9cf20396e020d5bd6c12fce8d44b8ed5a",
 "time": 1623422265288,
 "config": {
 "Method 1": "GET",
 "Spawn To x64": "%windir%\\sysnative\\WUAUCLT[.]exe",
 "Polling": 55490,
 "HTTP Method Path 2": "/media",
 "Port": 443,
 "Spawn To x86": "%windir%\\syswow64\\WUAUCLT[.]exe",
 "Jitter": 41,
 "C2 Server": "onlineworkercz[.]com,/kj",
 "Method 2": "POST",
 "Beacon Type": "8 (HTTPS)"
 },
 "md5": "7d9cdea210ed05a1ff96d7ff3e576c11"
 },

 "x64": {
 "sha1": "1d50772d506f1def4bd0659b38cf4cb41df7802c",
 "sha256": "4f009eb4252cf29daa24d1d018815aa228f0c58aba126bff3fec4cd809cd9747",
 "time": 1623422268773.6,
 "config": {
 "Method 1": "GET",
 "Spawn To x64": "%windir%\\sysnative\\WUAUCLT[.]exe",
 "Polling": 55490,
 "HTTP Method Path 2": "/zh",
 "Port": 443,
 "Spawn To x86": "%windir%\\syswow64\\WUAUCLT[.]exe",
 "Jitter": 41,
 "C2 Server": "onlineworkercz[.]com,/kj",
 "Method 2": "POST",
 "Beacon Type": "8 (HTTPS)"
 },
 "md5": "23135b04a470db515db11e1364e3fcd9"
 }
}

88.80.147[.]101:80
gmbfrom[.]com

(added to Threat Feed on 2021-06-03)

https://thedfirreport.com/services/

14/29

{
 "x86": {

 "sha1": "b785cae596f7b68376464e3e300fe0aff5bea845",
 "config": {

 "Method 2": "POST",
 "Port": 80,

 "Method 1": "GET",
 "Polling": 5000,

 "Beacon Type": "0 (HTTP)",
 "Jitter": 10,

 "Spawn To x86": "%windir%\\syswow64\\dllhost[.]exe",
 "C2 Server": "88[.]80[.]147[.]101,/jquery-3[.]3[.]1[.]min[.]js",

 "HTTP Method Path 2": "/jquery-3[.]3[.]2[.]min[.]js",
 "Spawn To x64": "%windir%\\sysnative\\dllhost[.]exe"
 },

 "time": 1622753064031.5,
 "sha256": "dd0dd0b3e95ff62c45af048c0169e2631ac906da4a603cadbc7014cbcfb4e631",

 "md5": "56830f9cc0fe712e22921a7a5a0f1a53"
 },

 "x64": {
 "sha1": "11724324f8ec1940be87553ae2bd5f96b979a5d6",

 "config": {
 "Method 2": "POST",

 "Port": 80,
 "Method 1": "GET",

 "Polling": 5000,
 "Beacon Type": "0 (HTTP)",

 "Jitter": 10,
 "Spawn To x86": "%windir%\\syswow64\\dllhost[.]exe",

 "C2 Server": "88[.]80[.]147[.]101,/jquery-3[.]3[.]1[.]min[.]js",
 "HTTP Method Path 2": "/jquery-3[.]3[.]2[.]min[.]js",

 "Spawn To x64": "%windir%\\sysnative\\dllhost[.]exe"
 },

 "time": 1622753068830.2,
 "sha256": "36a5e68810f3823470fadd578efb75b5c2d1ffe9f4a16d5566f0722257cc51ce",

 "md5": "9dde7f14a076a5c3db8f4472b87fd11e"
 }

 }

15/29

Trickbot C2 Configuration:

https://tria.ge/210610-vfygj4t1yn

Exfiltration

As part of the discovery stage, we observed data being exfiltrated. The data ranged from
host discovery, running processes, and user accounts:

Entire AD forest data – including usernames , DC configuration, and machine enumeration:

https://tria.ge/210610-vfygj4t1yn
https://thedfirreport.com/wp-content/uploads/2021/08/4641-04.png

16/29

Impact

When, the threat actors returned two days later, the final payloads were staged by the threat
actors on a domain controller in the following location:

C:\share$

Two batch scripts were executed on the domain controller to automate ransomware
deployment via PSExec. The first was “_COPY.bat”, to stage the CONTI ransomware
payload on all domain-joined computers. The second was “_EXE.bat”, to execute the staged
CONTI payloads.

