
1/9

Ghidra script to decrypt a string array in XOR DDoS
maxkersten.nl/binary-analysis-course/analysis-scripts/ghidra-script-to-decrypt-a-string-array-in-xor-ddos/

This article was published on the 25th of July 2021. This article was updated on the 8th of
December 2021.

The XOR DDoS bot, an ELF file for Linux distributions, is used to perform DDoS attacks.
This article focuses on a rather small segment of the malware family: the internally used
encrypted string array, and its decryption. This article will dive into arrays, the decryption
loop, the decryption routine, and the creation of a Ghidra script in Java to automate this
process.

Table of contents

The sample

The sample can be downloaded from VirusBay, Malware Bazaar, or MalShare. The hashes
are given below.

MD5: 349456ecaa1380a142f15810a8260378
SHA-1: 02dd15ecdeedefd7a2f82ba0df38703a74489af3
SHA-256: 0f00c2e074c6284c556040012ef23357853ccac4ad1373d1dea683562dc24bca
Size: 625889 bytes

Used tooling

The analysis in this article has been done with a self-built version of Ghidra. The used
sources date back to the first of June 2021. The used for-loop that is seen later in this article
is displayed as a while-loop in earlier Ghidra versions. Other than that, no significant
changes are present between versions. All analysis options have been used when analysing
the file.

Arrays in theory

Arrays, disregarding of the type, are structured the same way. The first element, which
resides at index zero, marks the start of the array, followed by the other elements if present.
To obtain the element for a given index, the size of each element is multiplied by the index
number, which is then added to the address of the first element. The code below provides an
example in pseudo code, where T is the element’s type.

long elementAddress = arrayBase + (sizeof(T) * i);

https://maxkersten.nl/binary-analysis-course/analysis-scripts/ghidra-script-to-decrypt-a-string-array-in-xor-ddos/
https://virusbay.io/sample/browse/349456ecaa1380a142f15810a8260378
https://bazaar.abuse.ch/sample/0f00c2e074c6284c556040012ef23357853ccac4ad1373d1dea683562dc24bca/
https://malshare.com/sample.php?action=detail&hash=349456ecaa1380a142f15810a8260378
https://ghidra-sre.org/

2/9

When dealing with strings, the length can be variable, as not all strings have the same
length. In some cases, strings with a fixed length are used, this uses more memory than is
required, but makes it easy to find the element for a given index. Alternatively, the string’s
length can be calculated using strlen, which is then used instead of the sizeof function. This
requires more CPU cycles, as the string length needs to be calculated, but it uses less
memory.

Understanding the loop

The given sample contains symbols, which make the analysis easier. The main function is
already called main, and contains the decryption loop for the string array at 0804d12a. The
complete loop’s assembly code is given below.

 MOV dword ptr [EBP + local_3c],0x0
 JMP LAB_0804d12e

LAB_0804d108
 MOV EDX,dword ptr [EBP + local_3c]
 MOV EAX,EDX
 SHL EAX,0x2
 ADD EAX,EDX
 SHL EAX,0x2
 ADD EAX,daemonname
 MOV dword ptr [ESP + local_3dec],0x14
 MOV dword ptr [ESP]=>local_3df0,EAX
 CALL encrypt_code
 ADD dword ptr [EBP + local_3c],0x1

LAB_0804d12e
 CMP dword ptr [EBP + local_3c],0x16
 JBE LAB_0804d108

The loop, like most loops in assembly languages, starts with the initialisation of a variable to
store the count in. This variable is commonly named i when named by programmers. In this
case, the variable is named local_3c by Ghidra. The naming scheme of Ghidra is based on
the location. A jump is then made downwards, where the value of local_3c is compared to
0x16, or 22 in decimal. If the value of local_3c is below or equal, the jump upwards is taken.
The two labels, LAB_0804d108 and LAB_0804d12e, can be renamed to loop_body and
loop_compare respectively to increase the readability. The variable local_3c can be renamed
to i for further clarification.

To understand the loop’s body, each instruction will be explained below, in the usual step-by-
step manner. At first, the value of i, which resides at EBP + i is moved into EDX, after which it
is also moved into EAX.

MOV EDX,dword ptr [EBP + i]
MOV EAX,EDX

Next, the value in EAX is shifted left by two bits. A left shift of N equals two to the power of N.
In this case, it means that EAX is multiplied by four.

https://www.tutorialspoint.com/c_standard_library/c_function_strlen.htm
https://en.wikipedia.org/wiki/Sizeof

3/9

SHL EAX,0x2

The value of i is then added to EAX, after which it is multiplied by four again.

ADD EAX,EDX
SHL EAX,0x2

The variable named daemonname refers to the string array, although Ghidra does not
recognise the type due to the fact that it contains the encrypted strings. The base address of
the array is then added to EAX.

ADD EAX,daemonname

In short, EAX contains the array’s base address and the offset based on i.

