Collecting and operationalizing threat data from the Mozi

botnet

% elastic.co/blog/collecting-and-operationalizing-threat-data-from-the-mozi-botnet

Ly v oearun

® +Add filter

(+]

° TEENLAND

2

ICELAND

I Mozi Network Activity
threat.indicator.geo.
asn

threat.indicator.geo.
organization_name

threat.indicator.geo.
region_name

threat.indicator.conf 75
idence

threat.indicator.desc Indicator that identifies a botnet

ription command&control server (C&C)
event.provider abuse_ch

threat.software.nam elf.mozi
e

threat.software.type botnet_cc

threat.threatfox.mal Mozi
ware_printable

NORYA'
% ESTDN? L]
DENMIBIK A jlloscon e
UNITED Mockea @
KINGDOM BELARUS
o B vany
e o
FRANCEL AUSTRAC iy e
R 2
ANDORRA Ly
.’m“ GEORGIA UZBEKISTAN

@SPAIN

TUNISIA

MOROCCO

GREECE TURKEY TAJIKISTAN

SYRIA

1s@ieL

AFGHANISTAN
PAKISTAN

ALGERIA

LIBYA EGYPT

July 27, 2021

LAYERS

Iil

73 Mozi Network Activity

8% Road map

Add layer

RUSSIA

MONGOLIA

© SOUTH

T
CHINA @ koga O *;g;ﬁ
Shg'lgha\
LT

NEPAL

Detecting and preventing malicious activity such as botnet attacks is a critical area of focus
for threat intel analysts, security operators, and threat hunters. Taking up the Mozi botnet as
a case study, this blog post demonstrates how to use open source tools, analytical
processes, and the Elastic Stack to perform analysis and enrichment of collected data
irrespective of the campaign. This will allow you to take the lessons and processes outlined
below to your organization and apply them to your specific use cases.

The Mozi botnet has been leveraging vulnerable Internet of Things (IoT) devices to launch
campaigns that can take advantage of the force multiplication provided by a botnet
(Distributed Denial of Service (DDoS), email spam, brute-force, password spraying, etc.).
Mozi was first reported by the research team at 360Netlab in December 2019 and has
continued to make up a large portion of loT network activity across the Internet-at-large.

As reported by 360Netlab, the botnet spreads via the use of weak and default remote access
passwords for targeted devices as well as through multiple public exploits. The Mozi botnet
communicates using a Distributed Hash Table (DHT) which records the contact information
for other nodes in the botnet. This is the same serverless mechanism used by file sharing

1/18

https://www.elastic.co/blog/collecting-and-operationalizing-threat-data-from-the-mozi-botnet
https://blog.netlab.360.com/mozi-another-botnet-using-dht/

peer-to-peer (P2P) clients. Once the malware has accessed a vulnerable device, it executes
the payload and subsequently joins the Mozi P2P network. The newly infected device listens
for commands from controller nodes and also attempts to infect other vulnerable devices.

Mozi targets multiple l1oT devices and systems, mainly focused on Small Office Home Office
(SOHO) networking devices, Internet-connected audio visual systems, and theoretically any
32-bit ARM device.

Collection

When performing data analysis, the more data that you have, the better. Analysis of malware

campaigns are no different. With a paid subscription to VirusTotal, you can collect huge
amounts of data for analysis, but we wanted an approach for independent researchers or
smaller organizations that may not have this premium service. To do that, we decided to
keep to our roots at Elastic and leverage open source datasets to avoid a paywall that could
prevent others from using our processes.

To begin, we started with a handful of Mozi samples collected from ThreatFox. ThreatFox is
an open source platform from Abuse.ch with the goal of sharing malware indicators with the
security research community.

Using cURL, we queried the ThreatFox API for the Mozi tag. This returned back JSON
documents with information about the malware sample, based on the tagged information.

curl -X POST https://threatfox-api.abuse.ch/api/v1/ -d '{ "query": "taginfo", "tag":
"Mozi", "limit": 1 }'

Code block 1 - cURL request to ThreatFox API
e -X POST -change the cURL HTTP method from GET (default) to POST as we're

going to be sending data to the ThreatFox API

https://threatfox-api.abuse.ch/api/vl/ - thisis the ThreatFox API endpoint
e« -d -thisis denoting that we’re going to be sending data
e query: taginfo -the type of query that we’re making, taginfo in our example

tag: Mozi - the tag that we’ll be searching for, “Mozi” in our example
limit: 1 - the number of results to return, 1 result in our example, but you can return up
to 1000 results

This returned the following information:

2/18

https://threatfox.abuse.ch/browse.php?search=tag%3Amozi
https://threatfox.abuse.ch/
https://abuse.ch/
https://threatfox-api.abuse.ch/api/v1/