The batch scripts ran as expected a set of copy commands and then executed the Conti
payload using psexec.

start PsExec.exe -accepteula @C:\share$\comps1.txt -u "domain\User" -p "$PASSWORD"
cmd /c COPY "\\DOMAINCONTROLLER\share$\fQumH.exe" "C:\windows\temp\"

start PsExec.exe -accepteula -d @C:\share$\comps5.txt -u "domain\User" -p "$PASSWORD"
cmd /c "C:\windows\temp\fQumH.exe"

Files were then encrypted with the following extension [KCRAO]:

https://thedfirreport.com/wp-content/uploads/2021/07/4641-01.png

17/29

A readme.txt file was created in each folder:

The content of readme.txt:

18/29

IOCs

Network

Cobalt Strike
 149.248.52.187|443

88.80.147.101|80
 onlineworkercz.com

 gmbfrom.com

Trickbot
 116.0.6.110

123.231.149.123
146.196.121.219
177.221.39.161
180.178.106.50
85.248.1.126
94.142.179.179
94.142.179.77
88.150.240.129
46.209.140.220
85.175.171.246
89.37.1.2
94.183.237.101
103.101.104.229
103.124.145.98
114.7.240.222
131.0.112.122
123.231.149.122
45.5.152.39

File

https://thedfirreport.com/wp-content/uploads/2021/07/4641-03-1.png

19/29

netscan.exe
d1d579306a4ddf79a2e7827f1625581c
e141562aab9268faa4aba10f58052a16b471988a
bb574434925e26514b0daf56b45163e4c32b5fc52a1484854b315f40fd8ff8d2
12.bat
935fa508d2c41914f4549d3805456444
d40b5147e93204f03f0acfb3ad4cbb1b6f296a35
f88a59e0c1aa48aa46680f28c9e09781d3f678567f38e3b1b1ba7d2437cd9e0c
def.bat
abe4a11df74f6a2f07682174b5fb2876
e928fc3d74b976c539d55f75318b5ba89dab3f11
8a7399c37a27c46e1d61150cba71d76737233a971e0c15b07c47bcc97e710bbe
procdump.exe
6a09bc6c19c4236c0bd8a01953371a29
d1387f3c94464d81f1a64207315b13bf578fd10c
05732e84de58a3cc142535431b3aa04efbe034cc96e837f93c360a6387d8faad
tdr615.exe
a53f124fc4f07a26cc3497e665d0ec63
3f0a4ed4c0c1c5e156e4d29ac4adf109faa82cd9
12761d7a186ff14dc55dd4f59c4e3582423928f74d8741e7ec9f761f44f369e5
tdrE934.exe
d803ea86227c541c54b11bb583b3910f
f1b4faf4dfbf9ada3cc1496f9f9ad352314c2d59
48f2e2a428ec58147a4ad7cc0f06b3cf7d2587ccd47bad2ea1382a8b9c20731c
start.bat
4841c54b37729544fddcd014f09aa46e
f7d62cdca59fc09d19fa8a465ea3b2611cf797e1
f37b6c37e95f3fa27382f8b8e6256aa05e28703332bda54184e7223f82f02114
Get-DataInfo.ps1
16cde93b441e4363700dfbf34c687b08
092ac6f8d072c4cf045e35a839d5bb8f1360f1ae
a290ce75c6c6b37af077b72dc9c2c347a2eede4fafa6551387fa8469539409c7
62.dll
9e7756f47e57a03e6eb5fe7d2505b870
fb6339704bf11507038ddaf8f01324da5b71ee19
8b9d605b826258e07e63687d1cefb078008e1a9c48c34bc131d7781b142c84ab
cancel_sub_VCP1234567890123.xlsx
9e1ee4a42c381eabcf2cde38a1aae7c9
015bb306d9e54001d433b3ac2e7212b864f54ae2
fd71a2fcc0b5dd0fb0dbff257839b67749f2cadf30e2d3dae7f0e941d93d24d3

Detections

Network

20/29

ET POLICY OpenSSL Demo CA - Internet Widgits Pty (O)
ET CNC Feodo Tracker Reported CnC Server group 1
ET CNC Feodo Tracker Reported CnC Server group 2
ET CNC Feodo Tracker Reported CnC Server group 3
ET CNC Feodo Tracker Reported CnC Server group 5
ET CNC Feodo Tracker Reported CnC Server group 8
ET CNC Feodo Tracker Reported CnC Server group 9
ET CNC Feodo Tracker Reported CnC Server group 19
ET CNC Feodo Tracker Reported CnC Server group 22
ET CNC Feodo Tracker Reported CnC Server group 23
ET CNC Feodo Tracker Reported CnC Server group 24
ET POLICY HTTP traffic on port 443 (POST)
ET POLICY PE EXE or DLL Windows file download HTTP
ET POLICY curl User-Agent Outbound
ET HUNTING SUSPICIOUS Dotted Quad Host MZ Response
ET INFO Executable Download from dotted-quad Host
ET HUNTING GENERIC SUSPICIOUS POST to Dotted Quad with Fake Browser 1
ET MALWARE Trickbot Checkin Response
ET POLICY Observed Cloudflare DNS over HTTPS Domain (cloudflare-dns .com in TLS SNI)
ET HUNTING Suspicious POST with Common Windows Process Names - Possible Process List
Exfiltration
ET MALWARE Win32/Trickbot Data Exfiltration
ET POLICY IP Check wtfismyip.com
GPL ATTACK_RESPONSE command completed
ET HUNTING Observed Suspicious SSL Cert (External IP Lookup - ident .me)
ET INFO Dotted Quad Host DLL Request
ET MALWARE Cobalt Strike Malleable C2 JQuery Custom Profile M3
ET POLICY Possible External IP Lookup ipinfo.io