The next three instructions push two arguments on the stack, after which the decryption
function (named encrypt_code) is called. The first argument, as they are read from the stack
in the reverse order, is equal to EAX, which contains the current element’s address. The
second argument is equal to 0x14, or 20 in decimal. As such, it becomes apparent that this
string array is based on strings with a fixed length, although this does not mean that every
string is 20 bytes in size. Rather, the length of each string is between 0 and 19, given that
each string is terminated with a null byte.

MOV dword ptr [ESP + local_3dec],0x14
MOV dword ptr [ESP]=>local_3df0,EAX
CALL encrypt_code

At last, the value of i is incremented with one.

ADD dword ptr [EBP + i],0x1

The calculation for the offset of the next element can be simplified as follows.

for (int i = 0; i <= 0x16; i++)
{

int result = i;
result = result * 4;
result += i;
result = result * 4;
System.out.println(result);

}

Further simplified, one can rewrite the code above as follows.

for (int i = 0; i <= 0x16; i++)
{

int result = ((i * 4) + i) * 4;
System.out.println(result);

}

4/9

Since multiplication is the same as repeated addition, one can even further simplify the
formula. At first, i is multiplied by four, after which i is added. This can be simplified by stating
that i is multiplied by five. The outcome of this is multiplied by four. As such, the original
value is multiplied by four, after which its multiplied by five. In total, i is multiplied by (four
times five) twenty. The code below shows the simplification in several steps.

((i * 4) + i) * 4;
(i * 5) * 4
i * 20

The likely reason as to why the code looks like this, is the efficiency of the shift instructions,
when compared to the multiplication instructions. The compiler likely chose to replace a
single multiplication with less resource intensive instructions.

When looking at the main function in Ghidra’s decompiler, one can find the string array
decryption loop at line 100, 101, and 102. The excerpt is given below. Note that the
refactoring of the variables in the assembly code is reflected in this code.

for (i = 0; i < 0x17; i = i + 1) {
 encrypt_code(daemonname + i * 0x14,0x14);
}

Note that this loop displays 0x17 with regards to the amount of iterations, rather than 0x16.
The condition for the loop is less than, rather than less than or equal, meaning the value
needs to be incremented with one.

Fully understanding the code, and how it is generated, will be useful when creating a Ghidra
script later on.

Remaking the decryption routine

The decryption function, named encrypt_code, is used to decrypt a given encrypted string
with a given length. The function is given below.

byte * encrypt_code(byte *param_1,int param_2)
{
 byte *local_10;
 int local_c;

 local_10 = param_1;
 for (local_c = 0; local_c < param_2; local_c = local_c + 1) {
 *local_10 = *local_10 ^ xorkeys[local_c % 0x10];
 local_10 = local_10 + 1;
 }
 return param_1;
}

5/9

The first argument (named param_1) can be renamed into input, whereas the second
argument (named param_2) can be renamed into length. The variable named local_10 is a
copy of the given input, as it points to the same value. As such, it can be renamed into
inputCopy. The loop uses local_c as its counter, which can be renamed into i. The refactored
code is given below.

byte * encrypt_code(byte *input,int length)
{
 byte *inputCopy;
 int i;

 inputCopy = input;
 for (i = 0; i < length; i = i + 1) {
 *inputCopy = *inputCopy ^ xorkeys[i % 0x10];
 inputCopy = inputCopy + 1;
 }
 return input;
}

The variable xorkeys is a string, although Ghidra does not recognise it as such. Changing
the type, using T as a hotkey in the disassembly view, will display its content. Alternatively,
one can also get the raw value of the bytes instead. The key equals BB2FA36AAA9541F0.

When rewriting the decryption function in Java, there is one more more thing to take into
account. Strings in C end with a null byte, but when using a byte array to create a string in
Java, this byte is to be omitted. As not all strings are equal to the predefined length, a check
is to be included to break the loop when the null byte is encountered. When breaking the
loop, the bytes that have been decrypted thus far are to be used to create a new string. The
recreated function is given below.

private String decrypt(byte[] input, char[] key) {
 byte[] output = new byte[input.length];

 for (int i = 0; i < input.length; i++) {
 if(input[i] == 0) {
 break;
 }
 output[i] = (byte) (input[i] ^ key[i % 0x10]);
 }
 return new String(output);
}

Note that the key is passed as an argument to the function, as this will come in useful when
creating the script. By passing the value as an argument to the function, one can keep all
variables in a single place within the script.

Writing the Ghidra script

6/9

The script itself uses the decryption function that was created in the previous step. To
decrypt the string array, several variables need to be initialised first. The decryption key, as is
required by the decryption function, as well as the location of the array (defined as
arrayBase), the size of a single element (defined as elementSize), and the amount of
elements of the array (defined as arraySize).

char[] key = "BB2FA36AAA9541F0".toCharArray();
int arrayBase = 0x080cf1c0;
int elementSize = 0x14;
int arraySize = 0x17;

To get the value of each element, one needs to multiply the loop count with the predefined
element size, after which the array’s base address is added. To get the data from the
sample, one can use the getBytes function, which requires an Address to know where to
start reading the bytes from, and an integer to know how many bytes should be read. To
convert an integer, long, or string to an Address object, one needs to use the toAddr function.

