
1/18

July 27, 2021

Collecting and operationalizing threat data from the Mozi
botnet

elastic.co/blog/collecting-and-operationalizing-threat-data-from-the-mozi-botnet

Detecting and preventing malicious activity such as botnet attacks is a critical area of focus
for threat intel analysts, security operators, and threat hunters. Taking up the Mozi botnet as
a case study, this blog post demonstrates how to use open source tools, analytical
processes, and the Elastic Stack to perform analysis and enrichment of collected data
irrespective of the campaign. This will allow you to take the lessons and processes outlined
below to your organization and apply them to your specific use cases.

The Mozi botnet has been leveraging vulnerable Internet of Things (IoT) devices to launch
campaigns that can take advantage of the force multiplication provided by a botnet
(Distributed Denial of Service (DDoS), email spam, brute-force, password spraying, etc.).
Mozi was first reported by the research team at 360Netlab in December 2019 and has
continued to make up a large portion of IoT network activity across the Internet-at-large.

As reported by 360Netlab, the botnet spreads via the use of weak and default remote access
passwords for targeted devices as well as through multiple public exploits. The Mozi botnet
communicates using a Distributed Hash Table (DHT) which records the contact information
for other nodes in the botnet. This is the same serverless mechanism used by file sharing

https://www.elastic.co/blog/collecting-and-operationalizing-threat-data-from-the-mozi-botnet
https://blog.netlab.360.com/mozi-another-botnet-using-dht/

2/18

peer-to-peer (P2P) clients. Once the malware has accessed a vulnerable device, it executes
the payload and subsequently joins the Mozi P2P network. The newly infected device listens
for commands from controller nodes and also attempts to infect other vulnerable devices.

Mozi targets multiple IoT devices and systems, mainly focused on Small Office Home Office
(SOHO) networking devices, Internet-connected audio visual systems, and theoretically any
32-bit ARM device.

Collection

When performing data analysis, the more data that you have, the better. Analysis of malware
campaigns are no different. With a paid subscription to VirusTotal, you can collect huge
amounts of data for analysis, but we wanted an approach for independent researchers or
smaller organizations that may not have this premium service. To do that, we decided to
keep to our roots at Elastic and leverage open source datasets to avoid a paywall that could
prevent others from using our processes.

To begin, we started with a handful of Mozi samples collected from ThreatFox. ThreatFox is
an open source platform from Abuse.ch with the goal of sharing malware indicators with the
security research community.

Using cURL, we queried the ThreatFox API for the Mozi tag. This returned back JSON
documents with information about the malware sample, based on the tagged information.

curl -X POST https://threatfox-api.abuse.ch/api/v1/ -d '{ "query": "taginfo", "tag":
"Mozi", "limit": 1 }'

Code block 1 - cURL request to ThreatFox API
-X POST - change the cURL HTTP method from GET (default) to POST as we’re

going to be sending data to the ThreatFox API
https://threatfox-api.abuse.ch/api/v1/ - this is the ThreatFox API endpoint
-d - this is denoting that we’re going to be sending data
query: taginfo - the type of query that we’re making, taginfo in our example
tag: Mozi - the tag that we’ll be searching for, “Mozi” in our example

limit: 1 - the number of results to return, 1 result in our example, but you can return up
to 1000 results

This returned the following information:

https://threatfox.abuse.ch/browse.php?search=tag%3Amozi
https://threatfox.abuse.ch/
https://abuse.ch/
https://threatfox-api.abuse.ch/api/v1/

3/18

{
 "query_status": "ok",
 "data": [
 {
 "id": "115772",
 "ioc": "nnn.nnn.nnn.nnn:53822",
 "threat_type": "botnet_cc",
 "threat_type_desc": "Indicator that identifies a botnet command&control
server (C&C)",
 "ioc_type": "ip:port",
 "ioc_type_desc": "ip:port combination that is used for botnet
Command&control (C&C)",
 "malware": "elf.mozi",
 "malware_printable": "Mozi",
 "malware_alias": null,
 "malware_malpedia":
"https:\/\/malpedia.caad.fkie.fraunhofer.de\/details\/elf.mozi",
 "confidence_level": 75,
 "first_seen": "2021-06-15 08:22:52 UTC",
 "last_seen": null,
 "reference":
"https:\/\/bazaar.abuse.ch\/sample\/832fb4090879c1bebe75bea939a9c5724dbf87898febd425f9