Sigma

Abused Debug Privilege by Arbitrary Parent Processes –
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rul
es/windows/process_creation/sysmon_abusing_debug_privilege.yml
Accessing WinAPI in PowerShell. Code Injection –
https://github.com/SigmaHQ/sigma/blob/1ff5e226ad8bed34916c16ccc77ba281ca3203ae/rul
es/windows/powershell/powershell_code_injection.yml
Bad Opsec Powershell Code Artifacts –
https://github.com/SigmaHQ/sigma/blob/5e35e387dd0dcdd564db7077da3470fbc070b975/rul
es/windows/powershell/powershell_bad_opsec_artifacts.yml
CobaltStrike Service Installations –
https://github.com/SigmaHQ/sigma/blob/b26eece20d4c19b202185a6dce86aff147e92d0f/rule
s/windows/builtin/win_cobaltstrike_service_installs.yml
CreateMiniDump Hacktool –
https://github.com/SigmaHQ/sigma/blob/1ff5e226ad8bed34916c16ccc77ba281ca3203ae/rul
es/windows/process_creation/win_hktl_createminidump.yml
Domain Trust Discovery –
https://github.com/SigmaHQ/sigma/blob/99b0d32cec5746c8f9a79ddbbeb53391cef326ba/rul
es/windows/process_creation/win_trust_discovery.yml

https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rules/windows/process_creation/sysmon_abusing_debug_privilege.yml
https://github.com/SigmaHQ/sigma/blob/1ff5e226ad8bed34916c16ccc77ba281ca3203ae/rules/windows/powershell/powershell_code_injection.yml
https://github.com/SigmaHQ/sigma/blob/5e35e387dd0dcdd564db7077da3470fbc070b975/rules/windows/powershell/powershell_bad_opsec_artifacts.yml
https://github.com/SigmaHQ/sigma/blob/b26eece20d4c19b202185a6dce86aff147e92d0f/rules/windows/builtin/win_cobaltstrike_service_installs.yml
https://github.com/SigmaHQ/sigma/blob/1ff5e226ad8bed34916c16ccc77ba281ca3203ae/rules/windows/process_creation/win_hktl_createminidump.yml
https://github.com/SigmaHQ/sigma/blob/99b0d32cec5746c8f9a79ddbbeb53391cef326ba/rules/windows/process_creation/win_trust_discovery.yml

21/29

Dridex Process Pattern –
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rul
es/windows/process_creation/win_malware_dridex.yml
Empire PowerShell Launch Parameters –
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rul
es/windows/process_creation/win_susp_powershell_empire_launch.yml
Execution from Suspicious Folder –
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rul
es/windows/process_creation/win_susp_execution_path.yml
Invocation of Active Directory Diagnostic Tool (ntdsutil.exe) –
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rul
es/windows/process_creation/win_susp_ntdsutil.yml
Local Accounts Discovery –
https://github.com/SigmaHQ/sigma/blob/ff0f1a0222b5100120ae3e43df18593f904c69c0/rules
/windows/process_creation/win_local_system_owner_account_discovery.yml
LSASS Memory Dump –
https://github.com/SigmaHQ/sigma/blob/b81839e3ce507df925d6e583e569e1ac3a3894ab/rul
es/windows/process_access/sysmon_lsass_memdump.yml
LSASS Memory Dump File Creation –
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rul
es/windows/file_event/sysmon_lsass_memory_dump_file_creation.yml
LSASS Memory Dumping –
https://github.com/SigmaHQ/sigma/blob/ff0f1a0222b5100120ae3e43df18593f904c69c0/rules
/windows/process_creation/win_lsass_dump.yml
Malicious Base64 Encoded PowerShell Keywords in Command Lines –
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rul
es/windows/process_creation/win_susp_powershell_hidden_b64_cmd.yml
Malicious PowerShell Commandlets –
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rul
es/windows/powershell/powershell_malicious_commandlets.yml
Mimikatz Detection LSASS Access –
https://github.com/SigmaHQ/sigma/blob/b81839e3ce507df925d6e583e569e1ac3a3894ab/rul
es/windows/deprecated/sysmon_mimikatz_detection_lsass.yml
Net.exe Execution –
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rul
es/windows/process_creation/win_susp_net_execution.yml
Non Interactive PowerShell –
https://github.com/SigmaHQ/sigma/blob/1425ede905514b7dbf3c457561aaf2ff27274724/rule
s/windows/process_creation/win_non_interactive_powershell.yml
PowerShell as a Service in Registry –
https://github.com/SigmaHQ/sigma/blob/a80c29a7c2e2e500a1a532db2a2a8bd69bd4a63d/r
ules/windows/registry_event/sysmon_powershell_as_service.yml