The obtained bytes are decrypted by the decryption function, along with the decryption key.
The result is then printed to Ghidra’s console.

try {
 for (int i = 0; i < arraySize; i++) {

int offset = i * elementSize;
int location = arrayBase + offset;
byte[] input = getBytes(toAddr(location), elementSize);
String decrypted = decrypt(input, key);
println(decrypted);

 }
} catch (MemoryAccessException e) {
 e.printStackTrace();
 println("\nA memory access exception occurred, please refer to the stacktrace above
for more information");
}

In the case of an error with the getBytes function, a MemoryAccessException is thrown. The
image below shows the output of the script once its execution has finished.

https://ghidra.re/ghidra_docs/api/ghidra/program/flatapi/FlatProgramAPI.html#getBytes(ghidra.program.model.address.Address,int)
https://ghidra.re/ghidra_docs/api/ghidra/program/model/address/package-summary.html
https://ghidra.re/ghidra_docs/api/ghidra/program/flatapi/FlatProgramAPI.html#toAddr(int)

7/9

Conclusion

Decrypting content from a sample provides a lot more insight as to what the sample does,
especially because these strings are concealed for a reason. In some cases, bots within the
same family reuse the encryption key. If the key changes, it is easy to replace it in the script,
or make use of a dialog in the script that requests the key once executed.

Understanding how to easily access variables and memory in a script in Ghidra is helpful
when analysing any sample. Given that some code segments are easy to reuse, it is useful
to create scripts that are made up of easily reusable functions.

The complete script

The complete script, including documentation, is given below. Note the hardcoded key,
element length, and array length. For more information on how to avoid hardcoding values in
a script, one can visit the Amadey string decryption script article.

https://maxkersten.nl/binary-analysis-course/analysis-scripts/ghidra-script-to-decrypt-strings-in-amadey-1-09/

8/9

//This script is used to decrypt a string array within the XOR DDoS bot. Note that it
the array's location, element size, and array size are hardcoded in the script.
//@author Max 'Libra' Kersten (https://maxkersten.nl, @Libranalysis)
//@category string array decryption
//@keybinding
//@menupath
//@toolbar

import ghidra.app.script.GhidraScript;
import ghidra.program.model.mem.MemoryAccessException;

public class xorddos_array_decryption extends GhidraScript {

 /**
 * This function is called by Ghidra, as such it is the entry into the script
 */
 @Override
 protected void run() throws Exception {
 //The hardcoded decryption key, works for numerous samples, but this script is
based on 0f00c2e074c6284c556040012ef23357853ccac4ad1373d1dea683562dc24bca
 char[] key = "BB2FA36AAA9541F0".toCharArray();
 //The location of the array's base address, which resides at index 0
 int arrayBase = 0x080cf1c0;
 //The size of each element within the array
 int elementSize = 0x14;
 //The amount of elements in the array
 int arraySize = 0x17;
 try {
 //Since the assembly code uses a Jump Below or Equal instruction to compare i
to 0x16, the loop needs to iterate 0x17 times to cover the complete array
 for (int i = 0; i < arraySize; i++) {
 //Declare the offset from the array base (meaning the size of each element
times the element that is selected)
 int offset = i * elementSize;
 //Declare the location within the program
 int location = arrayBase + offset;
 //Get the bytes for one element at the given location
 byte[] input = getBytes(toAddr(location), elementSize);
 //Decrypt the given data using the given key
 String decrypted = decrypt(input, key);
 //Print the decrypted string
 println(decrypted);
 }
 } catch (MemoryAccessException e) {
 //Print the stacktrace, and provide further indication that an error occured
 e.printStackTrace();
 println("\nA memory access exception occurred, please refer to the stacktrace
above for more information");
 }
 }

 /**
 * Decrypts the given input using the given key and returns a new string with the
decrypted content in it
 * @param input the data to decrypt

9/9

 * @param key the key to decrypt the given input
 * @return the decrypted input in the form of a string
 */
 private String decrypt(byte[] input, char[] key) {
 //Create a new byte array to store the decrypted data in
 byte[] output = new byte[input.length];
 //Iterate over all bytes
 for (int i = 0; i < input.length; i++) {
 //If the byte equals zero, the string is terminated, meaning the loop needs to
be broken, which returns a string based on the data that has been decrypted thus far
 if(input[i] == 0) {
 break;
 }
 //Decrypt the current byte
 output[i] = (byte) (input[i] ^ key[i % 0x10]);
 }
 //Once the loop breaks, or all iterations have finished, a new string is returned
 return new String(output);
 }
}