"query_status": "ok",
"data": [
{
"id": "115772",
"ioc": "nnn.nnn.nnn.nnn:53822",
"threat_type": "botnet_cc",
"threat_type_desc": "Indicator that identifies a botnet command&control

server (C&C)",
"ioc_type": "ip:port",

"ioc_type_desc": "ip:port combination that is used for botnet
Command&control (C&C)",

"malware": "elf.mozi",

"malware_printable": "Mozi",

"malware_alias": null,

"malware_malpedia":
"https:\/\/malpedia.caad.fkie.fraunhofer.de\/details\/elf.mozi",

"confidence_level": 75,

"first_seen": "2021-06-15 08:22:52 UTC",

"last_seen": null,

"reference":
"https:\/\/bazaar.abuse.ch\/sample\/832fb4090879clbebe75bea939a9c5724dbf87898febd425f¢

"reporter": "abuse_ch",
"tags": [
"MOZi"

]
]

Code block 2 - Response from ThreatFox API

Now that we have the file hashes of several samples, we can download the samples using
the Malware Bazaar API. Malware Bazaar is another open source platform provided by
Abuse.ch. While ThreatFox is used to share contextual information about indicators, Malware
Bazaar allows for the actual collection of malware samples (among other capabilities).

Just like with ThreatFox, we’ll use cURL to interact with the Malware Bazaar API, but this
time to download the actual malware samples. Of note, the Malware Bazaar API can be used
to search for samples using a tag (“Mozi”, in our example), similar to how we used the
ThreatFox API. The difference is that the ThreatFox API returns network indicators that we’ll
use later on for data enrichment.

curl -X POST https://mb-api.abuse.ch/api/vl -d
"query=get_file&sha256_hash=832fb4090879clbebe75bea939a9c5724dbf87898febd425f94f7e03ee
-0 832fb4090879c1bebe75bea939a9c5724dbT87898febd4257f94f7e03ee687d3b. raw

Code block 3 - cURL request to Malware Bazaar API

e -X POST -change the cURL HTTP method from GET (default) to POST as we're
going to be sending data to the Malware Bazaar API
e https://mb-api.abuse.ch/api/vl - thisis the Malware Bazaar API endpoint

3/18

https://mb-api.abuse.ch/api/v1

e -d -thisis denoting that we're going to be sending data
e query: get_file -the type of query that we’re making, get file in our example
e sha256_hash -the SHA256 hash we're going to be collecting,
“832fb4090879c1bebe75bea939a9c5724dbf87898febd425f94f7e03ee687d3b” in
our example
-o - the file name we’re going to save the binary as

This will save a file locally named
832fb4090879c1bebe75bea939a9c5724dbf87898febd425f94f7e03ee687d3b.raw . We
want to make a raw file that we’ll not modify so that we always have an original sample for
archival purposes. This downloads the file as a Zip archive. The passphrase to extract the
archive is infected. This will create a local file named
832fb4090879c1bebe75bea939a9c5724dbf87898febd425f94f7e03ee687d3b.elf . Going
forward, we’ll use a shorter name for this file, truncated-87d3b.elf , for readability.

Unpacking

Now that we have a few samples to work with we can look at ripping out strings for further
analysis. Once in our analysis VM we took a stab at running Sysinternals Strings over our
sample:

$ strings truncated-87d3b.elf
ELF

*UPX!

ELF

$Bw

(GT

Code block 3 - Strings output from the packed Mozi sample

Right away we see that we have a UPX packed ELF binary from the “ELF” and “UPX!” text.
UPX is a compression tool for executable files, commonly known as “packing”. So the next
logical step is to decompress the ELF file with the UPX program. To do that, we’ll run upx
with the -d switch.

$ upx -d truncated-87d3b.elf
Ultimate Packer for eXecutables
Copyright (C) 1996 - 2020
UPX 3.96w Markus Oberhumer, Laszlo Molnar & John Reiser Jan 23rd 2020
File size Ratio Format Name

upx.exe : upx: truncated-87d3b.elf : CantUnpackException: p_info corrupted

Code block 4 - UPX output from corrupted Mozi sample

Another road-block: the p_info section of the file appears to be corrupted. p_info is the
sum of two sections from a file, p_blocksize and p_filesize . After a quick search for
the error message, we landed on a CUJOAI Anti-Unpacking_blog explaining the header

4/18

https://docs.microsoft.com/en-us/sysinternals/downloads/strings
https://upx.github.io/
https://cujo.com/upx-anti-unpacking-techniques-in-iot-malware/

corruptions commonly used in loT malware to disrupt automated analysis tools.

Using this information, we cracked open our binary in xxd, a HEX dumper, to see which
corruption we were dealing with. As described in the CUJOAI blog, the p_info blocks
represent the sum of the p_filesize blocks and the p_blocksize blocks. This section
begins with the 8 bytes after the uPX! text, and has been overwritten with zeros (the 8
bytes starting at 0x84).