https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rules/windows/process_creation/win_malware_dridex.yml
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rules/windows/process_creation/win_susp_powershell_empire_launch.ym
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rules/windows/process_creation/win_susp_execution_path.yml
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rules/windows/process_creation/win_susp_ntdsutil.yml
https://github.com/SigmaHQ/sigma/blob/ff0f1a0222b5100120ae3e43df18593f904c69c0/rules/windows/process_creation/win_local_system_owner_account_discovery.yml
https://github.com/SigmaHQ/sigma/blob/b81839e3ce507df925d6e583e569e1ac3a3894ab/rules/windows/process_access/sysmon_lsass_memdump.yml
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rules/windows/file_event/sysmon_lsass_memory_dump_file_creation.yml
https://github.com/SigmaHQ/sigma/blob/ff0f1a0222b5100120ae3e43df18593f904c69c0/rules/windows/process_creation/win_lsass_dump.yml
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rules/windows/process_creation/win_susp_powershell_hidden_b64_cmd.yml
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rules/windows/powershell/powershell_malicious_commandlets.yml
https://github.com/SigmaHQ/sigma/blob/b81839e3ce507df925d6e583e569e1ac3a3894ab/rules/windows/deprecated/sysmon_mimikatz_detection_lsass.yml
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rules/windows/process_creation/win_susp_net_execution.yml
https://github.com/SigmaHQ/sigma/blob/1425ede905514b7dbf3c457561aaf2ff27274724/rules/windows/process_creation/win_non_interactive_powershell.yml
https://github.com/SigmaHQ/sigma/blob/a80c29a7c2e2e500a1a532db2a2a8bd69bd4a63d/rules/windows/registry_event/sysmon_powershell_as_service.yml

22/29

PowerShell Download from URL –
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rul
es/windows/process_creation/win_powershell_download.yml
PowerShell Execution –
https://github.com/SigmaHQ/sigma/blob/8aabb58eca06cc44ae21ae4d091793d8c5ca6a23/ru
les/windows/image_load/sysmon_powershell_execution_moduleload.yml
PowerShell Network Connections –
https://github.com/SigmaHQ/sigma/blob/c91eda766032b14eee60412a14875f91664e670f/rul
es/windows/network_connection/sysmon_powershell_network_connection.yml
PowerShell Scripts Installed as Services –
https://github.com/SigmaHQ/sigma/blob/a80c29a7c2e2e500a1a532db2a2a8bd69bd4a63d/r
ules/windows/builtin/win_powershell_script_installed_as_service.yml
Psexec Accepteula Condition –
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rul
es/windows/process_creation/win_susp_psexec_eula.yml
PsExec Tool Execution –
https://github.com/SigmaHQ/sigma/blob/ea430c8823803b9026a4e6e2ea7365dc5d96f385/rul
es/windows/other/win_tool_psexec.yml
Rare Service Installs –
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rul
es/windows/builtin/win_rare_service_installs.yml
Regsvr32 Anomaly –
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rul
es/windows/process_creation/win_susp_regsvr32_anomalies.yml
Rundll32 Internet Connection –
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rul
es/windows/network_connection/sysmon_rundll32_net_connections.yml
Suspicious AdFind Execution –
https://github.com/SigmaHQ/sigma/blob/30bee7204cc1b98a47635ed8e52f44fdf776c602/rule
s/windows/process_creation/win_susp_adfind.yml
Suspicious Encoded PowerShell Command Line –
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rul
es/windows/process_creation/win_susp_powershell_enc_cmd.yml
Suspicious In-Memory Module Execution –
https://github.com/SigmaHQ/sigma/blob/5cf7078fb3d61f2c15b01d9426f07f9197dd3db1/rules
/windows/process_access/sysmon_in_memory_assembly_execution.yml
Suspicious PowerShell Parent Process –
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rul
es/windows/process_creation/win_susp_powershell_parent_process.yml
Suspicious Remote Thread Created –
https://github.com/SigmaHQ/sigma/blob/e7d9f1b4279a235406b61cc9c16fde9d7ab5e3ba/rul
es/windows/create_remote_thread/sysmon_suspicious_remote_thread.yml

