
1/8

Adjusting the Anchor
kryptoslogic.com/blog/2021/07/adjusting-the-anchor/

Authored by: Kryptos Logic Vantage Team on Thursday, July 15, 2021
 Tags: anchor

Overview

AnchorDNS is a backdoor used by the TrickBot actors to target selected high value victims. It has been seen
delivered by both TrickBot and Bazar malware campaigns . AnchorDNS is particularly difficult to track given
that it is deployed only post-infection and that too only after a period of reconnaissance, once the malware
operators have established that the target is of special interest.

Following analysis of AnchorDNS samples published in recent reporting , we have observed that the C2
communications protocol of AnchorDNS has changed. We also see the use of another Anchor component
called AnchorAdjuster. The newer variants contain a modification to the structure of the messages sent to
the C2, and have added additional encryption routines when creating the DNS queries. Data received from
the C2 is now encoded, thereby making the traffic less obvious.

In this post we analyze the role that AnchorAdjuster plays and outline the changes made to the
communication protocol by the recent AnchorDNS samples.

AnchorAdjuster

AnchorAdjuster is a tool that is used to modify an AnchorDNS sample with an updated config and the
victim’s UUID. The tool is executed by an external command and has been seen being run by CobaltStrike .

A valid series of arguments need to be passed to the AnchorAdjuster for it to execute succesfully. If
arguments are not passed, the tool outputs a message onto the console detailing the arguments required:

using:
anchorAdjuster* --source=<source file> --target=<target file> --domain=<domain name>
 --period=<recurrence interval, minutes, default value 15>-guid

Below is a description of the arguments:

1 2

23

2

https://www.kryptoslogic.com/blog/2021/07/adjusting-the-anchor/
https://twitter.com/kryptoslogic
https://www.kryptoslogic.com/blog/tag/anchor

2/8

Argument Description RequirementsArgument Description Requirements

--source AnchorDNS sample with a blank config Required

--target Name to save the modified AnchorDNS sample Required

--domain Domain C2s to save as config Required

--period Interval between each cycle of DNS queries; default is 15 minutes Optional

--lasthope Number of communication attempts; default is 100 Optional

-guid Flag for initializing the Victim’s UUID in the sample Required

The AnchorAdjuster tool works as follows:

Firstly, if it finds a 16 byte string of AAAAAAAAAAAAAAAA in the AnchorDNS bot, it rewrites it with a UUID
that it generates by calling CoCreateGuid . This creates a UUID unique to the victim machine. The string
AAAAAAAAAAAAAAAA acts as a placeholder for the UUID and is typically stored in the .rand section.

Secondly, if it finds a 66 byte string of all B s, it overwrites this string with XOR encoded C2s. The C2s are
the values that were passed to the AnchorAdjuster’s --domain argument. The XOR key used is a
hardcoded hex value 0x23 .

Finally, using the name passed to the --target argument, the tool creates a new AnchorDNS bot with
these modifications.

Below is an example standard output log from the tool after successful execution:

source file size 347648
guid: 743E900F5861EF468E120559E9D23EF8, shift 0x00053C00(343040)
domain: shift 0x00053A04(342532)
OK

This technique reuses an AnchorDNS sample to be able to communicate to new C2s that it provides,
without having to re-compile an entirely new AnchorDNS binary. This also helps the threat actors to hide any
new C2s created, especially if the AnchorDNS sample were to be discovered by a threat researcher.

AnchorDNS

AnchorDNS communicates to its C2 servers using DNS Tunnelling. Using the DNS protocol for command &
control benefits AnchorDNS because such requests are often allowed to pass through firewalls. Using this
method, AnchorDNS is able to exfiltrate data to its C2s in the form of DNS queries. The data is encoded and
made to appear as subdomains. In addition, the C2 can communicate back to the bot by sending information
in the form of DNS A records whereby the data is reconstructed by the bot based on AnchorDNS’s specific
format.

Review on how AnchorDNS works

To get a better grasp on what new changes have been implemented to this DNS communication, this section
will do a quick high-level review on how AnchorDNS works.

3/8

1. Upon initial execution, AnchorDNS gains persistence on the machine by creating a scheduled task that
is set to run every 15 minutes.

The frequency of the scheduled task can be modified again by the bot if the C2 sends a
command with instructions to do so.

2. Each run cycle involves a series of commands transmitted as DNS queries between the bot and the
C2.

Initial beacon message.
Request from the bot for command to be executed.
Request from the bot for a payload (if the command requires one).
Send report on the command’s execution.

