Magnitude Exploit Kit: Still Alive and Kicking

July 29, 2021

by Jan VojtéSekJuly 29, 202128 min read

If I could choose one computer program and erase it from existence, | would choose
Internet Explorer. Switching to a different browser would most likely save countless people
from getting hacked. Not to mention all the headaches that web developers get when they
are tasked with solving Internet Explorer compatibility issues. Unfortunately, | do not have
the power to make Internet Explorer disappear. But seeing its browser market share
continue to decline year after year at least gives me hope that one day it will be only a part
of history.

While the overall trend looks encouraging, there are still some countries where the decline
in Internet Explorer usage is lagging behind. An interesting example of this is South Korea,
where until recently, users often had no choice but to use this browser if they wanted to visit
a government or an e-commerce website. This was because of a law that seems very
bizarre from today’s point of view: these websites were required to use ActiveX controls and
were therefore only supported in Internet Explorer. Ironically, these controls were originally
meant to provide additional security. While this law was finally dismantled in December
2020, Internet Explorer still has a lot of momentum in South Korea today.

The attackers behind the Magnitude Exploit Kit (or Magnittdek as we like to call it) are
exploiting this momentum by running malicious ads that are currently shown only to South
Korean Internet Explorer users. The ads can mostly be found on adult websites, which
makes this an example of so-called adult malvertising. They contain code that exploits
known vulnerabilities in order to give the attackers control over the victim’s computer. All the
victim has to do is use a vulnerable version of Microsoft Windows and Internet Explorer,
navigate to a page that hosts one of these ads and they will get the Magniber ransomware
encrypting their computer.

1/20

https://decoded.avast.io/janvojtesek/magnitude-exploit-kit-still-alive-and-kicking/
https://decoded.avast.io/author/janvojtesek/
https://www.washingtonpost.com/world/asia_pacific/due-to-security-law-south-korea-is-stuck-with-internet-explorer-for-online-shopping/2013/11/03/ffd2528a-3eff-11e3-b028-de922d7a3f47_story.html
https://www.howtogeek.com/162282/what-activex-controls-are-and-why-theyre-dangerous/
https://blog.malwarebytes.com/threat-analysis/2017/10/magniber-ransomware-exclusively-for-south-koreans/

Daily Protected Users
1,600

1,400

1,000

800

600

v
-
@
el
=
-
@
&
¥]
@
2
o
o
(-
e
o
=
-1
£
E
=
=

400

The daily amount of Avast users protected from Magnitude. Note the drop after July 9th,
which is when the attacker’s account at one of the abused ad networks got terminated.

Overview

The Magnitude exploit kit, originally known as PopAds, has been around since at least
2012, which is an unusually long lifetime for an exploit kit. However, it's not the same exploit
kit today that it was nine years ago. Pretty much every part of Magnitude has changed
multiple times since then. The infrastructure has changed, so has the landing page, the
shellcode, the obfuscation, the payload, and most importantly, the exploits. Magnitude
currently exploits an Internet Explorer memory corruption vulnerability, CVE-2021-26411, to
get shellcode execution inside the renderer process and a Windows memory corruption
vulnerability, CVE-2020-0986, to subsequently elevate privileges. A fully functional exploit
for CVE-2021-26411 can be found on the Internet and Magnitude uses that public exploit
directly, just with some added obfuscation on top. According to the South Korean
cybersecurity company ENKI, this CVE was first used in a targeted attack against security
researchers, which Google’s Threat Analysis Group attributed to North Korea.

Exploiting CVE-2020-0986 is a bit less straightforward. This vulnerability was first used in a
zero-day exploit chain, discovered in-the-wild by Kaspersky researchers who named the
attack Operation PowerFall. To the best of our knowledge, this is the first time this
vulnerability is being exploited in-the-wild since that attack. Details about the vulnerability
were provided in blog posts by both Kaspersky and Project Zero. While both these writeups
contain chunks of the exploit code, it must have still been a lot of work to develop a fully

2/20

https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/daily_hits-1.png
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2021-26411
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2020-0986
https://enki.co.kr/blog/2021/02/04/ie_0day
https://blog.google/threat-analysis-group/new-campaign-targeting-security-researchers/
https://securelist.com/ie-and-windows-zero-day-operation-powerfall/97976/
https://securelist.com/operation-powerfall-cve-2020-0986-and-variants/98329/
https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2020/CVE-2020-0986.html

functional exploit. Since the exploit from Magnitude is extremely similar to the code from the
writeups, we believe that the attackers started from the code provided in the writeup and
then added all the missing pieces to get a working exploit.