https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rules/windows/process_creation/win_powershell_download.yml
https://github.com/SigmaHQ/sigma/blob/8aabb58eca06cc44ae21ae4d091793d8c5ca6a23/rules/windows/image_load/sysmon_powershell_execution_moduleload.yml
https://github.com/SigmaHQ/sigma/blob/c91eda766032b14eee60412a14875f91664e670f/rules/windows/network_connection/sysmon_powershell_network_connection.yml
https://github.com/SigmaHQ/sigma/blob/a80c29a7c2e2e500a1a532db2a2a8bd69bd4a63d/rules/windows/builtin/win_powershell_script_installed_as_service.yml
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rules/windows/process_creation/win_susp_psexec_eula.yml
https://github.com/SigmaHQ/sigma/blob/ea430c8823803b9026a4e6e2ea7365dc5d96f385/rules/windows/other/win_tool_psexec.yml
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rules/windows/builtin/win_rare_service_installs.yml
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rules/windows/process_creation/win_susp_regsvr32_anomalies.yml
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rules/windows/network_connection/sysmon_rundll32_net_connections.yml
https://github.com/SigmaHQ/sigma/blob/30bee7204cc1b98a47635ed8e52f44fdf776c602/rules/windows/process_creation/win_susp_adfind.yml
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rules/windows/process_creation/win_susp_powershell_enc_cmd.yml
https://github.com/SigmaHQ/sigma/blob/5cf7078fb3d61f2c15b01d9426f07f9197dd3db1/rules/windows/process_access/sysmon_in_memory_assembly_execution.yml
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rules/windows/process_creation/win_susp_powershell_parent_process.yml
https://github.com/SigmaHQ/sigma/blob/e7d9f1b4279a235406b61cc9c16fde9d7ab5e3ba/rules/windows/create_remote_thread/sysmon_suspicious_remote_thread.yml

23/29

Suspicious Use of Procdump –
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rul
es/windows/process_creation/win_susp_procdump.yml
Suspicious Use of Procdump on LSASS –
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rul
es/windows/process_creation/win_susp_procdump_lsass.yml
Suspicious WMI Execution –
https://github.com/SigmaHQ/sigma/blob/5e701a2bcb353338854c8ab47de616fe7e0e56ff/rule
s/windows/process_creation/win_susp_wmi_execution.yml
Trickbot Malware Recon Activity –
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rul
es/windows/process_creation/win_malware_trickbot_recon_activity.yml
UNC2452 Process Creation Patterns –
https://github.com/SigmaHQ/sigma/blob/e7d9f1b4279a235406b61cc9c16fde9d7ab5e3ba/rul
es/windows/process_creation/win_apt_unc2452_cmds.yml
Usage of Sysinternals Tools –
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rul
es/windows/registry_event/sysmon_sysinternals_eula_accepted.yml
Whoami Execution –
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rul
es/windows/process_creation/win_susp_whoami.yml
Windows Network Enumeration –
https://github.com/SigmaHQ/sigma/blob/ff0f1a0222b5100120ae3e43df18593f904c69c0/rules
/windows/process_creation/win_net_enum.yml
Windows PowerShell Web Request –
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rul
es/windows/powershell/win_powershell_web_request.yml

Yara Rules

https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rules/windows/process_creation/win_susp_procdump.yml
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rules/windows/process_creation/win_susp_procdump_lsass.yml
https://github.com/SigmaHQ/sigma/blob/5e701a2bcb353338854c8ab47de616fe7e0e56ff/rules/windows/process_creation/win_susp_wmi_execution.yml
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rules/windows/process_creation/win_malware_trickbot_recon_activity.yml
https://github.com/SigmaHQ/sigma/blob/e7d9f1b4279a235406b61cc9c16fde9d7ab5e3ba/rules/windows/process_creation/win_apt_unc2452_cmds.yml
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rules/windows/registry_event/sysmon_sysinternals_eula_accepted.yml
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rules/windows/process_creation/win_susp_whoami.yml
https://github.com/SigmaHQ/sigma/blob/ff0f1a0222b5100120ae3e43df18593f904c69c0/rules/windows/process_creation/win_net_enum.yml
https://github.com/SigmaHQ/sigma/blob/08ca62cc8860f4660e945805d0dd615ce75258c1/rules/windows/powershell/win_powershell_web_request.yml

24/29

/*
YARA Rule Set
Author: The DFIR Report
Date: 2021-08-02
Identifier: 4641
Reference: https://thedfirreport.com
*/

