Evade Sandboxes With a Single Bit — the Trap Flag

7' unit42.paloaltonetworks.com/single-bit-trap-flag-intel-cpu/

Mark Lim July 19, 2021

By Mark Lim
July 19, 2021 at 3:30 PM

Category: Application Advisory/Analysis, Malware, Unit 42

Tags: Cortex, Intel, Lampion, Sandbox, threat prevention, Trap Flag, WildFire

This post is also available in: H4<:E (Japanese)

Executive Summary

Unit 42 has discovered a specific single bit (Trap Flag) in the Intel CPU register that can be
abused by malware to evade sandbox detection in general purposes. Malware can detect
whether it is executing in a physical or virtual machine (VM) by monitoring the response of
the CPU after setting this single bit.

Sandboxing is a popular technique used to detect whether a sample is malicious. A sandbox
analyzes the behaviors of the binary as it executes inside a controlled environment. To
overcome the challenge of analyzing a large number of binaries with limited computing
resources, virtual machines are used to build sandboxes. To evade detection, malware will

1/7


https://unit42.paloaltonetworks.com/single-bit-trap-flag-intel-cpu/
https://unit42.paloaltonetworks.com/author/mark-lim/
https://unit42.paloaltonetworks.com/category/application-analysis/
https://unit42.paloaltonetworks.com/category/malware-2/
https://unit42.paloaltonetworks.com/category/unit-42/
https://unit42.paloaltonetworks.com/tag/cortex/
https://unit42.paloaltonetworks.com/tag/intel/
https://unit42.paloaltonetworks.com/tag/lampion/
https://unit42.paloaltonetworks.com/tag/sandbox/
https://unit42.paloaltonetworks.com/tag/threat-prevention/
https://unit42.paloaltonetworks.com/tag/trap-flag/
https://unit42.paloaltonetworks.com/tag/wildfire/
https://unit42.paloaltonetworks.jp/single-bit-trap-flag-intel-cpu/

try to determine whether it is executing in a physical or virtual machine. When the malware
finds out it is executing in a virtual machine, it will terminate its execution or provide fake
outputs to hide its real intentions.

Some of the most common evasion techniques involve malware conducting various system
checks against the environment it is executing in. For example, malware will often look for
abnormal screen resolution, hard disk and physical memory size. Sandboxes can build
countermeasures, such as returning fake information to the malware during these checks.

This blog documents how malware can detect the differences in CPU behaviors in a virtual or
physical machine with only a single bit in the CPU register.

Palo Alto Networks customers are protected from malware families using similar sandbox
evasion techniques with Cortex XDR or the Next-Generation Firewall with WildFire and
Threat Prevention security subscriptions.

Single-Step Mode With a Single Bit — the Trap Flag (TF)

To detect the use of a VM in a sandbox, malware could check the behavior of the CPU after
the trap flag is enabled.

The trap flag (TF) is the 8th single bit in the EFLAGs register of the Intel x86 CPU
architecture. If the TF is enabled before a single instruction is executed, the CPU will raise
an exception (single-step mode) after the instruction is completed. This exception stops the
CPU execution to allow the contents of the registers and memory location to be examined by
the exception handler. Before allowing code execution to continue, the CPU also has to clear
the TF.

To determine whether a VM is used, malware can check whether the single-step exception
was delivered to the correct CPU instruction, after executing specific instructions (e.g.
CPUID, RDTSC, IN) that cause the VM to exit with the TF enabled. During VM exits, the
hypervisor — also known as Virtual Machine Monitor (VMM) — will emulate the effects of the
physical CPU it encounters.

The following sequence of instructions explains the CPU’s behavior after enabling the TF in
a physical machine.

pushf
or dword ptr [esp],
popt

rdtsc

nop

nop
Figure 1. CPU instructions to enable TF.

2/7


https://www.paloaltonetworks.com/cortex/cortex-xdr
https://www.paloaltonetworks.com/network-security/next-generation-firewall
https://www.paloaltonetworks.com/products/secure-the-network/wildfire
http://paloaltonetworks.com/products/secure-the-network/subscriptions/threat-prevention

The first three instructions enable the TF bit in the EFLAGs register of the CPU. RDTSC is
executed with the TF enabled. In a physical machine, the exception would be delivered to
the first no operation (NOP) instruction (0x00401073). Take note that the exception occurred
on the instruction immediately after the execution of the instruction with TF enabled.

pushf
or dword ptr [esp],
popt

rdtsc 3 TF Enabled
.text:00401073 nop 3 exception

nop
2. Execution in a physical machine.
Executing the same sequence of instructions in a VM would have a different effect. In a VM,
executing RDTSC would result in a VM exit. The hypervisor will carry out its usual tasks of
emulating the behaviors of the RDTSC instruction. However, an implementation of the
hypervisor with incorrect emulation of the TF would result in the TF being ignored and the
code execution will continue to the first NOP instruction. During the execution of the first
NOP instruction, the TF is still enabled as the TF was not handled by the hypervisor. This
results in an exception occurring on the second NOP instruction (0x00401073). The correct
implementation will require the hypervisor to inject a debug exception after emulating the
instruction that caused the VM exit and clearing the TF.

pushf
or dword ptr [esp],
popt

rdtsc 3 TF Enabled

nop 3 TF Enabled
.text: 00401074 nop ; exception
3. Execution in a virtual machine.