$ xxd truncated-87d3b.elf

00000000: 7f45 4c46 0101 0161 OO0 OOOO OOEO OEOO .ELF...a........
00000010: 0200 2800 0100 00O 1057 0200 3400 0000 ..(...... W..4...
00000020: 0000 0000 0202 OOOO 3400 2000 0200 2800 4. ... (.
00000030: 0000 0000 0100 OOOO OOOO OOOO 0080 OO0''vvuuas
00000040: 0080 OOOO Oded 0100 Oded 0100 0500 00Ovvvuu..
00000O50: OO8O 00O 0100 OOEO bO7a OOEO bOfa 0660 Z.uuun.
00000060: bOfa 0600 OO OOOO OOOO OO 0600 OO'.vevuvu..
00000O70: OO8O 0OOEO 10f1 8f52 5550 5821 1cO9 Od17 RUPX! . ..
00000080: 0000 OOCOCO OOOO O0OOO OOOO OOOO 9400 0000'vvvvuunn
00000090: 5e00 OOOO 0300 0OBO f97f 454c 4601 7261 A......... ELF.ra
000000a0: 000f 0200 28dd 0001 0790 b681 0334 €07(........ 4. .
000000b0: ec28 04db 1302 Obfb 2000 031b be®a 0009 .(......

Code block 5 - HEX view of the corrupted Mozi sample

The CUJOAI blog states that if you manually update the values of the p_filesize blocks
and the p_blocksize blocks with the value of the p_info , this will fix the corruption
issue. Below we can see the p_info section in HEX, and we can use that to manually
update the p_filesize and p_blocksize sections, which will allow us to unpack the
binary (the 4 bytes starting at 0x1e110).

$ xxd truncated-87d3b.elf

0001e0cO: 1914 a614 c998 885d 39ec 4727 leac 2805 19.6"..(.

0001e0d0: e603 19f6 04d2 0127 52c9 9b60 00be 273e 'R..7..'>
0001e0e0: cOOf 5831 6000 OO0 0000 90ff EEEO OO ..X1
0001e0fO: 5550 5821 0000 OOOO 5550 5821 0d17 0308 UPX!....UPX!....
0001e100: 5199 6237 591c 321c dOO1 00O b8GO 0O Q.b7Y.2.........
0001el110: 7c2a 0400 5000 0011 8000 0OO0O [* . P

Code block 6 - p_info HEX data from the corrupted Mozi sample
First, let’'s open the file with Vim. As we can see, it is just a UPX file as denoted by the UPX!.

$ vim truncated-87d3b.elf
APELFAANANAQA@A@N@N@MN@MN@NAMN@MNBAQ (AN@NAN@N@N@NPWABA@AN@NANAMN@N@N@N@NBABA@N@AN@

A@ABAQ@(A@M@MENANANANAN@N@NENAN@NENE<80>N@NAN@<8O>N@NA@AMANAN@AMANANANEA@N@NANA<8O>N@N@

Code block 7 - Corrupted Mozi sample in Vim

5/18

https://linux.die.net/man/1/xxd

Using the xxd plugin for Vim, we can convert this to HEX so that we can make our
modifications. This is achieved by typing :%!xxd , which will show us the HEX output for the
file.

00000000: 7f45 4c46 0101 0161 0000 0OOO OEOO 0O .ELF...a........
00000010: 0200 2800 0100 0000 1057 0200 3400 0000 ..(...... W..4...
00000020: OOOO OOOO 0202 OOOO 3400 2000 0200 2800 4. ... (.
00000030: OO0 OOOO 0100 COOO GOOO GO O8O BGOOO
00000040: 0080 0000 0ded® 0100 0de® 0100 0500 OO0
00000050: 0O80 00O 0100 OOOO bO7a 0OOO befa 0600 A
00000060: bOfa 0600 OOOO OOOO OOOO OOOO 0600 OOOO0us
00000070: 0080 0000 10f1 8f52 5550 5821 1c9 0d17 RUPX!. ..

00000080: OOOO COOO COOO COOO OO OO 9460 BGOOO
00000090: 5e00 00O 0300 0000 f97f 454c 4601 7261 N......... ELF.ra
000000a0: OO0OF 0200 28dd 0001 0790 b681 0334 eed7(........ 4..
000000b0O: ec28 04db 1302 Obfb 2000 031b beda 0009 .(......

Code block 8 - Corrupted Mozi sample in Vim with XXD plugin
Next, we can just update bytes 0x84 - 0x8b (that we identified as having the zero’d out
p_filesize and p_blocksize) with the HEX value for p_info (7c2a 0400).

00000080: 0000 OO0 7c2a 0400 7c2a 0400 9400 0000|[*..[*......

Code block 9 - Updated p_filesize and p_blocksize HEX values
Let’s reset the file back using :%!xxd -r , save the file and exit Vim (:wq).