 "reporter": "abuse_ch",
 "tags": [
 "Mozi"
]
 }
]

Code block 2 - Response from ThreatFox API
Now that we have the file hashes of several samples, we can download the samples using
the Malware Bazaar API. Malware Bazaar is another open source platform provided by
Abuse.ch. While ThreatFox is used to share contextual information about indicators, Malware
Bazaar allows for the actual collection of malware samples (among other capabilities).

Just like with ThreatFox, we’ll use cURL to interact with the Malware Bazaar API, but this
time to download the actual malware samples. Of note, the Malware Bazaar API can be used
to search for samples using a tag (“Mozi”, in our example), similar to how we used the
ThreatFox API. The difference is that the ThreatFox API returns network indicators that we’ll
use later on for data enrichment.

curl -X POST https://mb-api.abuse.ch/api/v1 -d
'query=get_file&sha256_hash=832fb4090879c1bebe75bea939a9c5724dbf87898febd425f94f7e03ee
-o 832fb4090879c1bebe75bea939a9c5724dbf87898febd425f94f7e03ee687d3b.raw

Code block 3 - cURL request to Malware Bazaar API

-X POST - change the cURL HTTP method from GET (default) to POST as we’re
going to be sending data to the Malware Bazaar API
https://mb-api.abuse.ch/api/v1 - this is the Malware Bazaar API endpoint

https://mb-api.abuse.ch/api/v1

4/18

-d - this is denoting that we’re going to be sending data
query: get_file - the type of query that we’re making, get_file in our example
sha256_hash - the SHA256 hash we’re going to be collecting,
“832fb4090879c1bebe75bea939a9c5724dbf87898febd425f94f7e03ee687d3b” in

our example
-o - the file name we’re going to save the binary as

This will save a file locally named
832fb4090879c1bebe75bea939a9c5724dbf87898febd425f94f7e03ee687d3b.raw . We

want to make a raw file that we’ll not modify so that we always have an original sample for
archival purposes. This downloads the file as a Zip archive. The passphrase to extract the
archive is infected. This will create a local file named
832fb4090879c1bebe75bea939a9c5724dbf87898febd425f94f7e03ee687d3b.elf . Going

forward, we’ll use a shorter name for this file, truncated-87d3b.elf , for readability.

Unpacking

Now that we have a few samples to work with we can look at ripping out strings for further
analysis. Once in our analysis VM we took a stab at running Sysinternals Strings over our
sample:

$ strings truncated-87d3b.elf
ELF
*UPX!
ELF
$Bw
(GT
...

Code block 3 - Strings output from the packed Mozi sample
Right away we see that we have a UPX packed ELF binary from the “ELF” and “UPX!” text.
UPX is a compression tool for executable files, commonly known as “packing”. So the next
logical step is to decompress the ELF file with the UPX program. To do that, we’ll run upx
with the -d switch.

$ upx -d truncated-87d3b.elf
 Ultimate Packer for eXecutables
 Copyright (C) 1996 - 2020
UPX 3.96w Markus Oberhumer, Laszlo Molnar & John Reiser Jan 23rd 2020
 File size Ratio Format Name
 -------------------- ------ ----------- -----------
upx.exe : upx: truncated-87d3b.elf : CantUnpackException: p_info corrupted

Code block 4 - UPX output from corrupted Mozi sample
Another road-block: the p_info section of the file appears to be corrupted. p_info is the
sum of two sections from a file, p_blocksize and p_filesize . After a quick search for
the error message, we landed on a CUJOAI Anti-Unpacking blog explaining the header

https://docs.microsoft.com/en-us/sysinternals/downloads/strings
https://upx.github.io/
https://cujo.com/upx-anti-unpacking-techniques-in-iot-malware/

5/18

corruptions commonly used in IoT malware to disrupt automated analysis tools.