/* Rule Set --- */

import "pe"

rule sig_4641_fQumH {
meta:
description = "4641 - file fQumH.exe"
author = "The DFIR Report"
reference = "https://thedfirreport.com"
date = "2021-08-02"
hash1 = "3420a0f6f0f0cc06b537dc1395638be0bffa89d55d47ef716408309e65027f31"
strings:
$s1 = "Usage: .system COMMAND" fullword ascii
$s2 = "Usage: .log FILENAME" fullword ascii
$s3 = "* If FILE begins with \"|\" then it is a command that generates the" fullword
ascii
$s4 = "AppPolicyGetProcessTerminationMethod" fullword ascii
$s5 = "Usage %s sub-command ?switches...?" fullword ascii
$s6 = "attach debugger to process %d and press any key to continue." fullword ascii
$s7 = "%s:%d: expected %d columns but found %d - extras ignored" fullword ascii
$s8 = "%s:%d: expected %d columns but found %d - filling the rest with NULL" fullword
ascii
$s9 = "Unknown option \"%s\" on \".dump\"" fullword ascii
$s10 = "REPLACE INTO temp.sqlite_parameters(key,value)VALUES(%Q,%s);" fullword ascii
$s11 = "error in %s %s%s%s: %s" fullword ascii
$s12 = "UPDATE temp.sqlite_master SET sql = sqlite_rename_column(sql, type, name, %Q,
%Q, %d, %Q, %d, 1) WHERE type IN ('trigger', 'view" ascii
$s13 = "BBBBBBBBBBBBBBBBBBBB" wide /* reversed goodware string 'BBBBBBBBBBBBBBBBBBBB'
*/
$s14 = "UPDATE temp.sqlite_master SET sql = sqlite_rename_column(sql, type, name, %Q,
%Q, %d, %Q, %d, 1) WHERE type IN ('trigger', 'view" ascii
$s15 = ");CREATE TEMP TABLE [_shell$self](op,cmd,ans);" fullword ascii
$s16 = "SqlExec" fullword ascii
$s17 = "* If neither --csv or --ascii are used, the input mode is derived" fullword
ascii
$s18 = "Where sub-commands are:" fullword ascii
$s19 = "max rootpage (%d) disagrees with header (%d)" fullword ascii
$s20 = "-- Query %d --------------------------------" fullword ascii
condition:
uint16(0) == 0x5a4d and filesize < 4000KB and
(pe.imphash() == "67f1f64a3db0d22bf48121a6cea1da22" or 8 of them)
}

rule sig_4641_62 {
meta:
description = "4641 - file 62.dll"
author = "The DFIR Report"

25/29

reference = "https://thedfirreport.com"
date = "2021-08-02"
hash1 = "8b9d605b826258e07e63687d1cefb078008e1a9c48c34bc131d7781b142c84ab"
strings:
$s1 = "Common causes completion include incomplete download and damaged media"
fullword ascii
$s2 = "An error occurred writing to the file" fullword ascii
$s3 = "asks should be performed?" fullword ascii
$s4 = "The waiting time for the end of the launch was exceeded for an unknown reason"
fullword ascii
$s5 = "Select the Start Menu folder in which you would like Setup to create the
programs shortcuts, then click Next. Which additional t" ascii
$s6 = "HcA<E3" fullword ascii /* Goodware String - occured 1 times */
$s7 = "Select the Start Menu folder in which you would like Setup to create the
programs shortcuts, then click Next. Which additional t" ascii
$s8 = "D$(" fullword ascii /* Goodware String - occured 1 times */
$s9 = "Please verify that the correct path and file name are given" fullword ascii
$s10 = "Critical error" fullword ascii
$s11 = "Please read this information carefully" fullword ascii
$s12 = "Unknown error occurred for time: " fullword ascii
$s13 = "E 3y4i" fullword ascii
$s14 = "D$tOuo2" fullword ascii
$s15 = "D$PH9D$8tXH" fullword ascii
$s16 = "E$hik7" fullword ascii
$s17 = "D$p]mjk" fullword ascii
$s18 = "B):0~\"Z" fullword ascii
$s19 = "Richo/" fullword ascii
$s20 = "D$xJij" fullword ascii
condition:
uint16(0) == 0x5a4d and filesize < 70KB and
(pe.imphash() == "42205b145650671fa4469a6321ccf8bf" and pe.exports("StartW") or 8 of
them)
}

rule sig_4641_tdrE934 {
meta:
description = "4641 - file tdrE934.exe"
author = "The DFIR Report"
reference = "https://thedfirreport.com"
date = "2021-08-02"
hash1 = "48f2e2a428ec58147a4ad7cc0f06b3cf7d2587ccd47bad2ea1382a8b9c20731c"
strings:
$s1 = "AppPolicyGetProcessTerminationMethod" fullword ascii
$s2 =
"D:\\1W7w3cZ63gF\\wFIFSV\\YFU1GTi1\\i5G3cr\\Wb2f\\Cvezk3Oz\\2Zi9ir\\S76RW\\RE5kLijcf.p
fullword ascii
$s3 = "https://sectigo.com/CPS0" fullword ascii
$s4 = "2http://crl.comodoca.com/AAACertificateServices.crl04" fullword ascii
$s5 = "?http://crl.usertrust.com/USERTrustRSACertificationAuthority.crl0v" fullword
ascii
$s6 = "3http://crt.usertrust.com/USERTrustRSAAddTrustCA.crt0%" fullword ascii
$s7 = "ntdll.dlH" fullword ascii
$s8 = "http://ocsp.sectigo.com0" fullword ascii
$s9 = "2http://crl.sectigo.com/SectigoRSACodeSigningCA.crl0s" fullword ascii
$s10 = "2http://crt.sectigo.com/SectigoRSACodeSigningCA.crt0#" fullword ascii