Interestingly, when we first discovered Magnitude exploiting CVE-2020-0986, it was not
weaponized with any malicious payload. All it did after successful exploitation was ping its
C&C server with the Windows build number of the victim. At the time, we theorized that this
was just a testing version of the exploit and the attackers were trying to figure out which
builds of Windows they could exploit before they fully integrated it into the exploit kit. And
indeed, a week later we saw an improved version of the exploit and this time, it was
carrying the Magniber ransomware as the payload.

Until recently, our detections for Magnitude were protecting on average about a thousand
Avast users per day. That number dropped to roughly half after the compliance team of one
of the ad networks used by Magnitude kicked the attackers out of their platform. Currently,
all the protected users have a South Korean IP address, but just a few weeks back,
Taiwanese Internet users were also at risk. Historically, South Korea and Taiwan were not
the only countries attacked by Magnitude. Previous reports mention that Magnitude also
used to target Hong Kong, Singapore, the USA, and Malaysia, among others.

The Infrastructure

The Magnitude operators are currently buying popunder ads from multiple adult ad
networks. Unfortunately, these ad networks allow them to very precisely target the ads to
users who are likely to be vulnerable to the exploits they are using. They can only pay for
ads shown to South Korean Internet Explorer users who are running selected versions of
Microsoft Windows. This means that a large portion of users targeted by the ads is
vulnerable and that the attackers do not have to waste much money on buying ads for
users that they are unable to exploit. We reached out to the relevant ad networks to let
them know about the abuse of their platforms. One of them successfully terminated the
attacker’s account, which resulted in a clear drop in the number of Avast users that we had
to protect from Magnitude every day.

3/20

https://securelist.com/magnitude-exploit-kit-evolution/97436/
https://www.fireeye.com/blog/threat-research/2017/10/magniber-ransomware-infects-only-the-right-people.html

Home Campaigns

Custom

T
Custom

Many ad networks allow the advertisers to target their ads only to IE users running specific
versions of Windows.
When the malicious ad is shown to a victim, it redirects them through an intermediary URL
to a page that serves an exploit for CVE-2021-26411. An example of this redirect chain is
binlo[.]info -> fab9z1g6f74k.tooharm[.]xyz ->
6zal16cb90r370m4ulez.burytie[.]top . The first domain, binlo[.]info , is the one
that is visible to the ad network. When this domain is visited by someone not targeted by
the campaign, it just presents a legitimate-looking decoy ad. We believe that the purpose of
this decoy ad is to make the malvertising seem legitimate to the ad network. If someone
from the ad network were to verify the ad, they would only see the decoy and most likely
conclude that it is legitimate.

4/20

https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/ad_network.png

Your information

Skontiithea Tell us where should we contact
b you about Promotion?

09 * 56 - 10
= e = 2.0

YTERA'

PIGMENT
CORRECTING _)
SERUM CLAIM WITH A DISCOUNT OF 75%

One of the decoy ads used by Magnitude. Note that this is nothing but a decoy: there is no
reason to believe that SkinMedica would be in any way affiliated with Magnitude.

The other two domains (tooharm[.]xyz and burytie[.]top) are designed to be
extremely short-lived. In fact, the exploit kit rotates these domains every thirty minutes and
doesn’t reuse them in any way. This means that the exploit kit operators need to register at
least 96 domains every day! In addition to that, the subdomains

(fab9z1g6f74k.tooharm[.]xyz and 6zal6cb90r370m4ulez.burytie[.]top)are
uniquely generated per victim. This makes the exploit kit harder to track and protect against
(and more resilient against takedowns) because detection based on domain names is not
very effective.

The JavaScript exploit for CVE-2021-26411 is obfuscated with what appears to be a custom
obfuscator. The obfuscator is being updated semi-regularly, most likely in an attempt to
evade signature-based detection. The obfuscator is polymorphic, so each victim gets a
uniquely obfuscated exploit. Other than that, there are not many interesting things to say
about the obfuscation, it does the usual things like hiding string/numeric constants,
renaming function names, hiding function calls, and more.

5/20

https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/skinmedica.png

A snippet of the obfuscated JavaScript exploit for CVE-2021-26411
After deobfuscation, this exploit is an almost exact match to a public exploit for CVE-2021-
26411 that is freely available on the Internet. The only important change is in the shellcode,
where Magnitude obviously provides its own payload.

Shellcode

The shellcode is sometimes wrapped in a simple packer that uses redundant jmp
instructions for obfuscation. This obfuscates every function by randomizing the order of
instructions and then adding a jmp instruction between each two consecutive instructions
to preserve the original control flow. As with other parts of the shellcode, the order is
randomly generated on the fly, so each victim gets a unique copy of the shellcode.