Using this information, we cracked open our binary in xxd, a HEX dumper, to see which
corruption we were dealing with. As described in the CUJOAI blog, the p_info blocks
represent the sum of the p_filesize blocks and the p_blocksize blocks. This section
begins with the 8 bytes after the UPX! text, and has been overwritten with zeros (the 8
bytes starting at 0x84).

$ xxd truncated-87d3b.elf
00000000: 7f45 4c46 0101 0161 0000 0000 0000 0000 .ELF...a........
00000010: 0200 2800 0100 0000 1057 0200 3400 0000 ..(......W..4...
00000020: 0000 0000 0202 0000 3400 2000 0200 2800 4. ...(.
00000030: 0000 0000 0100 0000 0000 0000 0080 0000
00000040: 0080 0000 0de0 0100 0de0 0100 0500 0000
00000050: 0080 0000 0100 0000 b07a 0000 b0fa 0600 z......
00000060: b0fa 0600 0000 0000 0000 0000 0600 0000
00000070: 0080 0000 10f1 8f52 5550 5821 1c09 0d17 RUPX!....
00000080: 0000 0000 0000 0000 0000 0000 9400 0000
00000090: 5e00 0000 0300 0000 f97f 454c 4601 7261 ^.........ELF.ra
000000a0: 000f 0200 28dd 0001 0790 b681 0334 ee07 (........4..
000000b0: ec28 04db 1302 0bfb 2000 031b be0a 0009 .(......
...

Code block 5 - HEX view of the corrupted Mozi sample
The CUJOAI blog states that if you manually update the values of the p_filesize blocks
and the p_blocksize blocks with the value of the p_info , this will fix the corruption
issue. Below we can see the p_info section in HEX, and we can use that to manually
update the p_filesize and p_blocksize sections, which will allow us to unpack the
binary (the 4 bytes starting at 0x1e110).

$ xxd truncated-87d3b.elf
...
0001e0c0: 1914 a614 c998 885d 39ec 4727 1eac 2805 ]9.G'..(.
0001e0d0: e603 19f6 04d2 0127 52c9 9b60 00be 273e 'R..`..'>
0001e0e0: c00f 5831 6000 0000 0000 90ff 0000 0000 ..X1`...........
0001e0f0: 5550 5821 0000 0000 5550 5821 0d17 0308 UPX!....UPX!....
0001e100: 5199 6237 591c 321c d001 0000 b800 0000 Q.b7Y.2.........
0001e110: 7c2a 0400 5000 0011 8000 0000 |*..P.......

Code block 6 - p_info HEX data from the corrupted Mozi sample
First, let’s open the file with Vim. As we can see, it is just a UPX file as denoted by the UPX!.

$ vim truncated-87d3b.elf
^?ELF^A^A^Aa^@^@^@^@^@^@^@^@^B^@(^@^A^@^@^@^PW^B^@4^@^@^@^@^@^@^@^B^B^@^@4^@
^@^B^@(^@^@^@^@^@^A^@^@^@^@^@^@^@^@<80>^@^@^@<80>^@^@^Mà^A^@^Mà^A^@^E^@^@^@^@<80>^@^@^

Code block 7 - Corrupted Mozi sample in Vim

https://linux.die.net/man/1/xxd

6/18

Using the xxd plugin for Vim, we can convert this to HEX so that we can make our
modifications. This is achieved by typing :%!xxd , which will show us the HEX output for the
file.

