
1/7

July 22, 2021

Incident report: Spotting SocGholish WordPress injection
expel.io/blog/incident-report-spotting-socgholish-wordpress-injection/

Security operations
| 5 min read

| Jul 22, 2021

| by Kyle Pellett, Tyler Fornes and Evan Reichard

Earlier this week, our SOC stopped a ransomware attack at a large software and staffing
company. The attackers compromised the company’s WordPress CMS and used the
SocGholish framework to trigger a drive-by download of a Remote Access Tool (RAT)
disguised as a Google Chrome update.

In total, four hosts downloaded a malicious Zipped JScript file that was configured to deploy
a RAT, but we were able to stop the attack before ransomware deployment and help the
organization remediate its WordPress CMS.

We’ll walk you through what happened, how we caught it, and provide recommendations on
how to secure your WordPress CMS. We also hope that this story is a good reminder of the
power of asking the right investigative questions.

How we spotted our initial lead

Around 07:00 UTC ( that’s 3:00 am ET), our SOC received an EDR alert for suspicious
Windows Script Host (WSH) activity on one Windows 10 host.

The TL;DR is an employee double clicked a Zipped JScript file named “Chrome.Update.js”
and EDR blocked execution.

Here’s what we were able to infer from our initial lead into the activity:

This doesn’t look like legitimate Google Chrome update activity
Possible “fake update” activity delivered via Zipped JScript file

https://expel.io/blog/incident-report-spotting-socgholish-wordpress-injection/
https://expel.io/blog/category/security-operations
https://www.menlosecurity.com/blog/increase-in-attack-socgholish/
https://expel.com/blog/triage-windows-endpoints-asking-right-questions/


2/7

The activity is only on this host, not prevalent, and unlikely to be a false positive
The WSH process spawned from Windows Explorer, suggesting the employee double-
clicked the JScript file versus part of an exploit-chain

Initial lead: suspicious WSH process activity

As part of our alert triage process, we did a quick check to make sure we weren’t seeing the
WSH activity anywhere else in the environment.

We weren’t. And EDR blocked the activity.

Case closed? Nope.

The quality of your SOC investigations is rooted in the questions you ask. There are two very
important questions we needed to answer before calling it “case closed:”

1. What does the JScript file do?
2. How did the Zipped JScript file get there?

To figure out what the JScript file does, we grabbed a copy of the Zipped JScript file and
submitted it to our internal sandbox (we use VMRay at Expel).

The JScript file did the following at runtime:

Contacted command-and-control servers hosted at
[.]services[.]accountabilitypartner[.]com (195.189.96.41) and [.]drpease[.]com
Opened an HTTP POST request for /pixel.png on TCP port 443
Delivery mechanism consistent with potential SocGholish framework activity



3/7

Given this info, it’s our opinion that “/pixel.png” is likely a second stage payload. We were
unable to acquire a copy of “/pixel.png” for further analysis, but …

Bottom line: it’s bad.

Now we needed to figure out how the Zipped JScript file got there.

This is where the story gets interesting.

How we investigated the SocGholish WordPress injection

We needed to know how the Zipped JScript file got onto the host computer. It would’ve been
easy to assume, “Okay, the Zipped JScript file was likely delivered via phishing and EDR is
blocking the activity, so we’ll block the C2 and move on.”

“Not so fast, my friend.” – Lee Corso

Using EDR live response features, we acquired a copy of the employee’s Google Chrome
browser history as it could potentially contain evidence we needed to determine how the
Zipped JScript file got there. The host in question is a Windows machine, so we grabbed a
copy of C:\Users\\AppData\Local\Google\Chrome\User Data\Default\History” and reviewed it
using internal tools. You can parse the History .db files using SQLite as well.

Sure enough, Google Chrome history recorded that “Chrome.Update.js” was downloaded
after visiting a URL hosted on the company’s WordPress CMS. The company’s WordPress
CMS was likely compromised, resulting in delivery of “fake updates” that deploy the
SocGholish RAT. The company’s WordPress CMS is publicly accessible, so anyone visiting
the site could potentially be compromised.

At this point in our investigation, we declared a critical incident, notified our customer, and in
parallel escalated our on-call procedure to bring in additional cavalry to aid in the
investigation.

Our response and remediation efforts

Google Chrome history contained evidence to suggest that the malicious Zipped JScript file
was downloaded after visiting a webpage on the company’s WordPress site. We let our
customer know that there was evidence to suggest their WordPress site was compromised
and to invoke their internal Incident Response plan. We also armed the customer with
information about command-and-control servers and advised them to implement blocks.

