
1/17

Juan Andrés Guerrero-Saade

MeteorExpress | Mysterious Wiper Paralyzes Iranian
Trains with Epic Troll

labs.sentinelone.com/meteorexpress-mysterious-wiper-paralyzes-iranian-trains-with-epic-troll/

Executive Summary

On July 9th, 2021 a wiper attack paralyzed the Iranian train system.
The attackers taunted the Iranian government as hacked displays instructed
passengers to direct their complaints to the phone number of the Iranian Supreme
Leader Khamenei’s office.
SentinelLabs researchers were able to reconstruct the majority of the attack chain,
which includes an interesting never-before-seen wiper.
OPSEC mistakes let us know that the attackers refer to this wiper as ‘Meteor’,
prompting us to name the campaign MeteorExpress.
At this time, we have not been able to tie this activity to a previously identified threat
group nor to additional attacks. However, the artifacts suggest that this wiper was
developed in the past three years and was designed for reuse.
To encourage further discovery of this new threat actor, we are providing indicators as
well as hunting YARA rules for fellow security researchers.

Introduction

https://labs.sentinelone.com/meteorexpress-mysterious-wiper-paralyzes-iranian-trains-with-epic-troll/

2/17

On July 9th, 2021 reports began to surface of a wiper attack disrupting service for the Iranian
railway system. The attack included epic level trolling as reports suggest that train schedule
displays cited “long delay[s] because of cyberattack” along with instructions to contact
‘64411’ –the number for the office of Supreme Leader Ali Khamenei.

Iran

International (Twitter)
Early reporting did not pick up much steam as it’s not uncommon for Iranian authorities to
vaguely point the finger towards cyber attacks only to retract the claims later. But it doesn’t
hurt to check.

We would like to acknowledge security researcher Anton Cherepanov who pointed out an
early analysis (Farsi) by an Iranian antivirus company. Despite a lack of specific indicators of
compromise, we were able to recover most of the attack components described in the post
along with additional components they had missed. Behind this outlandish tale of stopped
trains and glib trolls, we found the fingerprints of an unfamiliar attacker.

https://twitter.com/IranIntl_En/status/1413574416953401344
https://twitter.com/cherepanov74/status/1416643609131114497?s=20
https://threats.amnpardaz.com/malware/trojan-win32-breakwin/

3/17

The Attack Chain

MeteorExpress Attack Chain
Though early reports did not include technical specifics, we were able to reconstruct most of
the attack components relying on a combination of factors – early analysis by Padvish
security researchers as well as a recovered attacker artifact that included a longer list of
component names. The attackers abused Group Policy to distribute a cab file to conduct
their attack.

The overall toolkit consists of a combination of batch files orchestrating different components
dropped from RAR archives. The archives decompressed with an attacker supplied copy of
Rar.exe coupled with the password ‘hackemall’. The wiper components are split by
functionality: Meteor encrypts the filesystem based on an encrypted configuration, nti.exe
corrupts the MBR, and mssetup.exe locks the system.

While we were able to recover a surprising amount of files for a wiper attack, some have
eluded us. The MBR corrupter, nti.exe , is most notable among those missing
components as Padvish researchers noted that the sectors overwritten by this component
are the same as those overwritten by NotPetya. Until we are able to find this file, we can’t
corroborate their finding.

The following is a breakdown of the central components of this attack.

The Batch Files

4/17

The majority of the attack is orchestrated via a set of batch files nested alongside their
respective components and chained together in successive execution.

The following is a short description of the main functionality of these batch files.

setup.bat
setup.bat is the first component executed via group policy. Interestingly, it deletes a

scheduled task called ‘AnalyzeAll’ under the Windows Power Efficiency Diagnostics
directory. At this time, we haven’t been able to identify this task. This batch file is responsible
for copying the initial components via a CAB file in a network share within the Iranian
railways network. The CAB file is expanded and update.bat is executed with the parameters
‘hackemall’, relevant paths, and the Meteor wiper executable (env.exe).

5/17

envxp.bat
envxp.bat appears to be a simpler alternative version of setup.bat. As the name suggests,

perhaps it’s intended for Windows XP.

update.bat is a well written batch script that takes care of placing the remaining files and
directing the remainder of the execution flow by calling the successive batch scripts. It takes
three arguments: the password for the rar archives, the working directory, and the location of
the payload. If the first two parameters are empty, it’ll exit smoothly. In the absence of a
payload, the script attempts to run msapp.exe . That component is listed in the Padvish
security writeup but the execution flow via setup.bat points to env.exe as the intended
payload. We’ll delve into this component below.

update.bat’s makeshift mutex
The script checks for a hardcoded ‘lock_file’ under C:WindowsTemp__lock6423900.dat .
The file serves as a makeshift mutex to avoid double execution and could double as a
vaccine to avoid infection during development.