As a sandbox evasion technique, malware will use an exception handler in addition to the
above instruction sequence to examine which instruction the exception occurred on. The
next section describes a real-world example of a malware family that made use of this
technique to evade sandboxes.

Real-World Example

Lampion is a malware family that was targeting users in Portugal. Lampion employed
multiple system checks to evade sandbox detection. One of the techniques is making use of
the single-step mode with TF, as discussed in the previous section.

Lampion implemented all its system checks with x86 assembly instructions and minimal
Windows API calls. This allowed the Lampion samples to conceal their behavior from the
sandboxes. The Lampion samples would terminate if the malware determined it was

3/7



executing inside a VM. The system checks are also intertwined with multiple anti-reverse
engineering techniques to hide from human analysts.

The following screenshot shows a snippet of instructions hidden in the Lampion sample that
conducts the system check.

db 'HeapCreate',®
word_7F@E17 dw

db 'GetLocalTime',®
word_7F@E26 dw

db ‘CreateDirectoryW’,®
word_7F@E39 dw

db 'RegDeleteValuelW',®

popf ; TF enabled!
©e7FOE4C rdtsc ; Privileged instruction

nop

pushf

pushf

pusha

lea

jnp

push

pusha

Jmp loc_7F8CD7

word_7FBE&7 dw
db 'OpenProcess',®@

Figure 4. Instructions in Lampion used to evade sandboxes.
The following is pseudocode to demonstrate how Lampion carries out one of its sandbox
system checks by enabling TF on an instruction that causes the VM to exit.

47



Anti_sandbox_Check()

{

try
{
pushfd
or dword [esp], 0x100
popfd
rdtsc
nop
pushf
pushf
}
catch ()
{
dwEIP -
bByte = ReadByte(dwEIP);
if bByte =% 0x90 ExitProcess();

Figure 5. Pseudocode of Lampion carrying out anti sandbox check using TF.

The instruction right after the instruction RDTSC is NOP. The byte code for the NOP
instruction is 0x90. The exception handler would traverse the ContextRecord structure to
locate the address of the instruction in the Extended Instruction Pointer register (EIP) when
the exception occurred. The instruction is then compared against the 0x90 byte and the
malware will exit if the check fails.

The following screenshot shows the EIP=0x7FOE4E when the exception happened.

5/7



@ @1 88 FF FF FF FF FF FF+dd 18@7Fh

FF FF FF FF FF FF FF FF @FFFFFFFFh

4F FF FF @2 81 @0 @@ 7F @FFFFFFFFh
@FFFFFFFFh
@FFFFFFFFh

68 @e+dd
8 88+dd @

Figure 6. Address of the instruction where the exception occurred.
Malware vs Sandbox Authors

For many years, there has been an ongoing cat and mouse game between malware authors
crafting evasion techniques to prevent effective analysis, and sandbox authors who research
novel ways to defeat those evasions.

This is one of the main drivers that led us at Palo Alto Networks to build our own custom
hypervisor for malware analysis. Since we have full control over the software stack, including
the virtualization layer, we can react to new and emerging threats. In this particular case,
once we had identified the issue with the incorrect emulation of the trap flag, our hypervisor
team was able to test and deploy a fix. This evasion issue has since been resolved for any
malware sample using this technique.

Palo Alto Networks customers are further protected from malware families using similar
sandbox evasion techniques with Cortex XDR or the Next-Generation Firewall with WildFire
and Threat Prevention security subscriptions. AutoFocus customers can track the malware
discussed here using the Lampion tag. Other similar sandbox evasion techniques that rely
on abusing Intel CPU instructions or registers will not work against WildFire.

Indicators of Compromise

Lampion Sample

EB3F2BES571BB6B93EE2EOB6180C419E9FEBFDB65759244EA04488BE7C6F5C4E2

Get updates from
Palo Alto

6/7


https://www.paloaltonetworks.com/cortex/cortex-xdr
https://www.paloaltonetworks.com/network-security/next-generation-firewall
https://www.paloaltonetworks.com/products/secure-the-network/wildfire
http://paloaltonetworks.com/products/secure-the-network/subscriptions/threat-prevention
https://autofocus.paloaltonetworks.com/#/tag/Unit42.Lampion

Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy.
Statement.

7/7


https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