Finally, let’s try to unpack the file now that we’ve manually adjusted the HEX values.

$ upx -d truncated-87d3b.elf
Ultimate Packer for eXecutables
Copyright (C) 1996 - 2020

UPX 3.96 Markus Oberhumer, Laszlo Molnar & John Reiser Jan 23rd 2020
File size Ratio Format Name
273020 <- 123165 45.11% linux/arm truncated-87d3b.elf

Unpacked 1 file.

Code block 10 - Successfully unpacked Mozi sample
We now have successfully unpacked the file. Let’s check to see what kind of file this is now
by using the file command.

$ file truncated-87d3b.elf
truncated-87d3b.elf: ELF 32-bit LSB executable, ARM, version 1 (ARM), statically
linked, stripped

Code block 11 - File type identification of the Mozi sample
Now, we can again use the strings command to see if there is any useful information that we
can use (truncated for readability).

6/18

$ strings truncated-87d3b.elf

iptables -I OUTPUT -p udp --source-port %d -j ACCEPT
iptables -I PREROUTING -t nat -p udp --destination-port %d -j ACCEPT
iptables -I POSTROUTING -t nat -p udp --source-port %d -j ACCEPT
iptables -I INPUT -p udp --dport %d -j ACCEPT

iptables -I OUTPUT -p udp --sport %d -j ACCEPT

iptables -I PREROUTING -t nat -p udp --dport %d -j ACCEPT
iptables -I POSTROUTING -t nat -p udp --sport %d -j ACCEPT
0.0.0.0

[idp]

This node doesn't accept announces

v2s

dht.transmissionbt.com: 6881

router.bittorrent.com:6881

router.utorrent.com:6881

bttracker.debian.org:6881

nnn.nnn.nnn.nnn:6881

abc.abc.abc.abc:6881

XXX . XXX . XXX XXX 6881

YYY.YYY.yYy.yyy:6881

NfZ

00~Mn

g5=

N1%

Range: bytes=

User-Agent:

Code block 12 - Strings output from the unpacked Mozi sample

Running Strings, we can see, among other things, network indicators and changes to the
local firewall, iptables . There is a lot of great information in this file that we can now
review which can be used to search for infected devices.

Next, let’s enrich the ThreatFox data, store it in Elasticsearch, and visualize it with Kibana.

Storing threat data in the Elastic Stack

Looking at what we’ve collected so far, we have rich threat data provided by ThreatFox that
includes both network and file information. Additionally, we have actual malware samples
collected from Malware Bazaar. Finally, we have performed static file analysis on the
malware to identify additional indicators that could be of use.

For the next steps, we’re going to parse the data from ThreatFox and store that in the Elastic
Stack so that we can leverage Kibana to visualize data to identify clusters of activity.

Create the Ingest Node Pipeline

7/18

We're going to create an Ingest Node Pipeline to transform the data from ThreatFox into
enriched Elasticsearch data. When making a pipeline, it's useful to make a table to lay out
what we're going to do.

ThreatFox field ECS-style field

id event.id

ioc threat.indicator.ip and threat.indicator.port
threat_type threat.software.type

threat_type_desc threat.indicator.description

ioc_type threat.indicator.type. Set threat.indicator.type

to "ipv4-addr"

malware threat.software.name
malware_printable threat.threatfox.malware_printable
malware_alias threat.software.alias (if non-null)
malware_malpedia threat.software.reference
confidence_level threat.indicator.confidence
first_seen threat.indicator.first_seen
last_seen threat.indicator.last_seen
reference event.reference

reporter event.provider

tags tags

8/18

<enrichment> threat.indicator.geo. Enriched by our geoip

processor.
<parsed-sha256> file.hash.sha256 and related.hash
<copy related.ip

threat.indicator.ip>

Table 1 - Elasticsearch Ingest Node Pipeline for ThreatFox data
To create the pipeline, go to Kibana Stack Management -> Ingest Node Pipelines, then
click Create pipeline.

@ elastic s & ©

= Stack Management ' Ingest Node Pipelines

Ingest @

Ingest Node Pipelines Ingest N Ode Plpellhes @ Ingest Node Pipelines docs
Logstash Pipelines
Define a pipeline for preprocessing documents before indexing.
Data @)
@ @ Create pipeline
Index Management

Index Lifecycle Policies
Snapshot and Restore Name T Actions

Rollup Jobs apm
Transforms

Figure 1 - Creating Ingest Node Pipeline for ThreatFox data
Next, we’ll give our pipeline a name, optionally a version, and a description.

From this view you can manually add processors and configure them to your liking. To give
you a head start, we've provided the ThreatFox pipeline definition here you can paste in.

Click Import processors and paste the contents of this pipeline definition: pipeline.json.

When you click Load and overwrite, you'll have each processor listed there as we've
configured it. From here you can tweak it to your needs, or just scroll down and click Create
pipeline.