00000000: 7f45 4c46 0101 0161 0000 0000 0000 0000 .ELF...a........
00000010: 0200 2800 0100 0000 1057 0200 3400 0000 ..(......W..4...
00000020: 0000 0000 0202 0000 3400 2000 0200 2800 4. ...(.
00000030: 0000 0000 0100 0000 0000 0000 0080 0000
00000040: 0080 0000 0de0 0100 0de0 0100 0500 0000
00000050: 0080 0000 0100 0000 b07a 0000 b0fa 0600 z......
00000060: b0fa 0600 0000 0000 0000 0000 0600 0000
00000070: 0080 0000 10f1 8f52 5550 5821 1c09 0d17 RUPX!....
00000080: 0000 0000 0000 0000 0000 0000 9400 0000
00000090: 5e00 0000 0300 0000 f97f 454c 4601 7261 ^.........ELF.ra
000000a0: 000f 0200 28dd 0001 0790 b681 0334 ee07 (........4..
000000b0: ec28 04db 1302 0bfb 2000 031b be0a 0009 .(......

Code block 8 - Corrupted Mozi sample in Vim with XXD plugin
Next, we can just update bytes 0x84 - 0x8b (that we identified as having the zero’d out
p_filesize and p_blocksize) with the HEX value for p_info (7c2a 0400).

00000080: 0000 0000 7c2a 0400 7c2a 0400 9400 0000 |*..|*......

Code block 9 - Updated p_filesize and p_blocksize HEX values
Let’s reset the file back using :%!xxd -r , save the file and exit Vim (:wq).

Finally, let’s try to unpack the file now that we’ve manually adjusted the HEX values.

$ upx -d truncated-87d3b.elf
 Ultimate Packer for eXecutables
 Copyright (C) 1996 - 2020
UPX 3.96 Markus Oberhumer, Laszlo Molnar & John Reiser Jan 23rd 2020
 File size Ratio Format Name
 -------------------- ------ ----------- -----------
 273020 <- 123165 45.11% linux/arm truncated-87d3b.elf
Unpacked 1 file.

Code block 10 - Successfully unpacked Mozi sample
We now have successfully unpacked the file. Let’s check to see what kind of file this is now
by using the file command.

$ file truncated-87d3b.elf
truncated-87d3b.elf: ELF 32-bit LSB executable, ARM, version 1 (ARM), statically
linked, stripped

Code block 11 - File type identification of the Mozi sample
Now, we can again use the strings command to see if there is any useful information that we
can use (truncated for readability).

7/18

$ strings truncated-87d3b.elf
...
iptables -I OUTPUT -p udp --source-port %d -j ACCEPT
iptables -I PREROUTING -t nat -p udp --destination-port %d -j ACCEPT
iptables -I POSTROUTING -t nat -p udp --source-port %d -j ACCEPT
iptables -I INPUT -p udp --dport %d -j ACCEPT
iptables -I OUTPUT -p udp --sport %d -j ACCEPT
iptables -I PREROUTING -t nat -p udp --dport %d -j ACCEPT
iptables -I POSTROUTING -t nat -p udp --sport %d -j ACCEPT
0.0.0.0
[idp]
This node doesn't accept announces
v2s
dht.transmissionbt.com:6881
router.bittorrent.com:6881
router.utorrent.com:6881
bttracker.debian.org:6881
nnn.nnn.nnn.nnn:6881
abc.abc.abc.abc:6881
xxx.xxx.xxx.xxx:6881
yyy.yyy.yyy.yyy:6881
NfZ
Oo~Mn
g5=
N]%
Range: bytes=
User-Agent:
...

Code block 12 - Strings output from the unpacked Mozi sample
Running Strings, we can see, among other things, network indicators and changes to the
local firewall, iptables . There is a lot of great information in this file that we can now
review which can be used to search for infected devices.

Next, let’s enrich the ThreatFox data, store it in Elasticsearch, and visualize it with Kibana.

Storing threat data in the Elastic Stack

Looking at what we’ve collected so far, we have rich threat data provided by ThreatFox that
includes both network and file information. Additionally, we have actual malware samples
collected from Malware Bazaar. Finally, we have performed static file analysis on the
malware to identify additional indicators that could be of use.