6/20

https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/js_exploit.png

short loc_ 481624

loc_48161E:

loc_481624:

loc_401034

loc_481028:

loc_481834: ; CODE XREF: alloc_mem+Dtj

locret 481638: ; CODE XREF: alloc_memt16tj

alloc_mem
obfuscated by redundant jmp instructions. It allocates memory by invoking the
NtAllocateVirtualMemory syscall.
As shown in the above screenshot, the exploit kit prefers not to use standard Windows API
functions and instead often invokes system calls directly. The function above uses the
NtAllocateVirtualMemory syscall to allocate memory. However, note that this exact
implementation only works on Windows 10 under the WoW64 subsystem. On other
versions of Windows, the syscall numbers are different, so the syscall number 0x18 would
denote some other syscall. And this exact implementation also wouldn’t work on native 32-
bit Windows, because there it does not make sense to call the FastSysCall pointer at
FS:[0xCO] .

To get around these problems, this shellcode comes in several variants, each custom-built
for a specific version of Windows. Each variant then contains hardcoded syscall numbers
fitting the targeted version. Magnitude selects the correct shellcode variant based on the
User-Agent string of the victim. But sometimes, knowing the major release version and
bitness of Windows is not enough to deduce the correct syscall numbers. For instance, the
syscall number for NtOpenProcessToken on 64-bit Windows 10 differs between versions
1909 and 20H2 . In such cases, the shellcode obtains the victim’s exact

NtBuildNumber from KUSER_SHARED DATA and uses a hardcoded mapping table to
resolve that build number into the correct syscall number.

7/20

https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/ntallocatevirtualmemory.png

Currently, there are only three variants of the shellcode. One for Windows 10 64-bit, one for
Windows 7 64-bit, and one for Windows 7 32-bit. However, it is very much possible that
additional variants will get implemented in the future.

To facilitate frequent syscall invocation, the shellcode makes use of what we call syscall
templates. Below, you can see the syscall template it uses in the WoW64 Windows 10
variant. Every time the shellcode is about to invoke a syscall, it first customizes this
template for the syscall it intends to invoke by patching the syscall number (the immediate
in the first instruction) and the immediates from the retn instructions (which specify the
number of bytes to release from the stack on function return). Once the template is
customized, the shellcode can call it and it will invoke the desired syscall. Also, note the
branching based on the value at offset ©x254 of the Process Environment Block. This is
most likely the malware authors trying to check a field sometimes called

dwSystemCallMode to find out if the syscall should be invoked directly using int 0x2e
or through the FastSysCall transition.

mov 2z ; syscall number
MoV edx, large fs: ; PEB

Mo e el ; dwSystemCallMode
test
jnz

; FastSysCall

loc_483788: ; CODE XREF: syscall template+18tj
int
retn
yscall template endp

template from the WoW64 Windows 10 variant

Now that we know how the shellcode is obfuscated and how it invokes syscalls, let’s get to
what it actually does. Note that the shellcode expects to run within the IE’'s Enhanced
Protected Mode (EPM)_sandbox, so it is relatively limited in what it can do. However, the
EPM sandbox is not as strict as it could be, which means that the shellcode still has limited
filesystem access, public network access and can successfully call many API functions.
Magnitude wants to get around the restrictions imposed by the sandbox and so the
shellcode primarily functions as a preparation stage for the LPE exploit which is intended to
enable Magnitude to break out of the sandbox.

The first thing the shellcode does is that it obtains the integrity level of the current process.
There are two URLs embedded in the shellcode and the integrity level is used to determine
which one should be used. Both URLSs contain a subdomain that is generated uniquely per
victim and are protected so that only the intended victim will get any response from them. If

8/20

https://github.com/cseagle/sk3wldbg/blob/88109edc6d11994bf77baac16c38f0e0c4907127/teb32.h#L806
https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/syscall_template.png
https://www.blackhat.com/docs/asia-14/materials/Yason/WP-Asia-14-Yason-Diving-Into-IE10s-Enhanced-Protected-Mode-Sandbox.pdf

the integrity level is Low or Untrusted , the shellcode reaches out to the first URL and
downloads an encrypted LPE exploit from there. The exploit is then decrypted using a
simple xor-based cipher, mapped into executable memory, and executed.