9/18

https://github.com/elastic/examples/blob/master/blog/mozin-about/ingest-node-pipeline.json
https://github.com/elastic/examples/blob/master/blog/mozin-about/ingest-node-pipeline.json

@ elastic

= Stack Management | Ingest Node Pipelines | Create pipeline

Ingest

Ingest Node Pipelines

Logstash Pipelines

Data @

Index Management
Index Lifecycle Policies
Snapshot and Restore
Rollup Jobs

Transforms
Cross-Cluster Replication
Remote Clusters

Alerts and Insights ®
Rules and Connectors
Reporting

Watcher

Security @
Users

Roles

API keys

Role Mappings

Kibana @

Index Patterns
Saved Objects
Tags

Search Sessions
Spaces

Advanced Settings

Stack @
8.0 Upgrade Assistant

Create pipeline

Name

A unique identifier for this pipeline.

X Add version number

Description

A description of what this pipeline does

Processors) Import processors

Use processors to transform data before indexing. Learn more.

T

T

Set Sets value of “event.ingested" to "{{{_ingest.timestamp}}}"

Set Sets value of "event.type" to "indicator"

Set Sets value of "event.kind" to “enrichment”

Set Sets value of "event.category" to "threat"

Dissect

Append

Convert

Rename

Rename

Extracts values from "ioc" that match a dissect pattern

Appends “{{{threat.indicator.ip}}" to the "related.ip" field

Converts "threat.indicator.port" to type "long"

Renames "id" to "event.id"

Renames “threat_type" to “threat.software.type"

© Create pipeline docs

Name

threatfox-enrichment

Description (optional)

Ingest pipeline for parsing and enriching ThreatFox data

Test pipeline:

Figure 2 - Ingest Node Processors for ThreatFox data

Alternatively, if you'd like to use a turnkey approach, the collection.sh script will allow you to
collect the ThreatFox Mozi data, create the Elasticsearch ingest pipeline, the indicators
Index, the Index Pattern, and send the data from ThreatFox directly into Elasticsearch.

$ git clone https://github.com/elastic/examples

$ cd examples/blog/mozin-about

$ sh collection.sh

Code block 13 - Using the Mozi sample collection script

Using the provided collection script, we can see the Threat Fox data is converted into the

Elastic Common Schema (ECS) and sent to Elasticsearch for analysis.

Add documents

10/18

https://github.com/elastic/examples/blob/master/blog/mozin-about/collection.sh

':_'i ~ Sparch

() + Add fliter
indicators® -~

L1 Saareh

Filber by type 0

W Aynilable fields

Pepular
1 Threpd indicalor g Sty rams
(-}

it _index

~So0re

B lype

#venl Category

#vanLid

0 avanLingauiem

rvani king

svant provider

want raleronoy

wvant iypa

fil.hash sha25E

related hash

i@ related.ip

B tags

fhread indicalorcordidence
threadindcalosdescription
7 thiest indicatos frul_saen

8 b dlod God kh

M ndicales gea ity nama

T e Lo D BT | Pl

Ahreat mdicaiorges
[F A

@ hneal i abor gen Recatkon

i thread imdicaborgeo.
o gani Talor_name

1 threatindicator.georegion, iso,_coda

i ihrealindicabor.goo fegion, name

threat indicator goo timezone
@ threat indicalor ip

Threalindicalor porl

Options

KoL B~ Last7 days

== = 104 hits Jun 24, 2021 @ 15:09:33.800 - Jul 1, 2021 @ 150833800 Auto

i 10 SR T T T OO -0 TR 000 Yo P 000

evenlLingesiad per 3 hours

Tiftes = Duscirmiadil

wwent kind: esrichssnt eveni provider: sbuse_ch

t2tibebBdeeB 14233/ event.typa: indicator

event kind: enrichesent event.provider: sbuse_ch

E26NBZ4LEdesB1d233 event. Type: 1ndicator

wwvent kind: enrichséent event provider: shuse_ch

H2EIET4LBOeEB1d233) EVenT. TYpE: 1ndlcator

event. kind: enrichement event.provider: asbuse.ch

EI81BT4nBdeeB1d233) ewvenr. typs: indicator

Jul 1, 2027 @ 14:58:19.888

event kind: enricheent event.provider: abuse_ch

62610340 BdecB1d233/ event.type: indicator

event. kind: enrichsent event.provider: abuse_ch

Jul 1, R 8 T4ISBIVBLBNY pene cotegoryc threat event.id: 115656 gvent.ingested:

Jul 1, 2821 @ 1405819099 event . category: threat event.id: 1156867 event.ingesbed: ol 1,