For the next steps, we’re going to parse the data from ThreatFox and store that in the Elastic
Stack so that we can leverage Kibana to visualize data to identify clusters of activity.

Create the Ingest Node Pipeline

8/18

We're going to create an Ingest Node Pipeline to transform the data from ThreatFox into
enriched Elasticsearch data. When making a pipeline, it's useful to make a table to lay out
what we're going to do.

ThreatFox field ECS-style field

id event.id

ioc threat.indicator.ip and threat.indicator.port

threat_type threat.software.type

threat_type_desc threat.indicator.description

ioc_type threat.indicator.type. Set threat.indicator.type
to "ipv4-addr"

malware threat.software.name

malware_printable threat.threatfox.malware_printable

malware_alias threat.software.alias (if non-null)

malware_malpedia threat.software.reference

confidence_level threat.indicator.confidence

first_seen threat.indicator.first_seen

last_seen threat.indicator.last_seen

reference event.reference

reporter event.provider

tags tags

9/18

<enrichment> threat.indicator.geo. Enriched by our geoip
processor.

<parsed-sha256> file.hash.sha256 and related.hash

<copy
threat.indicator.ip>

related.ip

Table 1 - Elasticsearch Ingest Node Pipeline for ThreatFox data
To create the pipeline, go to Kibana Stack Management -> Ingest Node Pipelines, then
click Create pipeline.

Figure 1 - Creating Ingest Node Pipeline for ThreatFox data
Next, we’ll give our pipeline a name, optionally a version, and a description.

From this view you can manually add processors and configure them to your liking. To give
you a head start, we've provided the ThreatFox pipeline definition here you can paste in.

Click Import processors and paste the contents of this pipeline definition: pipeline.json.

When you click Load and overwrite, you'll have each processor listed there as we've
configured it. From here you can tweak it to your needs, or just scroll down and click Create
pipeline.

https://github.com/elastic/examples/blob/master/blog/mozin-about/ingest-node-pipeline.json
https://github.com/elastic/examples/blob/master/blog/mozin-about/ingest-node-pipeline.json

10/18

Figure 2 - Ingest Node Processors for ThreatFox data
Alternatively, if you’d like to use a turnkey approach, the collection.sh script will allow you to
collect the ThreatFox Mozi data, create the Elasticsearch ingest pipeline, the indicators
Index, the Index Pattern, and send the data from ThreatFox directly into Elasticsearch.

$ git clone https://github.com/elastic/examples
$ cd examples/blog/mozin-about
$ sh collection.sh

Code block 13 - Using the Mozi sample collection script
Using the provided collection script, we can see the Threat Fox data is converted into the
Elastic Common Schema (ECS) and sent to Elasticsearch for analysis.

https://github.com/elastic/examples/blob/master/blog/mozin-about/collection.sh

11/18

Figure 3 - ThreatFox data in Kibana

Analysis

Now that we’ve collected our samples, enriched them, and stored them in Elasticsearch, we
can use Kibana to visualize this data to identify clusters of activity, make different
observations, and set up different pivots for new research.

As a few quick examples, we can identify some ports that are used and countries that are
included in the dataset.

Let’s start with identifying high-density network ports. Make a Lens visualization in Kibana by
clicking on Visualization Library → Create visualization → Lens. We can make a simple
donut chart to highlight that the threat.indicator.port of 6000 makes up over 10% of

12/18

the network ports observed. This could lead us to explore other network traffic that is using
port 6000 to identify other potentially malicious activity.

Figure 4 - Port layout for Mozi network traffic
Of note, port 0 and 4000 are also observed and are interesting. Ports 6000 , 4000 , nor
0 are overly common on the Internet-at-large and could be used to identify other

compromised hosts. It should be noted that while transient network indicators like IP and port
are useful, they should not be used as the sole source to identify malicious activity
irrespective of the intrusion set being investigated.

Next, we can use a Kibana Maps visualization to identify geographic clusters of activities,
and include associated context such as indicator confidence, provider, and type.