On the other hand, if the integrity level is Medium or higher, the shellcode determines that
it is not running in a sandbox and it skips the LPE exploit. In such cases, it downloads the
final payload (currently Magniber ransomware) from the second URL, decrypts it, and then
starts searching for a process that it could inject this payload into. For the 64-bit Windows
shellcode variants, the target process needs to satisfy all of the following conditions:

e The target process name is not iexplore.exe

The integrity level of the target process is not Low or Untrusted

The integrity level of the target process is not higher than the integrity level of the
current process

The target process is not running in the WoW64 environment

(The target process can be opened with PROCESS_QUERY_INFORMATION)

Once a suitable target process is found, the shellcode jumps through the Heaven’s Gate
(only in the WoW64 variants) and injects the payload into the target process using the
following sequence of syscalls: NtOpenProcess -> NtCreateSection ->

NtMapViewOfSection -> NtCreateThreadEx -> NtGetContextThread ->

NtSetContextThread -> NtResumeThread . Note that in this execution chain, everything
happens purely in memory and this is why Magnitude is often described as a fileless exploit
kit. However, the current version is not entirely fileless because, as will be shown in the next
section, the LPE exploit drops a helper PE file to the filesystem.

he shellcode’s

heavens_gate

transition through the heaven’s gate

CVE-2020-0986

9/20

https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/heavens_gate.png

Magnitude escapes the EPM sandbox by exploiting CVE-2020-0986, a memory corruption
vulnerability in splwow64.exe . Since the vulnerable code is running with medium integrity
and a low integrity process can trigger it using Local Procedure Calls (LPC), this
vulnerability can be used to get from the EPM sandbox to medium integrity. CVE-2020-0986
and the ways to exploit it are already discussed in detail in blog posts by both Kaspersky.
and Project Zero. This section will therefore focus on Magnitude’s implementation of the
exploit, please refer to the other blog posts for further technical details about the
vulnerability.

The vulnerable code from gdi32.d11 can be seen below. It is a part of an LPC server and
it can be triggered by an LPC call, with both r8 and rdi pointing into a memory section
that is shared between the LPC client and the LPC server. This essentially gives the
attacker the ability to call memcpy inside the splwow64 process while having control over
all three arguments, which can be immediately converted into an arbitrary read/write
primitive. Arbitrary read is just a call to memcpy with the dest being inside the shared
memory and src being the target address. Conversely, arbitrary write is a call to memcpy
with the dest being the target address and the src being in the shared memory.

3
O

mov
movzx
movzx
add

movsxd
mov

call memcpy

code from gdi32.d1l . When it gets executed, both r8 and rdi are pointing into
attacker-controllable memory.
However, there is one tiny problem that makes exploitation a bit more difficult. As can be
seen in the disassembled code above, the count of the memcpy is obtained by adding
the dereferenced content of two word pointers, located close by the src address. This is
not a problem for (smaller) arbitrary writes, since the attacker can just plant the desired
count beforehand into the shared memory. But for arbitrary reads, the count is not
directly controllable by the attacker and it can be anywhere between © and Ox1FFFE ,
which could either crash splwow64 or perform a memcpy with either zero or a smaller
than desired count . To get around this, the attacker can perform arbitrary reads by
triggering the vulnerable code twice. The first time, the vulnerability can be used as an
arbitrary write to plant the correct count atthe necessary offset and the second time, it
can be used to actually read the desired memory content. This technique has some
downsides, such as that it cannot be used to read non-writable memory, but that is not an
issue for Magnitude.

word ptr [rdx+
word ptr [rdx+

ax he vulnerable

3 M i M

C>
a’
C>
8
c

3

10/20

https://securelist.com/operation-powerfall-cve-2020-0986-and-variants/98329/
https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2020/CVE-2020-0986.html
https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/memcpy2-1.png

The exploit starts out by creating a named mutex to make sure that there is only a single
instance of it running. Then, it calls CreateDCw to spawn the splwow64 process thatis to
be exploited and performs all the necessary preparations to enable sending LPC messages
to it later on. The exploit also contains an embedded 64-bit PE file, which it drops to
%TEMP% and executes from there. This PE file serves two different purposes and decides
which one to fulfill based on whether there is a command-line argument or not. The first
purpose is to gather various 64-bit pointers and feed them back to the main exploit module.
The second purpose is to serve as a loader for the final payload once the vulnerability has
been successfully exploited.