Save Dpan Share Inspect

Show dates Refresh

& Hide chart

ZUZT @ TAIREIT.ERE
wwvant , raference: hitps://bazasr . sbuse.ch/sseple /484 122 3cobdnbbaf b3 Gc P42 5790203 21597 adc ST 40351

file. heah, ahal5s: &bd127Tcaddabef Ehib0cldd I STl FI MO aled T 44076261 BT 40 Rdeaf1 d233

Podul ol 20200 T4:5BI09.891 gugne category: theeot event.id: V1SE6E svent.ingested: Sal 1, P31 8 L4;SEINVGEM
wwent, rafarance: https:) /Bacasr. sbuss ch)sssple 4B TTEIcabdnbia TabIESeRddd STORZ 632 T adedr 40T

file.hash.sha2$é: 4ba1233casdattefabIbIcidd $75e2alz fofolodf 409 ede1b2ebBdenBl 0233

THZT @ TAIEEINF.ERE
wvent, rafarence: hitps://Bazssr.abuse . ch/sasple /484 177 2cnbdabba T 4BIR02Rd4d STOR2 a3 H IT adedf 4207

file.hash sha2f: &ba1223caddabda abibchdd S0 a3 0 slcd TadOrE26 b Bdenl1 4233

doWL T, 2820 R 15EI19.B8T geenn category: TheeaT event.id! 115680 svent.fegesved: Jul 1, PEI1 @ 14358110 880

event, referance: hitps://bazsst.sbuse ch/sasple/ 4641 cabdable fABILGC RN 570200 FAFalodfidy !

file.hosh.sha28s: 204123 3caddatbe f 4030032 57562232 FofaBod f 4097 626102 40Bdee A1 4233

EWENT. cOtegary: threat event.id: 115678 event.imgesued: Bal 1, 2821 & T4:523:19.8B8
weenl, raforeanca: hitps:/ /Basasr abuge.ch/sasgle /AB4 137 2cabdabbaT4BI002 0447 57002 a3 2 10 Fadadi4d00

file. hash.sha2®4: &bad1223cetdatbe dbIbOcidd2 5758032 FOfabod fad9f a2 1b24bBdeel 4220

Fodul v, ZRZ @ T4ISBIVN.BET gveny category: threat event. id: 115671 event.ingested: Sul 1, B @ T4:58:1% 88T

event. reference: https://bacssr sbuse.chssasple/And1EFicabdabonfbibacaddd ATO02ad2 fofalcaraanf

6IEBTALBAeATdIN) wwenL. typa: indicatar

Figure 3 - ThreatFox data in Kibana

Analysis

Now that we’ve collected our samples, enriched them, and stored them in Elasticsearch, we
can use Kibana to visualize this data to identify clusters of activity, make different
observations, and set up different pivots for new research.

As a few quick examples, we can identify some ports that are used and countries that are
included in the dataset.

Let’s start with identifying high-density network ports. Make a Lens visualization in Kibana by
clicking on Visualization Library — Create visualization — Lens. We can make a simple
donut chart to highlight that the threat.indicator.port of 6000 makes up over 10% of

11/18

the network ports observed. This could lead us to explore other network traffic that is using
port 6000 to identify other potentially malicious activity.

@ elastic

@) v Search

® +Add filter

indicators*
Q port
Field filters 0

Vv Available fields ©

threat.indicator.port

> Empty fields @

> Metafields

Figure 4 - Port layout for Mozi network traffic

= . Visualize Library = Create

6000
10.58%

6. 096% —

s
)

_—

2000
Vere

KQL v Last7 days

A g\l

2800

52000 4.81%

S600p 4819

i,

%,G8'€ 000VS

o 5 O
Download as CSV
Show dates G Refresh
v
X

indicators*

Slice by

@ threat.indicator.port

© Drop a field or click to add

Size by

Count of records X

¥/ Reset visualization

Of note, port © and 4000 are also observed and are interesting. Ports 6000 , 4000 , nor
0 are overly common on the Internet-at-large and could be used to identify other
compromised hosts. It should be noted that while transient network indicators like IP and port
are useful, they should not be used as the sole source to identify malicious activity
irrespective of the intrusion set being investigated.

Next, we can use a Kibana Maps visualization to identify geographic clusters of activities,
and include associated context such as indicator confidence, provider, and type.

12/18

& elastic

= - Maps ' Create
[v Search
® +Add filter

(]

@ EENLAND

/'