13/18

Figure 5 - Geographic data from Mozi command & control infrastructure
Similar to the commentary above on IP and ports, geographic observations should not be the
sole source used to take action. These are simply indicators for observed samples and
require organizational-centric analysis to ascertain their meaning as it relates to the specific
network.

This is useful information we can make the following analytical assertions based on our
sampling:

Mozi botnet is currently active and maintaining steady infection rates
Port 6000 is a dominant port used for command & control
At least 24 countries impacted suggests global threat with no specific targeting
Clusters of specific ASNs in Bulgaria and India stand out with highest volumes

As the analysis process starts to flow, it ends up providing additional avenues for research.
One example an analyst may pursue is a propagation mechanism through the use of HTTP
fingerprinting.

Exploring the propagation mechanism

14/18

In the same manner as criminal fingerprints are tracked and logged in a database, a similar
technique can be applied to publicly facing network infrastructure. An HTTP request can be
sent to a webserver and the HTTP response that is returned can be used to identify possible
web applications hosted on the server; even the ordering of the fields in the HTTP response
can be used as an identifier.

One thing we learned about Mozi and how it contributes to its spreading power is that each
compromised device contributes to the infection of future victims. The compromised device
starts an HTTP server that hosts a Mozi payload on a random TCP port. Knowing this
information, we can collect content from an infected system to generate a fingerprint using
cURL.

curl -I nnn.nnn.nnn.nnn:53822
HTTP/1.1 200 OK
Server: nginx
Content-Length: 132876
Connection: close
Content-Type: application/zip

Code block 14 - HTTP response from a compromised device
Based on the observed response back, we can pull back some interesting information such
as:

The use of an NGINX web server
No HTTP Date Header provided
The size of the file returned is close to 133 kilobytes

With this small amount of data, we can pivot to different search engines that store response
data from these kinds of devices all over the world. By leveraging tools like Shodan, we can
perform a search using the information obtained in the HTTP response. We’ll wildcard the
Content-Length but use the same order for all of the HTTP response elements:

HTTP/1.1 200 OK Server: nginx Content-Length: * Connection: close Content-Type:
application/zip

Code block 15 - HTTP header for Mozi propagation
We can see a number of hits where this same response was captured on other devices and
start to pinpoint additional machines. Below are a few examples from a Shodan search:

https://www.shodan.io/

15/18

Figure 6 - Additional impacted devices
Other search examples over response data could be used as well such as the actual bytes of
the malicious Mozi file that was returned in the response.

16/18

Mitigation

The Mozi botnet propagates through the abuse of default or weak remote access passwords,
exploits and outdated software versions. To defend devices from exploitation, we
recommend:

Changing the device default remote access passphrases
Updating devices to the latest firmware and software version supported by the vendor
Segmenting IoT devices from the rest of your internal network
Not making IoT devices accessible from the public Internet

Detection logic

Using YARA, we can write a signature for the corrupted UPX header. Similar to rules that
look for specific types of PowerShell obfuscation, the obfuscation mechanism itself can
occasionally be a better indicator of maliciousness than attempting to signature the
underlying activity. It is extremely important to note that zeroing out part of the header
sections was the technique that we observed with our samples. There are a litany of other
obfuscation and anti-analysis techniques that could be used with other samples. MITRE
ATT&CK® describes additional subtechniques for the Obfuscated Files or Information
technique from the Defense Evasion tactic.As noted above, the observed anti-analysis
technique used by the analyzed Mozi samples consists solely of zeroing out the 8 bytes after
the “UPX!” magic bytes, and the 4 bytes before that are always zero, so let's use a YARA
signature derived from the work by Lars Wallenborn (expanded for readability).

rule Mozi_Obfuscation_Technique
{
 meta:
 author = "Elastic Security, Lars Wallenborn (@larsborn)"
 description = "Detects obfuscation technique used by Mozi botnet."
 strings:
 $a = { 55 50 58 21
 [4]
 00 00 00 00
 00 00 00 00
 00 00 00 00 }
 condition:
 all of them
}