There are three pointers that are obtained by the dropped 64-bit PE file when it runs for the
first time. The first one is the address of fpbDocumentEvent , which stores a pointer to

DocumentEvent , protected using the EncodePointer function. This pointer is obtained
by scanning gdi32.d11 (or gdi32full.d1ll) for a static sequence of instructions that
set the value at this address. The second pointer is the actual address of DocumentEvent ,
as exported from winspool.drv and the third one is the pointer to system , exported
from msvcrt.dll . Once the 64-bit module has all three pointers, it drops them into a
temporary file and terminates itself.

lea ~dx, alocumentevent
mow L) ~d1 ; hModule

Mo

call p et OCAAress

mov "X, rax : he exploit
call cs: imp RtlEncodePointer

lea ~dx, aQueryspoolmode
mov rx, rdi

mowv cz:fpDocumentEvent, ra:

scans gdi32.d1l1 for the sequence of the four underlined instructions and extracts the
address of fpbDocumentEvent from the operands of the last instruction.

3 hHEdulE

11/20

https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/fpdocumentevent.png

ns1g

__ipte4)vle > v13 B& !v24((unsigned _ int64)vle, w25))

The exploit extracting the address of fpDocumentEvent from gdi32.dll
The main 32-bit module then reads the dropped file and uses the obtained values during
the actual exploitation, which can be characterized by the following sequence of actions:

1. The exploit leaks the value at the address of fpDocumentEvent inthe splwow64
process. The value is leaked by sending two LPC messages, using the arbitrary read
primitive described above.

2. The leaked value is an encoded pointer to DocumentEvent . Using this encoded
pointer and the actual, raw, pointer to DocumentEvent , the exploit cracks the secret
value that was used for pointer encoding. Read the Kaspersky blog_post for how this
can be done.

3. Using the obtained secret value, the exploit encodes the pointer to system , so that
calling the function DecodePointer on this newly encoded value inside splwow64
will yield the raw pointer to system .

4. Using the arbitrary write primitive, the exploit overwrites fpbDocumentEvent with the
encoded pointer to system .

5. The exploit triggers the vulnerable code one more time. Only this time, it is not
interested in any memory copying, so it sets the count for memcpy to zero. Instead,
it counts on the fact that splwow64 will try to decode and call the pointer at

fpbocumentEvent . Since this pointer was substituted in the previous step,
splwow64 will call system instead of DocumentEvent . The first argument to
DocumentEvent is read from the shared memory section, which means that it is
controllable by the attacker, who can therefore pass an arbitrary command to
system .

12/20

https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/scan_gdi.png
https://securelist.com/operation-powerfall-cve-2020-0986-and-variants/98329/

6. Finally, the exploit uses the arbitrary write primitive one last time and restores
fpDocumentEvent to its original value. This is an attempt to clean up after the
exploit, but splwow64 might still be unstable because a random pointer got
corrupted when the exploit planted the necessary count of the leak during the first
step.

nt, HIDWORD(encoded DocumentEvent), i low & 8x3F);

Ll
Wo3y

8)v53) & Bx3F) == i low && !i high)

(LOBYTE (raw_DocumentEvent[@]) ~ (unsigned _ int8)}v53) & &

while (__PAIRe4 (i _high, i_low) < @x3F);
The exploit cracking the secret used for encoding fpDocumentEvent
The command that Magnitude executes in the call to system looks like this:

icacls <dropped_64bit_PE> /Q /C /setintegritylevel Medium &&
<dropped_64bit_PE>

This elevates the dropped 64-bit PE file to medium integrity and executes it for the second
time. This time, it will not gather any pointers, but it will instead extract an embedded
payload from within itself and inject it into a suitable process. Currently, the injected payload
is the Magniber ransomware.

Magniber

Magniber emerged in 2017 when Magnitude started deploying it as a replacement for the
Cerber ransomware. Even though it is almost four years old, it still gets updated frequently
and so a lot has changed since it was last written about. The early versions featured server-
side AES key generation and contained constant fallback encryption keys in case the server
was unreachable. A decryptor that worked when encryption was performed using these
fallback keys was developed by the Korea Internet & Security Agency and published on No
More Ransom. The attackers responded to this by updating Magniber to generate the
encryption keys locally, but the custom PRNG based on GetTickCount was very weak, so
researchers from Kookmin University were able to develop a method to recover the
encrypted files. Unfortunately, Magniber got updated again, and it is currently using the
custom PRNG shown below. This function is used to generate a single random byte and it
is called 32 times per encrypted file (16 times to generate the AES-128 key and 16 times to
generate the V).