2

7T Mozi Network Activity

threat.indicator.geo.
asn

threat.indicator.geo.
organization_name

threat.indicator.geo.
region_name

threat.indicator.conf
idence

threat.indicator.desc
ription

event.provider

threat.software.nam
e

75

Indicator that identifies a botnet
command&control server (C&C)

abuse_ch

elf.mozi

e & O
Map settings Inspect Full screen) Save
Show dates C Refresh
LAYERS =

71 Mozi Network Activity

g8 Road map

Add layer

threat.software.type botnet_cc
ICELAND
threat.threatfox.mal Mozi RUSSIA
ware_printable
NOR\@'-
O ESTDNQ o
LATVIA Moscow) @
UNITED DENMIBK .MocKBa e ®
KINGDOM BELARUS
o ERMANY
(0] uKQAlNE
FRANCEL AVSTRIA- 0 ik KAZAKHSTAN MONGOLIA
R e
ANDORRA LY OQA
Q@ GEORGIA UZBEKISTAN
SPAIN GREECE TURKEY
[TAJIKISTAN . P
KORBA *x 09
TUNISIA ALY [RaN AFGHANISTAN CHINA @ Et
MOROCCO 1s@leL Shahghai
PAKISTAN =0
NEPAL
ALGERIA e cever T
ARABIA QATAR BANGLADESH TAVAN
INDIA
MAURITANIA OMAN Mlﬁb’ LAGS
NIGER Q@
SEECAT Lt CHAD /| g ooy ERITREA | YEMEN °
@ VIETNAM
IVORY. NIGERIA/ < CENTRAL ETHIOPIA "
COAST AFRICAN SOMAS LANKA

REPUBLIC

RRIINET

Figure 5 - Geographic data from Mozi command & control infrastructure

Similar to the commentary above on IP and ports, geographic observations should not be the
sole source used to take action. These are simply indicators for observed samples and
require organizational-centric analysis to ascertain their meaning as it relates to the specific

network.

This is useful information we can make the following analytical assertions based on our

sampling:

Mozi botnet is currently active and maintaining steady infection rates

Port 6000 is a dominant port used for command & control

At least 24 countries impacted suggests global threat with no specific targeting
Clusters of specific ASNs in Bulgaria and India stand out with highest volumes

As the analysis process starts to flow, it ends up providing additional avenues for research.
One example an analyst may pursue is a propagation mechanism through the use of HTTP

fingerprinting.

Exploring the propagation mechanism

13/18

In the same manner as criminal fingerprints are tracked and logged in a database, a similar
technique can be applied to publicly facing network infrastructure. An HTTP request can be

sent to a webserver and the HTTP response that is returned can be used to identify possible

web applications hosted on the server; even the ordering of the fields in the HTTP response
can be used as an identifier.

One thing we learned about Mozi and how it contributes to its spreading power is that each
compromised device contributes to the infection of future victims. The compromised device
starts an HTTP server that hosts a Mozi payload on a random TCP port. Knowing this
information, we can collect content from an infected system to generate a fingerprint using
cURL.

curl -I nnn.nnn.nnn.nnn:53822
HTTP/1.1 200 OK

Server: nginx

Content-Length: 132876
Connection: close
Content-Type: application/zip

Code block 14 - HTTP response from a compromised device
Based on the observed response back, we can pull back some interesting information such
as:

o The use of an NGINX web server
e No HTTP Date Header provided
e The size of the file returned is close to 133 kilobytes

With this small amount of data, we can pivot to different search engines that store response
data from these kinds of devices all over the world. By leveraging tools like Shodan, we can
perform a search using the information obtained in the HTTP response. We’'ll wildcard the
Content-Length but use the same order for all of the HTTP response elements:

HTTP/1.1 200 OK Server: nginx Content-Length: * Connection: close Content-Type:
application/zip

Code block 15 - HTTP header for Mozi propagation
We can see a number of hits where this same response was captured on other devices and
start to pinpoint additional machines. Below are a few examples from a Shodan search:

14/18

https://www.shodan.io/

II‘I I1I l‘ll H Eﬂ

HTTP/1.1 200 OK
Server: nginx
Content-Length: 137480

*. Korea
Connection: close

Republic
of, Cheongju-si Content-Type: application/zip

B = m mm [/

HTTP/1.1 200 OK
Server: nginx
Content-Length: 137480

*. Korea
Connection: close

Republic
of, Pohang Content-Type: application/zip

_ B N Sp NP4

HTTP/1.1 200 OK
Server: nginx
Content-Length: 137480

*. Korea
Connection: close

Republic
of, Seoul Content-Type: application/zip

Figure 6 - Additional impacted devices
Other search examples over response data could be used as well such as the actual bytes of
the malicious Mozi file that was returned in the response.