Preparing the messages for the C2

The name of the bot at the start of the message has changed from anchor_dns to stickseed . This new
name is very different from that of the name used in the past variants . One possible explanation is that
tick in stickseed represents the Windows API GetTickCount and seed for a pseudorandom

number generator, the two functions that we see being frequently used in the new variant.

The GUID created by the Bot is recorded by the C2 to keep track of the different infected machines. The
format of the GUID is as follows:

 <Computer_Name>_W<major version><minor version><version build number>.<16 bytes UUID>

The 16 byte UUID is hardcoded in the .rand section of the AnchorDNS PE file. If there are no 16 bytes in
the .rand section or if there is a string AAAAAAAAAAAAAAAA in that section, the bot skips making any DNS
queries.

Example GUID :
 ADMINWIN10_W629200.1BDD88D8278746A68CE4BCF8DCF27B7E

Below is a summary of the messages and the command sent to the C2:

C2
Command Description Info sent by New Variant Info sent by Previous Variant

0 Register Bot /stickseed/<GUID>/0/<Windows
OS Type>/1001/<Bot IP>/<32
random hex bytes>/<32 random
alphanumeric characters>/

/anchor_dns/<GUID>/0/<Windows
OS Type>/1001/<Bot IP>/<32
random hex bytes>/<32 random
alphanumeric characters>/

1 Request Bot
command

/stickseed/<GUID>/1/<32 random
alphanumeric characters>/

/anchor_dns/<GUID>/1/<32 random
alphanumeric characters>/

5 Request
File

/stickseed/<GUID>/5/<filename> /anchor_dns/<GUID>/5/<filename>

10 Send result
of Bot
command
execution

/stickseed/<GUID>/10/<Bot
Command>/<Bot Command
ID>/<Result of Command
execution>/

/anchor_dns/<GUID>/10/<Bot
Command>/<Bot Command
ID>/<Result of Command
execution>/

The DNS Queries

4

4/8

Each message above, made by the AnchorDNS bot, to send to the C2 involves a sequence of 3 types of
DNS queries . This order is still maintained in the new variants. The table below shows a summary of the
sequence of DNS queries made:

Query
Order Info Sent Info Received

0 Send info including command Receive IP record from C2

1 Convert IP to identifier and send to C2 Receive IP record from C2

2 Convert IP to size; send identifier and size to
C2

Receive data in the form of multiple IP
records

Crafting the Queries

The new variants make changes to the way in which the queries are crafted.

Old Variant:

To better understand the changes made, this section will briefly review how the queries were crafted in the
previous variants. Each query would contain information about the query type and a 16 byte UUID. The
query type would inform the C2 on what type of message it is receiving and the UUID helps it keep track of
the queries. If the crafted query is type 0, the message gets divided into parts. This is to ensure that the
length of the query remains under 255 characters. Finally, the queries are XOR’ed with the key 0xb9 . This
is the only encoding we see in the previous variants.

The table below summarizes the queries crafted in the old variants :

Query
Order

Query
Type Old Variant Format Encoding

0 0 0<UUID><(BYTE)Current Part><(BYTE)Total Parts>
<Divided Message>

xor with
0xb9

1 1 1<UUID><(DWORD)Identifier> xor with
0xb9

2 2 2<UUID><(DWORD)Identifier><(DWORD)Size> xor with
0xb9

New Variant:

In the new variant, before a query is crafted, the message in each DNS query type is XOR’ed with the key
United States of America (USA) . After encoding the message, a 16 byte UUID is generated for each

query type (like the previous variant, the UUID is for the C2 to keep track of the query) and is further
encoded with a custom Base32 algorithm using the custom dictionary
dghbcijklmnfqrwxyz23stuopaev4569 .

The bot then calculates if the message needs to be divided into parts for all 3 DNS query types (in the
previous variant we see this for only the query type 0).

Below is a python function that calculate the number of parts a message would get divided into and the size
of each part:

5

6

5/8

import random

def get_parts(msg_len: int, c2_len: int) -> list():
 blocks = list()
 foo = 5 * (0xba - 0x1a - c2_len - 8)
 fee = ((foo & 7) + foo) >> 3
 faa = fee * 0.85
 if faa > (fee - 5):
 faa = (fee - 5) * 0.85
 i, count = 0, 0
 while i < msg_len:
 block_sz = msg_len - i
 if (msg_len - i) > fee:
 rand = random.randint(0,0x7fff)
 fii = fee - 5
 if count:
 fii = fee
 block_sz = int(((rand * (fii - faa)) / 32767.0) + faa)
 i += block_sz
 count += 1
 blocks.append(block_sz)
 return blocks