https://thedfirreport.com/cdn-cgi/l/email-protection

26/29

$s11 =
"tmnEt6XElyFyz2dg5EP4TMpAvGdGtork5EZcpw3eBwJQFABWlUZa5slcF6hqfGb2HgPed49gr2baBCLwRel8z
fullword ascii
$s12 = "" fullword ascii
$s13 = "operator co_await" fullword ascii
$s14 = "ZGetModuleHandle" fullword ascii
$s15 = "api-ms-win-appmodel-runtime-l1-1-2" fullword wide
$s16 = "RtlExitUserThrea`NtFlushInstruct" fullword ascii
$s17 = "UAWAVAUATVWSH" fullword ascii
$s18 = "AWAVAUATVWUSH" fullword ascii
$s19 = "AWAVVWSH" fullword ascii
$s20 = "UAWAVATVWSH" fullword ascii
condition:
uint16(0) == 0x5a4d and filesize < 2000KB and
(pe.imphash() == "4f1ec786c25f2d49502ba19119ebfef6" or 8 of them)
}

rule sig_4641_netscan {
meta:
description = "4641 - file netscan.exe"
author = "The DFIR Report"
reference = "https://thedfirreport.com"
date = "2021-08-02"
hash1 = "bb574434925e26514b0daf56b45163e4c32b5fc52a1484854b315f40fd8ff8d2"
strings:
$s1 = "netscan.exe" fullword ascii
$s2 = "TFMREMOTEPOWERSHELL" fullword wide
$s3 = "TFMREMOTEPOWERSHELLEDIT" fullword wide
$s4 = "TFMBASEDIALOGREMOTEEDIT" fullword wide
$s5 = "*http://crl4.digicert.com/assured-cs-g1.crl0L" fullword ascii
$s6 = "*http://crl3.digicert.com/assured-cs-g1.crl00" fullword ascii
$s7 = "TFMIGNOREADDRESS" fullword wide
$s8 = "TREMOTECOMMONFORM" fullword wide
$s9 = "TFMSTOPSCANDIALOG" fullword wide
$s10 = "TFMBASEDIALOGSHUTDOWN" fullword wide
$s11 = "TFMBASEDIALOG" fullword wide
$s12 = "TFMOFFLINEDIALOG" fullword wide
$s13 = "TFMLIVEDISPLAYLOG" fullword wide
$s14 = "TFMHOSTPROPS" fullword wide
$s15 = "GGG`BBB" fullword ascii /* reversed goodware string 'BBB`GGG' */
$s16 = "SoftPerfect Network Scanner" fullword wide
$s17 = "TUSERPROMPTFORM" fullword wide
$s18 = "TFMREMOTESSH" fullword wide
$s19 = "TFMREMOTEGROUPSEDIT" fullword wide
$s20 = "TFMREMOTEWMI" fullword wide
condition:
uint16(0) == 0x5a4d and filesize < 6000KB and
(pe.imphash() == "573e7039b3baff95751bded76795369e" and (
pe.exports("__dbk_fcall_wrapper") and pe.exports("dbkFCallWrapperAddr")) or 8 of
them)
}

rule sig_4641_tdr615 {
meta:
description = "4641 - file tdr615.exe"

https://thedfirreport.com/cdn-cgi/l/email-protection

27/29

author = "The DFIR Report"
reference = "https://thedfirreport.com"
date = "2021-08-02"
hash1 = "12761d7a186ff14dc55dd4f59c4e3582423928f74d8741e7ec9f761f44f369e5"
strings:
$s1 = "AppPolicyGetProcessTerminationMethod" fullword ascii
$s2 = "I:\\RoDcnyLYN\\k1GP\\ap0pivKfOF\\odudwtm30XMz\\UnWdqN\\01\\7aXg1kTkp.pdb"
fullword ascii
$s3 = "https://sectigo.com/CPS0" fullword ascii
$s4 = "2http://crl.comodoca.com/AAACertificateServices.crl04" fullword ascii
$s5 = "?http://crl.usertrust.com/USERTrustRSACertificationAuthority.crl0v" fullword
ascii
$s6 = "3http://crt.usertrust.com/USERTrustRSAAddTrustCA.crt0%" fullword ascii
$s7 = "http://ocsp.sectigo.com0" fullword ascii
$s8 = "2http://crl.sectigo.com/SectigoRSACodeSigningCA.crl0s" fullword ascii
$s9 = "2http://crt.sectigo.com/SectigoRSACodeSigningCA.crt0#" fullword ascii
$s10 = "" fullword ascii
$s11 = "operator co_await" fullword ascii
$s12 = "GetModuleHandleRNtUnmapViewOfSe" fullword ascii
$s13 = "+GetProcAddress" fullword ascii
$s14 = "api-ms-win-appmodel-runtime-l1-1-2" fullword wide
$s15 = "RtlExitUserThrebNtFlushInstruct" fullword ascii
$s16 = "Sectigo Limited1$0\"" fullword ascii
$s17 = "b<log10" fullword ascii
$s18 = "D*<W -" fullword ascii
$s19 = "WINDOWSPROJECT1" fullword wide
$s20 = "WindowsProject1" fullword wide
condition:
uint16(0) == 0x5a4d and filesize < 10000KB and
(pe.imphash() == "555560b7871e0ba802f2f6fbf05d9bfa" or 8 of them)
}