13/20

https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/crack_secret.png
https://blog.malwarebytes.com/threat-analysis/2017/10/magniber-ransomware-exclusively-for-south-koreans/
https://www.mdpi.com/2079-9292/10/1/16/
https://www.nomoreransom.org/
https://www.mdpi.com/2079-9292/10/1/16/

While this PRNG still looks very weak at first glance, we believe there is no reasonably
efficient method to attack it. The tick count is not the problem here: it is with extremely high
probability going to be constant throughout all iterations of the loop and its value could be
guessed by inspecting event logs and timestamps of the encrypted files. The problem lies in
the RtlRandomEx function, which gets called 640 times (2 * 10 * (16 + 16)) per each
encrypted file. This means that the function is likely going to get called millions of times
during encryption and leaking and tracking its internal state throughout all of these calls
unfortunately seems infeasible. At best, it might be possible to decrypt the first few
encrypted files. And even that wouldn’t be possible on newer CPUs and Windows versions,
because RtlRandomEx there internally uses the rdrand instruction, which arguably
makes this a somewhat decent PRNG for cryptography.

char _ fastcall prng(unsigned int cutput ceil)

RtlRandomEx
I:I 0

tick count
e
oy

he PRNG

++i;
accumulator += (unsigned int8)(ve + ve / 8x

while { i < 18u };

return accumulator ¥ output_ceil;

used by Magniber to generate encryption keys
The ransomware starts out by creating a named mutex and generating an identifier from the
victim’s computer name and volume serial number. Then, it enumerates in random order all
logical drives that are not DRIVE_NO_ROOT_DIR or DRIVE_CDROM and proceeds to
recursively traverse them to encrypt individual files. Some folders, such as sample music
or tor browser , are excluded from encryption, same as all hidden, system, readonly,
temporary, and virtual files. The full list of excluded folders can be found in our [oC
repository.

Just like many other ransomware strains, Magniber only encrypts files with certain
preselected extensions, such as .doc or .xls . Its configuration contains two sets of
extension hashes and each file gets encrypted only if the hash of its extension can be found
in one of these sets. The division into two sets was presumably done to assign priority to
the extensions. Magniber goes through the whole filesystem in two sweeps. In the first one,
it encrypts files with extensions from the higher-priority set. In the second sweep, it encrypts

14/20

https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/prng.png
https://github.com/avast/ioc/blob/master/Magnitude/excluded_folders.txt

the rest of the files with extensions from the lower-priority set. Interestingly, the higher-
priority set also contains nine extensions that were additionally obfuscated, unlike the rest
of the higher-priority set. It seems that the attackers were trying to hide these extensions
from reverse engineers. You can find these and the other extensions that Magniber
encrypts in our [0C repository.

To encrypt a file, Magniber first generates a random 128-bit AES key and IV using the
PRNG discussed above. For some bizarre reason, it only chooses to generate bytes from
the range 0x03 to OxFC , effectively reducing the size of the keyspace from 2566 to
250"6. Magniber then reads the input file by chunks of up to ©x100000 bytes, continuously
encrypting each chunk in CBC mode and writing it back to the input file. Once the whole file
is encrypted, Magniber also encrypts the AES key and IV using a public RSA key
embedded in the sample and appends the result to the encrypted file. Finally, Magniber
renames the file by appending a random-looking extension to its name.

However, there is a bug in the encryption process that puts some encrypted files into a
nonrecoverable state, where it is impossible to decrypt them, even for the attackers who
possess the corresponding private RSA key. This bug affects all files with a size that is a
multiple of 0x100000 (1 MiB). To understand this bug, let’s first investigate in more detail
how individual files get encrypted. Magniber splits the input file into chunks and treats the
last chunk differently. When the last chunk is encrypted, Magniber sets the Final
parameter of CryptEncrypt to TRUE , so CryptoAPI can add padding and finalize the
encryption. Only after the last chunk gets encrypted does Magniber append the RSA-
encrypted AES key to the file.

The bug lies in how Magniber determines that it is currently encrypting the last chunk: it
treats only chunks of size less than 0x100000 as the last chunks. But this does not work
for files the size of which is a multiple of 0x100000 , because even the last chunk of such
files contains exactly 0x100000 bytes. When Magniber is encrypting such files, it never
registers that it is encrypting the last chunk, which causes two problems. The first problem
is that it never calls CryptEncrypt with Final=TRUE , so the encrypted files end up with
invalid padding. The second, much bigger, problem is that Magniber also does not append
the RSA-encrypted AES key, because the trigger for appending it is the encryption of the
last chunk. This means that the AES key and IV used for the encryption of the file get lost
and there is no way to decrypt the file without them.

15/20

https://github.com/avast/ioc/blob/master/Magnitude/extensions.txt

ALL YOUR DOCUMENTS PHOTOS DATABASES AND OTHER IMPORTANT FILES HAVE BEEN ENCRYPTED!
Your files are NOT damaged! Your files are modified only. This modification is reversible.