15/18

Mitigation

The Mozi botnet propagates through the abuse of default or weak remote access passwords,
exploits and outdated software versions. To defend devices from exploitation, we
recommend:

e Changing the device default remote access passphrases

o Updating devices to the latest firmware and software version supported by the vendor
o Segmenting loT devices from the rest of your internal network

* Not making loT devices accessible from the public Internet

Detection logic

Using YARA, we can write a signature for the corrupted UPX header. Similar to rules that
look for specific types of PowerShell obfuscation, the obfuscation mechanism itself can
occasionally be a better indicator of maliciousness than attempting to signature the
underlying activity. It is extremely important to note that zeroing out part of the header
sections was the technique that we observed with our samples. There are a litany of other
obfuscation and anti-analysis techniques that could be used with other samples. MITRE
ATT&CK® describes additional subtechniques for the Obfuscated Files or Information
technique from the Defense Evasion tactic.As noted above, the observed anti-analysis
technique used by the analyzed Mozi samples consists solely of zeroing out the 8 bytes after
the “UPX!” magic bytes, and the 4 bytes before that are always zero, so let's use a YARA
signature derived from the work by Lars Wallenborn (expanded for readability).

rule Mozi_Obfuscation_Technique

{

meta:
author = "Elastic Security, Lars Wallenborn (@larsborn)"
description = "Detects obfuscation technique used by Mozi botnet."
strings:
$a = { 55 50 58 21
[4]
00 00 00 00
00 00 00 00
00 00 00 00 }
condition:
all of them

}

Code block 16 - YARA signature detecting Mozi obfuscation
e 55 50 58 21 - identifies the UPX magic bytes
e [4] -offsetby4 bytes, the 1 1size, 1 _version & 1 _format
e 00 00 00 00 - identifies the program header ID
e 00 00 00 00 -identifies the zero’'d out p_filesize
e 00 00 00 00 - identifies the zero’d out p_blocksize

16/18

https://virustotal.github.io/yara/
https://attack.mitre.org/techniques/T1027/
https://attack.mitre.org/tactics/TA0005
https://blag.nullteilerfrei.de/2019/12/26/upx-packed-elf-binaries-of-the-peer-to-peer-botnet-family-mozi/

e condition -requires that all of the above strings exist for a positive YARA signature
match

The above YARA signature can be used to identify ELF files that are packed with UPX and
have the header ID, p_filesize ,and p_blocksize elements zero’d out. This can go a
long way in identifying obfuscation techniques in addition to Mozi samples. In our testing, we
used this YARA signature with a 94.6% efficiency for detecting Mozi samples.

Summary

The Mozi botnet has been observed targeting vulnerable Internet of Things (IoT) devices to
launch seemingly non-targeted campaigns that can take advantage of the force multiplication
provided by a botnet. Mozi has been in operation since at least December 2019.

We covered techniques to collect, ingest, and analyze samples from the Mozi botnet. These
methodologies can also be leveraged to enhance and enable analytical processes for other
data samples.

Additional resources

» Blog artifacts and scripts, Elastic:
https://github.com/elastic/examples/tree/master/blog/mozin-about

o ThreatFox Indicator of Compromise Database, Abuse.ch:
https://threatfox.abuse.ch/browse

o UPX Anti-Unpacking Techniques in loT Malware, CUJOAI: https://cujo.com/upx-anti-
unpacking-techniques-in-iot-malware

e Corrupted UPX Packed ELF Repair, vcodispot.com: https://vcodispot.com/corrupted-
upx-packed-elf-repair

o UPX PACKED ELF BINARIES OF THE PEER-TO-PEER BOTNET FAMILY MOZI, Lars
Wallenborn: https://blag.nullteilerfrei.de/2019/12/26/upx-packed-elf-binaries-of-the-
peer-to-peer-botnet-family-mozi

* Mozi, Another Botnet Using DHT, 360 Netlab: https://blog.netlab.360.com/mozi-
another-botnet-using-dht

¢ Mozi Botnet Accounts for Majority of loT Traffic, Tara Seals:
https://threatpost.com/mozi-botnet-majority-iot-traffic/159337

* New Mozi P2P Botnet Takes Over Netgear, D-Link, Huawei Routers, Sergiu Gatlan:
https://www.bleepingcomputer.com/news/security/new-mozi-p2p-botnet-takes-over-
netgear-d-link-huawei-routers

o Kibana Maps, Elastic: https://www.elastic.co/guide/en/kibana/current/maps.html

o Kibana Lens, Elastic: https://www.elastic.co/guide/en/kibana/current/lens.html

17/18

https://github.com/elastic/examples/tree/master/blog/mozin-about
https://threatfox.abuse.ch/browse
https://cujo.com/upx-anti-unpacking-techniques-in-iot-malware
https://vcodispot.com/corrupted-upx-packed-elf-repair
https://blag.nullteilerfrei.de/2019/12/26/upx-packed-elf-binaries-of-the-peer-to-peer-botnet-family-mozi
https://blog.netlab.360.com/mozi-another-botnet-using-dht
https://threatpost.com/mozi-botnet-majority-iot-traffic/159337
https://www.bleepingcomputer.com/news/security/new-mozi-p2p-botnet-takes-over-netgear-d-link-huawei-routers
https://www.elastic.co/guide/en/kibana/current/maps.html
https://www.elastic.co/guide/en/kibana/current/lens.html

We're hiring
Work for a global, distributed team where finding someone like you is just a Zoom
meeting away. Flexible work with impact? Development opportunities from the start?

18/18