Code block 16 - YARA signature detecting Mozi obfuscation
55 50 58 21 - identifies the UPX magic bytes
[4] - offset by 4 bytes, the l_lsize , l_version & l_format
00 00 00 00 - identifies the program header ID
00 00 00 00 - identifies the zero’d out p_filesize
00 00 00 00 - identifies the zero’d out p_blocksize

https://virustotal.github.io/yara/
https://attack.mitre.org/techniques/T1027/
https://attack.mitre.org/tactics/TA0005
https://blag.nullteilerfrei.de/2019/12/26/upx-packed-elf-binaries-of-the-peer-to-peer-botnet-family-mozi/

17/18

condition - requires that all of the above strings exist for a positive YARA signature
match

The above YARA signature can be used to identify ELF files that are packed with UPX and
have the header ID, p_filesize , and p_blocksize elements zero’d out. This can go a
long way in identifying obfuscation techniques in addition to Mozi samples. In our testing, we
used this YARA signature with a 94.6% efficiency for detecting Mozi samples.

Summary

The Mozi botnet has been observed targeting vulnerable Internet of Things (IoT) devices to
launch seemingly non-targeted campaigns that can take advantage of the force multiplication
provided by a botnet. Mozi has been in operation since at least December 2019.

We covered techniques to collect, ingest, and analyze samples from the Mozi botnet. These
methodologies can also be leveraged to enhance and enable analytical processes for other
data samples.

Additional resources

Blog artifacts and scripts, Elastic:
https://github.com/elastic/examples/tree/master/blog/mozin-about
ThreatFox Indicator of Compromise Database, Abuse.ch:
https://threatfox.abuse.ch/browse
UPX Anti-Unpacking Techniques in IoT Malware, CUJOAI: https://cujo.com/upx-anti-
unpacking-techniques-in-iot-malware
Corrupted UPX Packed ELF Repair, vcodispot.com: https://vcodispot.com/corrupted-
upx-packed-elf-repair
UPX PACKED ELF BINARIES OF THE PEER-TO-PEER BOTNET FAMILY MOZI, Lars
Wallenborn: https://blag.nullteilerfrei.de/2019/12/26/upx-packed-elf-binaries-of-the-
peer-to-peer-botnet-family-mozi
Mozi, Another Botnet Using DHT, 360 Netlab: https://blog.netlab.360.com/mozi-
another-botnet-using-dht
Mozi Botnet Accounts for Majority of IoT Traffic, Tara Seals:
https://threatpost.com/mozi-botnet-majority-iot-traffic/159337
New Mozi P2P Botnet Takes Over Netgear, D-Link, Huawei Routers, Sergiu Gatlan:
https://www.bleepingcomputer.com/news/security/new-mozi-p2p-botnet-takes-over-
netgear-d-link-huawei-routers
Kibana Maps, Elastic: https://www.elastic.co/guide/en/kibana/current/maps.html
Kibana Lens, Elastic: https://www.elastic.co/guide/en/kibana/current/lens.html

https://github.com/elastic/examples/tree/master/blog/mozin-about
https://threatfox.abuse.ch/browse
https://cujo.com/upx-anti-unpacking-techniques-in-iot-malware
https://vcodispot.com/corrupted-upx-packed-elf-repair
https://blag.nullteilerfrei.de/2019/12/26/upx-packed-elf-binaries-of-the-peer-to-peer-botnet-family-mozi
https://blog.netlab.360.com/mozi-another-botnet-using-dht
https://threatpost.com/mozi-botnet-majority-iot-traffic/159337
https://www.bleepingcomputer.com/news/security/new-mozi-p2p-botnet-takes-over-netgear-d-link-huawei-routers
https://www.elastic.co/guide/en/kibana/current/maps.html
https://www.elastic.co/guide/en/kibana/current/lens.html

18/18

We're hiring
Work for a global, distributed team where finding someone like you is just a Zoom
meeting away. Flexible work with impact? Development opportunities from the start?