The only 1 way to decrypt your files is to receive the private key and decryption program.

Any attempts to restore your files with the third party software will be fatal for your files!

To receive the private key and decryption program follow the instructions below:
1. Download "Tor Browser™ from https://www.torproject.org/ and install it.

2. In the “"Tor Browser™ open your personal page here:

http:// .miy3rwgrekklflxl.onion/

Note! This page is available via “"Tor Browser™ only.

Also you can use temporary addresses on your personal page without using "Tor Browser”™:

http:// .armkept.club/
http:// .sunflew.space/
http:// .askscut.site/

http:// .hearany.xyz/

Note! These are temporary addresses! They will be available for a limited amount of time!
Magniber’s ransom note
Magniber drops its ransom note into every folder where it encrypted at least one file. An
extra ransom note is also dropped into %PUBLIC% and opened up automatically in
notepad.exe after encryption. The ransom note contains several URLs leading the
victims to the payment page, which instructs them on how to pay the ransom in order to
obtain the decryptor. These URLs are unique per victim, with the subdomain representing
the victim identifier. Magniber also automatically opens up the payment page in the victim’s
browser and while doing so, exfiltrates further information about the ransomware
deployment through the URL, such as:

e The number of encrypted files

o The total size of all encrypted files

o The number of encrypted logical drives

e The number of files encountered (encrypted or not)
e The version of Windows

o The victim identifier

e The version of Magniber

16/20

https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/ransom.png

Finally, Magniber attempts to delete shadow copies using a UAC bypass. It writes a
command to delete them to HKCU\Software\Classes\mscfile\shell\open\command
and then executes CompMgmtLauncher.exe assuming that this will run the command with
elevated privileges. But since this particular UAC bypass method was fixed in Windows 10,
Magniber also contains another bypass method, which it uses exclusively on Windows 10
machines. This other method works similarly, writing the command to
HKCU\Software\Classes\ms-settings\shell\open\command , creating a key named
DelegateExecute there, and finally running ComputerDefaults.exe . Interestingly, the
command used is regsvr32.exe scrobj.dll /s /u /n /i:%PUBLIC%\readme.txt .
This is a technique often referred to as Squiblydoo anditis used to run a script dropped
into readme. txt , which is shown below.

db ‘ptlet>’, -_.1. -
The scriptlet dropped to readme. txt , designed to delete shadow copies

Conclusion

In this blog post, we examined in detail the current state of the Magnitude exploit kit. We
described how it exploits CVE-2021-26411 and CVE-2020-0986 to deploy ransomware to
unfortunate victims who browse the Internet using vulnerable builds of Internet Explorer. We
found Magnitude to be a mature exploit kit with a very robust infrastructure. It uses
thousands of fresh domains each month and its infection chain is composed of seven
stages (not even counting the multiple obfuscation layers). The infrastructure is also well
protected, which makes it very challenging for malware analysts to track and research the
exploit kit.

We also dug deep into the Magniber ransomware. We found a bug that results in some files
being encrypted in such a way that even the attackers can not possibly decrypt them. This
underscores the unfortunate fact that paying the ransom is never a guarantee to get the
ransomed files back. This is one of the reasons why we urge ransomware victims to try to
avoid paying the ransom.

Even though the attackers behind Magnitude appear to have a good grasp on exploit
development, obfuscation, and protection of malicious infrastructure, they seem to have no
idea what they are doing when it comes to generating random numbers for cryptographic
purposes. This resulted in previous versions of Magniber using flawed PRNGs, which
allowed malware researchers to develop decryptors that helped victims recover their
ransomed files. However, Magniber was always quick to improve their PRNG, which

17/20

https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/squibly.png
https://github.com/avast/ioc/blob/master/Magnitude/cncs.txt

unfortunately made the decryptors obsolete. The current version of Magniber is using a
PRNG that seems to be just secure enough, which makes us believe that there will be no
more decryptors in the future.

Indicators of Compromise (loC)

The full list of I0Cs is available at https://github.com/avast/ioc/tree/master/Magnitude.