6/17

update.bat directing the execution flow to subsequent batch files
The batch file uses its own copy of WinRAR to decompress additional components from
three additional archives (programs.rar , bcd.rar , ms.rar) using the same Pokemon-
themed password, “hackemall” (Hack ’Em All). With each RAR archive, update.bat calls a
subsequent batch archive before deleting the respective archive. The developers are very
careful about cleaning up their components as soon as they’re used.

At this point the execution begins to bifurcate into other scripts. The first one is cache.bat ,
which focuses on clearing obstacles and preparing the ground for subsequent elements with
the use of PowerShell.

cache.bat disabling network adapters and checking for Kaspersky antivirus
cache.bat performs three main functions. First, it will disconnect the infected device from

the network. Then it checks to see if Kaspersky antivirus is installed on the machine, in which
case it’ll exit.

7/17

cache.bat creating Windows Defender exclusions for attack components
Finally, cache.bat will create Windows Defender exclusions for all of its components,
effectively clearing the way for a successful infection without impediments. This script proved
particularly valuable for us in rebuilding the entire attack chain as it lists most of the attack
components giving us a threat hunting shopping list of sorts. It’s worth noting that this is the
only batch script we’ve recovered that embeds PowerShell.

Subsequently, update.bat calls bcd.bat , which serves two functions: rendering the
machine unbootable and cleaning up event logs.

bcd.bat script overwrites boot.ini
In order to disable the machine’s ability to boot up, bcd.bat creates an alternative boot.ini
file that points the bootloader to impossibly high disk and partition numbers (10000000) and
overwrites the system’s copy of boot.ini . The script then uses the native bcdedit
command to list boot option identifiers and deletes each.

bcd.bat clears event logs

8/17

The attackers then use the native wevtutil command to clear Security, System, and
Application event logs. And finally, it abuses a legitimate SysInternals tool called Sync (the
equivalent of the native UNIX sync()) to manually flush the cache of filesystem data to
disk.

update.bat will then call msrun.bat , passing the Meteor wiper executable as a
parameter. That script will in turn set the stage for its execution.

msrun.bat preparing to execute the Meteor wiper
msrun.bat moves several components into place including a screen locker

(mssetup.exe) and the encrypted configuration for the Meteor wiper (msconf.conf). The
script also moves four additional files: mscap.bmp , mscap.jpg , mssetup.reg ,
msuser.reg . At the time of writing, we were unable to recover the .reg files and have no

indication of what role they play. The image files are the background images that will replace
the wallpaper on locked machines.

9/17

mscap.jpg lockscreen image
The same script then creates a scheduled task called mstask set to execute the Meteor
wiper at five minutes to midnight.

10/17

update.bat calls the wiper and screen locker
The final portion of update.bat checks whether mssetup.exe and the Meteor wiper are
running, taking appropriate actions like exiting the script or restarting the machine as
necessary.

A Wiper Triad

11/17

There’s a strange level of fragmentation to the overall toolkit. Batch files spawn other batch
files, different rar archives contain intermingled executables, and even the intended action is
separated into three payloads: Meteor wipes the filesystem, mssetup.exe locks the user
out, and nti.exe presumably corrupts the MBR. We have been able to identify two out of
three components and detail their inner workings below.

Internal naming convention visible

within the wiper binary
The main payload of this convoluted attack chain is an executable dropped under env.exe
or msapp.exe . Internally, the coders refer to it as ‘Meteor’. While this particular instance of
Meteor suffers from a crippling OPSEC failure (the inclusion of verbose debug strings
presumably intended for internal testing), it’s an externally configurable wiper with an
extensive set of features.

SHA256
2aa6e42cb33ec3c132ffce425a92dfdb5e29d8ac112631aec068c8a78314d49b

SHA1
86e4f73c384d84b6ecd5ad9d7658c1cc575b54df

MD5
04633656756847a79c7a2a02d62e5522

Compilation Timestamp
2021-01-17 18:59:25

First Submission
2021-07-12 06:01:11

Size
587KB

ITW names
env.exe / msapp.exe

The Meteor wiper is executed as a scheduled task, called mstask and set to run at five
minutes to midnight. It’s supplied with a single argument, an encrypted JSON configuration
file, msconf.conf
(68e95a3ccde3ea22b8eb8adcf0ad53c7993b2ea5316948e31d9eadd11b5151d7), that holds
values for corresponding keys contained in cleartext within the binary:

12/17

state_path
log_encryption_key
processes_to_kill
process_termination_timeout
log_server_port
locker_background_image_jpg_path
auto_logon_path
locker_background_image_bmp_path
state_encryption_key
log_server_ip
log_file_path
paths_to_wipe
wiping_stage_logger_interval
locker_installer_path
locker_exe_path
locker_registry_settings_files
locker_password_hash
users_password
cleanup_scheduled_task_name
self_scheduled_task_name
cleanup_script_path
is_alive_loop_interval

At its most basic functionality, the Meteor wiper takes a set of paths from the encrypted
config and walks these paths, wiping files. It also makes sure to delete shadow copies and
removes the machine from the domain to avoid means of quick remediation. The wiper
includes a wealth of additional functionality, most of which isn’t used in this particular attack,
including:

Changing passwords for all users
Disabling screensavers
Process termination based on a list of target processes
Installing a screen locker
Disabling recovery mode
Changing boot policy error handling
Creating scheduled tasks
Logging off local sessions
Changing lock screen images for different Windows versions (XP, 7, 10)
Creating processes and executing commands

13/17

Meteor wiper attempts two different methods to remove victim machine from Domain
The developers resort to multiple redundant methods to accomplish each of their objectives.
For example, Meteor will attempt to remove the machine from the domain via WinApi
functions. If that fails it will then attempt to do the same via an equivalent WMI command.

Taking a step back to evaluate the development of Meteor and what it might tell us about the
threat group involved, we must note that the composition of this binary is beset by
contradictory practices.

First, the code is rife with sanity checks, error checking, and redundancy in accomplishing its
goals. However, the operators clearly made a major mistake in compiling a binary with a
wealth of debug strings meant for internal testing. The latter is an indication that despite
whatever advanced practices the developers have in their arsenal, they lack a robust
deployment pipeline that ensures such mistakes do not happen. Moreover, note that this
sample was compiled six months before its deployment and the mistake was not caught.

Lock My PC 4

embedded within Meteor

14/17

Secondly, the code is a bizarre amalgam of custom code that wraps open-source
components (cpp-httplib v0.2) and practically ancient abused software (FSProLabs’ Lock My
PC 4). While that might suggest that the Meteor wiper was built to be disposable, or meant
for a single operation, that’s juxtaposed with an externally configurable design that allows
efficient reuse for different operations. Many of the available keys are not instantiated in this
operation, like the ability to kill specific processes. Additionally, that external configuration is
encrypted, presumably to limit analysis, but all of the configurable keys are hardcoded in
plaintext within the main binary.

Meteor overwrites boot.ini with the same template as bcd.bat
Taking a step back to look at the entire toolkit deployed in this operation, there are also some
overlaps between the functionality contained within Meteor and that of other components
executed beforehand that suggest some operational segmentation between developers of
different components and the operators themselves. Functionality carried out with batch
scripts is also embedded within Meteor such as disabling network adapters and corrupting
boot.ini. The wiper also includes a commercial screen locker and yet this functionality is
redundantly instantiated through a separate binary, mssetup.exe .

The externally configurable nature of the wiper entails that it wasn’t created for this particular
operation. However, at the time of writing, we’ve been unable to find other attacks or variants
of the Meteor wiper. For that reason, we are supplying a very broad (but well tested) hunting
YARA rule below.

‘mssetup.exe’ Screenlocker

mssetup.exe’s WinMain()

function
The MeteorExpress operators drop a standalone screenlocker. Despite a wealth of C++
template and exception handling code, mssetup.exe is simple. Most of its functionality is
pictured above. It blocks user input before creating a Window that fills the entire screen. If an
image is available at the hardcoded path C:tempmscap.bmp (dropped by the msrun.bat
script), then it’ll use this image to fill the screen. Otherwise, it’ll draw a black rectangle. It’ll

https://github.com/yhirose/cpp-httplib
https://fspro.net/lock-pc/

15/17

then disable the cursor and effectively lock the user out entirely. It’s worth noting that though
this binary was clearly developed by the same production pipeline, it doesn’t include any of
the verbose debug strings nor overt logging functionality.