In the new variant, the DNS query types are labeled differently (but still follow the same order as the
previous):

Query Order Query Type Message

0 0x0001 /stickseed/<GUID>/<C2 Command>/<Info if any>/

1 0xfffe <Identifier DWORD>

2 0xffff <Identifier DWORD><Size in DWORD of data received>

For each divided message part, additional information is appended. The image below gives an example of a
message for DNS query type 0x0001 and how each divided part is crafted:

6/8

Message being built for the queries

The resulting data is encoded with a custom Base32 algorithm and the encoded Base32 UUID is appended
at the end. So for example, the message parts above would result in the following types of DNS queries
being made:

efkezwpdxpsq3lsdv2mp3u5kl.mppdslkiaohiqmhplaekp.rrzynhijic42cljjandescbf4nim
 .anoopcsmswhzpqeyphgvzre3oqsz.ygndzp3glhsnojidcddddjddddddabb.ygacsziqpmpqcvdkb2zhu2gjzg
 .domain.com

pnuctkdw5ntjcbrnxhcqy2txz3gjzo.cftgod2flrzglesnzlcbfqildx9ntdbqgns
 .nisgziha3eljwgntmtnhnqrdnuwb2cjgfoch.ldddlddddqddddhdpby.ygacsziqpmpqcvdkb2zhu2gjzg
 .domain.com

s2sw3tcn3nc6guihblvwuudfc22wytzdhz.cjyipjnvlqihggnyhn26chizt4jdcksya
 .dzbyb6gxnyvgdgdddygdddydjlqd.ygacsziqpmpqcvdkb2zhu2gjzg.domain.com

https://www.kryptoslogic.com/blog/2021/07/adjusting-the-anchor/images/queries.jpg

7/8

Query Responses

The query responses for each DNS query type have been slightly modified. Before the start of making the 3
types of DNS queries, the bot tries to resolve the C2 domain to an IP address. This IP address is used as a
check by the bot to confirm if the C2 has received the message. Below is a table on what each response
means.

C2 IP Record
Response Description

255.255.255.255 Retry, cannot reach

<C2_IP> Message received by C2, send next message part of the query type

239.255.255.255 Sleep and retry

Single IP For query type 0xfffe , the IP is the identifier

Multiple IPs For query type 0xffff , the IPs form as a structure for the Bot to parse to
data

As with the previous version, the DNS query type 0xffff responds with multiple IP records. These
records form a particular structure (that has been reverse engineered before), whereby the final message
is constructed. The change seen is that the resulting data built from the IP records is xor encoded. The
key to decode the message is Miguel de Cervantes Saavedra .

Conclusion

Despite their simplicity, the changes seen in AnchorDNS are still effective in evading detection. The use of
AnchorAdjuster allows the threat actors to modify the AnchorDNS backdoor in-place, providing a stealthy
way to add fresh C2s that have been created for new targets. The actors behind AnchorDNS continue to
actively develop their toolset, increasing flexibility and raising the barrier for detection.

IOCs

SHA256 Description

cbff159d0b178734248209ae70565d09dddf397ea4e897bf99206ddd74673e6f AnchorDNS 64-bit DLL

a8a8c66b155fcf9bfdf34ba0aca98991440c3d34b8a597c3fdebc8da251c9634 AnchorDNS 64-bit DLL

9fdbd76141ec43b6867f091a2dca503edb2a85e4b98a4500611f5fe484109513 AnchorDNS 64-bit DLL

ba801f1c2e2c5f5cd961e887cb0776f2d5cee8d17164f29b138a8952dd162165 AnchorDNS 64-bit DLL

0d6a10df6eeb1dbb88b4d625873ed13daa367e165374a72daa16170af3ee31a0 AnchorDNS 64-bit DLL

f93b838dc89e7d3d47b1225c5d4a7b706062fd8a0f380b173c099d0570814348 AnchorAdjuster 64-bit
EXE

3ab8a1ee10bd1b720e1c8a8795e78cdc09fec73a6bb91526c0ccd2dc2cfbc28d AnchorAdjuster 64-bit
EXE

56

8/8

SHA256 Description

c1ae70683da042792a504847b426a55cdcbca80dca12517f581a4e089a1f8932 AnchorAdjuster 64-bit
EXE

C2s

farfaris[.]com
kalarada[.]com
xyskencevli[.]com
sluaknhbsoe[.]com
jetbiokleas[.]com
nyhgloksa[.]com

References