Adding to the excitement, as the late night hours turned into early morning hours on the East
Coast, our SOC started to receive additional EDR alerts for deployment of the malicious
Zipped JScript on additional Windows 10 hosts.

https://giphy.com/gifs/sport-corso-3o6fIUOohyg4yegu1G


4/7

EDR blocked that activity as well, but we needed to get a handle on the WordPress situation
quickly. Anytime we’d see a download of the Zipped JScript on a new host, we’d repeat our
process to establish how the file got there. In each case the Zipped JScript file was
downloaded after visiting the company’s WordPress site.

But it turned out that multiple pages on the site were compromised, not just one. This context
was super important.

For situational awareness, we did a quick check and noticed the company was running an
older version of WordPress, 5.5.3. We didn’t have endpoint visibility into the WordPress
server as it was hosted by a third party. If we did, we would have wanted to establish when
and how the site was compromised.

We inferred that the attacker likely exploited a vulnerability in a WordPress plugin or
WordPress 5.5.3. We grabbed source code of any page that was recorded as triggering a
drive-by-download and got to work.

We almost immediately spotted a malicious inline script on every page that triggered a drive-
by download:

Malicious inline script deployed to multiple pages on the company’s WordPress site

We let the customer know about our findings and then turned our attention towards decoding
and deobfuscating the script.

Most of the obfuscation consisted of base64 encoded functions and strings. With the help of
the Chrome DevTools Console, we stepped through the obfuscated script and eventually
landed on the following:



5/7

Decoded: malicious inline script deployed to multiple WordPress pages

From the decoded script above, you’ll see that to trigger the drive-by download, the user
must be referred to the site (not referred from the same site) and be running Windows. The
Zipped JScript was served from notify.aproposaussies[.]com (179.43.169.30). At the time of
writing, only Kaspersky (1/87) has flagged the domain as malicious on VirusTotal.

Everything is not fine.

We now understand what’s happening.

At this point, the customer was already in the process of removing the malicious inline scripts
and updating to the most recent version of WordPress.

We did one last check of the environment to make sure no additional hosts downloaded the
evil Zipped JScript file, checked to make sure that no hosts were talking to known C2
servers, and that no other malicious processes had executed. We asked the right questions
and in doing so, figured out what happened.



6/7

A quick recap:

The attackers likely used the “SocGholish” framework to inject a malicious script into multiple
pages on the company’s WordPress site by exploiting a vulnerability in a WordPress plugin
or WordPress 5.5.3. If an employee navigated to a compromised web page from a device
running a Windows OS, an obfuscated inline script triggered a drive-by download of a ZIP file
with an embedded Windows JScript file. The malicious JScript file was configured to enable
remote access to infected hosts by communicating with command-and-control (C2) servers
hosted on legitimate compromised infrastructure. That remote access is then typically used
to deploy variants of the WASTEDLOCKER family of ransomware.

Lessons learned and tips to prevent similar incidents

WordPress security and its ecosystem has improved over the years, but it’s still an attack
vector. Keep up to date on patches, but also:

Run trusted and well-known WordPress plugins. These tend to have had more scrutiny
and more focus on security.
Follow a WordPress hardening guide or install a WordPress security plug-in. There are
many, so choose one that is right for you.
Explore implementing or updating your website Content Security Policy to block
malicious scripts.
MFA everything and all users.
Lock down your dev and staging instances, too (including adding MFA). You need to
control the entire chain of the website, not just the final site.
If a third party hosts your WordPress site, have all the contact info and recovery info
needed in case of an incident.
Run an IR tabletop exercise where the initial entry point is your WordPress site.

Remember, the quality of your SOC investigations is rooted in the questions you ask.

If we didn’t answer, “How did it get there?” we would have missed a huge finding that the
company’s WordPress site was compromised, resulting in drive-by downloads.

Subscribe

‹ Last Post
Next Post ›
All Posts

https://www.darkreading.com/attacks-breaches/-socgholish-attack-framework-powers-surge-in-drive-by-attacks
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://info.expel.io/oh-noes
https://expel.com/blog/well-that-escalated-quickly-how-a-red-team-went-from-domain-user-to-kernel-memory/
https://expel.com/blog/how-should-mdr-provider-support-compliance-goals/
https://expel.io/blog/


7/7

Someone in your industry got hit with ransomware. What now?

We’re noticing a trend in ransomware attacks. But that doesn’t mean it’s time to go into panic
mode. Find out what you need to know and get some tips on how you can keep your org
safe.

Read More

https://expel.com/blog/someone-in-your-industry-got-hit-with-ransomware-what-now/