SHA256
074bcc51b77d8e35b96ed444dc479b2878bf61bf7b07e4d7bd4cf136cc3c0dce

SHA1
e55cee8b49f80e957b52976b2da6379e329466a3

MD5
9a49102f53291a644bd14c8202d8fbe3

Compilation Timestamp
2021-01-17 18:59:28

First Submission
2021-07-12 06:04:15

Size
85KB

ITW names
mssetup.exe

A Missing MBR Corruptor

Finally, the Padvish security blog makes reference to an additional executable, nti.exe ,
that serves as an MBR corruptor. We’ve been unable to recover this at this time and suspect
that the incident responders were unable to recover it themselves as their analysis centers
on the corrupted MBRs rather than the binary.

Description of nti.exe Google translated from Farsi
One interesting claim in the Padvish blog is that the manner in which nti.exe corrupts the
MBR is by overwriting the same sectors as the infamous NotPetya. While one’s first instinct
might be to assume that the NotPetya operators were involved or that this is an attempt at a
false flag operation, it’s important to remember that NotPetya’s MBR corrupting scheme was
mostly cribbed from the original Petya used for criminal operations. An additional
inconsistency from the Padvish blog is their claim that update.bat runs nti.exe . While
they’re likely referring to a different version in their possession, our copy of update.bat makes
no overt reference to nti.exe.

https://www.malwaretech.com/2017/06/petya-ransomware-attack-whats-known.html

16/17

Conclusion

Conflict in cyberspace is overpopulated with increasingly brazen threat actors. Behind the
artistry of this epic troll lies an uncomfortable reality where a previously unknown threat actor
is willing to leverage wiper malware against public railways systems. The attacker is an
intermediate level player whose different operational components sharply oscillate from
clunky and rudimentary to slick and well-developed.

On the one hand, we have a new externally-configurable wiper packed full of interesting
capabilities, involving a mature development process, and redundant means to accomplish
their goals. Even their batch scripts include extensive error checking, a feature seldom
encountered with deployment scripts. Their attack is designed to cripple the victim’s systems,
leaving no recourse to simple remediation via domain administration or recovery of shadow
copies.

On the other hand, we see an adversary that doesn’t yet have a handle on their deployment
pipeline, using a sample of their malware that contains extensive debug features and burning
functionality irrelevant to this particular operation. There’s feature redundancy between
different attack components that suggests an uncoordinated division of responsibilities
across teams. And files are dispensed in a clunky, verbose, and disorganized manner
unbecoming of advanced attackers.

We cannot yet make out the shape of this adversary across the fog. Perhaps it’s an
unscrupulous mercenary group. Or the latent effects of external training coming to bear on a
region’s nascent operators. At this time, any form of attribution is pure speculation and
threatens to oversimplify a raging conflict between multiple countries with vested interests,
means, and motive.

Behind this epic troll/stunning provocation there’s a lot more to uncover in getting to know the
actor behind MeteorExpress. We should keep in mind that the attackers were already familiar
with the general setup of their target, features of the domain controller, and the target’s
choice of backup system (Veeam). That implies a reconnaissance phase that flew entirely
under the radar and a wealth of espionage tooling that we’ve yet to uncover.

Happy Hunting.

Indicators of Compromise

IoCs and Yara hunting rules available on SentinelLabs GitHub.

References

https://github.com/SentineLabs/meteor-express

17/17

https://www.timesofisrael.com/hack-causes-chaos-on-iran-trains-posts-supreme-leaders-
number-for-complaints/
https://www.voanews.com/middle-east/voa-news-iran/hackers-disrupt-irans-rail-service-fake-
delay-messages
https://www.reuters.com/world/middle-east/hackers-breach-iran-rail-network-disrupt-service-
2021-07-09/
https://twitter.com/cherepanov74/status/1416643609131114497?s=20
https://threats.amnpardaz.com/malware/trojan-win32-breakwin/
https://www.malwaretech.com/2017/06/petya-ransomware-attack-whats-known.html
https://www.reuters.com/article/us-emirates-tech-israel/uae-target-of-cyber-attacks-after-
israel-deal-official-says-idUSKBN28G0BW

https://www.timesofisrael.com/hack-causes-chaos-on-iran-trains-posts-supreme-leaders-number-for-complaints/
https://www.voanews.com/middle-east/voa-news-iran/hackers-disrupt-irans-rail-service-fake-delay-messages
https://www.reuters.com/world/middle-east/hackers-breach-iran-rail-network-disrupt-service-2021-07-09/
https://twitter.com/cherepanov74/status/1416643609131114497?s=20
https://threats.amnpardaz.com/malware/trojan-win32-breakwin/
https://www.malwaretech.com/2017/06/petya-ransomware-attack-whats-known.html
https://www.reuters.com/article/us-emirates-tech-israel/uae-target-of-cyber-attacks-after-israel-deal-official-says-idUSKBN28G0BW