rule CS_DLL {
meta:
description = "62.dll"
author = "The DFIR Report"
reference = "https://thedfirreport.com"
date = "2021-07-07"
hash1 = "8b9d605b826258e07e63687d1cefb078008e1a9c48c34bc131d7781b142c84ab"
strings:
$s1 = "Common causes completion include incomplete download and damaged media"
fullword ascii
$s2 = "StartW" fullword ascii
$s4 = ".rdata$zzzdbg" fullword ascii
condition:
uint16(0) == 0x5a4d and filesize < 70KB and (pe.imphash() ==
"42205b145650671fa4469a6321ccf8bf")
or (all of them)
}

rule tdr615_exe {
meta:
description = "Cobalt Strike on beachhead: tdr615.exe"
author = "The DFIR Report"
reference = "https://thedfirreport.com"

https://thedfirreport.com/cdn-cgi/l/email-protection

28/29

date = "2021-07-07"
hash1 = "12761d7a186ff14dc55dd4f59c4e3582423928f74d8741e7ec9f761f44f369e5"
strings:
$a1 = "AppPolicyGetProcessTerminationMethod" fullword ascii
$a2 = "I:\\RoDcnyLYN\\k1GP\\ap0pivKfOF\\odudwtm30XMz\\UnWdqN\\01\\7aXg1kTkp.pdb"
fullword ascii
$b1 = "" fullword ascii
$b2 = "operator co_await" fullword ascii
$b3 = "GetModuleHandleRNtUnmapViewOfSe" fullword ascii
$b4 = "RtlExitUserThrebNtFlushInstruct" fullword ascii
$c1 = "Jersey City1" fullword ascii
$c2 = "Mariborska cesta 971" fullword ascii
condition:
uint16(0) == 0x5a4d and filesize < 10000KB and
any of ($a*) and 2 of ($b*) and any of ($c*)
}

MITRE

Phishing: Spearphishing Attachment – T1566.001
Signed Binary Proxy Execution: Regsvr32 – T1218.010
Impair Defenses: Disable or Modify Tools – T1562.001
Domain Trust Discovery – T1482
OS Credential Dumping: LSASS Memory – T1003.001
System Owner/User Discovery – T1033
Command and Scripting Interpreter: PowerShell – T1059.001
Data Staged: Local Data Staging – T1074.001
System Information Discovery – T1082
Account Discovery: Local Account – T1087.001
Account Discovery: Domain Account – T1087.002
OS Credential Dumping: NTDS – T1003.003
Windows Management Instrumentation – T1047
Browser Bookmark Discovery – T1217
Data Encrypted for Impact – T1486
Remote Services: SMB/Windows Admin Shares – T1021.002

MITRE Software

AdFind – S0552
BloodHound – S0521
Cobalt Strike – S0154
Systeminfo – S0096
Net – S0039
Nltest – S0359

https://thedfirreport.com/cdn-cgi/l/email-protection

29/29

Esentutl – S0404
PsExec – S0029
Cmd – S0106

References

TrickBot Malware Alert (AA21-076A), US CERT – https://us-cert.cisa.gov/ncas/alerts/aa21-
076a

Advisory: Trickbot, NCSC – https://www.ncsc.gov.uk/news/trickbot-advisory

Trickbot Still Alive and Well, The DFIR Report – https://thedfirreport.com/2021/01/11/trickbot-
still-alive-and-well/

Hunting for GetSystem in offensive security tools, RedCanary –
 https://redcanary.com/blog/getsystem-offsec/

TrickBot Banking Trojan, ThreatPost – https://threatpost.com/trickbot-banking-trojan-
module/167521/

Internal case #4641

https://us-cert.cisa.gov/ncas/alerts/aa21-076a
https://www.ncsc.gov.uk/news/trickbot-advisory
https://thedfirreport.com/2021/01/11/trickbot-still-alive-and-well/
https://redcanary.com/blog/getsystem-offsec/
https://threatpost.com/trickbot-banking-trojan-module/167521/