Redirection page

SHA-256

2cc3ecel163db8b467915F76b187c07eleb@ca687c8flefb9d278b8daadbe590

3da50b3752560932d9d123ef813a3b6715d840fee38al18cc14d18d5dc369bce4

91dbcaa7833aef48fa67c55c26c9c142cb76c5530c0b2a3823c8f74cf52b73cc

db8cf1f5651a44b443a23bc239b4215dcfd0a935458f9d17cb511b2¢c33e0c3b9

ef15ee0511c2f9e29ecaf907f3ca®bb603f7ec57d320ba61b718c4078hb864824

CVE-2021-26411

SHA-256

0306b0Ob79a85711605bbbfac62ac7d040a556aa7ac9fe58d22ea2e00d51b521a

419da91566a7b1e5720792409301fa772d9abf24dfc3ddde582888112f12937a

6a348a5b13335e453ac34b0ed87e37a153c76a5be528a4ef4bh67e988aaf03533

4e80Tal124865445719e66d917defd9c8ed3bd436162e3fbc180al12584d372442

217f21bd9d5e92263e3a903cfceafebald4c3643eed223007a4deb630c4aee26

Shellcode
SHA-256 Note
5d0e45febd711f7564725ac84439b74d97b3f2bc27dbe5add5194f5cdbdbf623 Win10
WoW64
variant

351a2e8a4dc2e60d17208c9efb6ac87983853c83dae5543e22674a8fc5¢c05234 A
unpacked

4044008dad4fcldOeb4a0242b9632463a114b2129cedf9728d2d552e379¢c0O8037 Win7
WoW64
variant

18/20

https://github.com/avast/ioc/tree/master/Magnitude

1ea23d7456195e8674baa9bed2a2d94c7235d26a574adf7009c66d6ec9c994b3

A

Pointer scanner/loader 64-bit module

SHA-256

f8472b1385ed22897c99f413e7b87a05df8be®5b270fd57a9b7dd27bed9a79a6

19f57a213e7828e5e32adf169e51e0d165ddf25a6851a726268e10273a8df8b8

bOb709a620509154bc6d7b4e66d0a7daa7fd8ce23d1e104d80128ea3d0bb54e7

d22d616255b3cceffofbcaba98083f5fda8be951287fb1d1c207fd1887889b2f

unpacked
3de9d91962a043406b542523el11e58ach34363f2ebb1142d09adbab7861c8a63 Win7
native
variant
dfa093364bf809f3146c2b8a5925f937cc41a99552ea3caf77dac0f389caadda A
unpacked
e05a4b7b889cha453f02f2496chb713233099b385fel56cae9e89bc66d3c80a7f newer
Win7
WoW64
variant
ae930317faf12307d3fb9ab34fe977a5ef3256e62e58921cd4bf70edcO®5bf88a latest
Win7
WoW64
variant
CVE-2020-0986
SHA-256 Note
440be2c75d55939c90fc3ef2d49ceebh66e2c762fd4133¢c935667b3b2c6Tbh8551 pingback
payload
a5edae721568cdbd8d4818584ddc5a192e78c86345b4cdfb4dc2880b9634acab pingback
payload
1505368c8f4b7bf718ebd9a44395ctfal5657db97a0c13dcTf47eb8ctbh94e7528hb Magniber
payload
63525el19aad0aaelb95¢c3a357e€96¢c93775d541e9db7d4635af5363d4e858a345 Magniber
payload
31e99c8f68d340fd046a9f6c8984904331dc6a5aa4151608058ee3aabc7cc905 Magniber
payload

19/20

7c1fc5dfb970f856abf48cc65bdadf102452216ad8b9f1fe9c7a66650d91959d

Magniber

SHA-256

a2448b93d7c50801056052Th429d04bcT94a478a0a012191d60e595fed63eec4

525f9dbf9a74390fd22779a68f191b099ee9b4d2e8095c57ac1c932629a8af56

3ae5cd106e3130748ef61d317022d7b6ab98a0811088cfc478d49375¢c352bT04

dafl7fbf2bfcfaa2dafb6470a5da®054eb61lab5b44cd8cbhbf22f8819f3c432db

fcd8f8647a1d5e08446a392cc6c69090c00714d681c4fa258656e12cd4f80c2e

C&Cs

https://github.com/avast/ioc/blob/master/Magnitude/cncs.txt

Decoy ad domains

https://github.com/avast/ioc/blob/master/Magnitude/decoys.txt

Tagged asCVE-2020-0986, CVE-2021-26411, exploit kit, Magniber, Magnitude,
ransomware

20/20

https://github.com/avast/ioc/blob/master/Magnitude/cncs.txt
https://github.com/avast/ioc/blob/master/Magnitude/decoys.txt
https://decoded.avast.io/tag/cve-2020-0986/
https://decoded.avast.io/tag/cve-2021-26411/
https://decoded.avast.io/tag/exploit-kit/
https://decoded.avast.io/tag/magniber/
https://decoded.avast.io/tag/magnitude/
https://decoded.avast.io/tag/ransomware/

