Adjusting the Anchor

kryptoslogic.com/blog/2021/07/adjusting-the-anchor/

v Queries
» tf2zdddddddddy999dddhdddddpvng. nyh33qududaycxhwliulkan2sh. s luaknhbsoe.com: type
+ Answers
* tfzdddddddddy999dddhdddddpvng. nyh33qududaycxhw2iuZkan2sb. s luaknhbsoe.com: type A a55 4.98.0.0
» tfzdddddddddy%9%9dddhdddddpvng. nyh33qududaycxhw2iuZkan2sb.sluaknhbsoe.com: type A i 48.47.88.79
» tfzdddddddddy999dddhdddddpvng. nyh33gududayczhw2 iu2kan2sb. s luaknhbsoe.com: type A; class G4,.86.68.71
Lfzdddddddddy999dddhdddddpvng. nyh33gqududaycxhw2 iuZkan2sb. sluaknhbsoe.com: type A, class 72.84.64.290
trzdddddddddy999dddhdddddpvng. nyh33qududaycxhwz iuZkan2sb.sluaknhbsoe.com: type A, class 56.84.24.92
tfzdddddddddy999dddhdddddpvng. nyh33qududaycxhw iuZkan2sb. sluaknhbsoe.com: type . I 52.87.69.75
tfzddddddd ddy999dddhdddddpvng. nyh33qududaycxhw? iu2kan2sh. s luaknhhsoe.com: type : 1 B.8.@.48
» tfzdddddddddy999dddhdddddpvng. nyh33qududaycxhwliulkan2sbh. s luaknhbsoe.com: type A las: 12.98.8B.72
* tfzdddddddddy999dddhdddddpvng. nyh33qududaycxhwliuZkan2sb. s luaknhbsoe.com: type A 51 68.83.44.76
* tfzdddddddddy999dddhdddddpvng. nyh33qududaycxhw2iuZkan2sb. s luaknhbsoe.com: type A 58 20.67.15. 22
* tfzdddddddddy999dddhdddddpvng. nyh33qududaycxhw2iu2kan2sb.sluaknhbsoe.com: type A L 48.83.116.91
» tfzdddddddddy999dddhdddddpvng. nyh33qududaycxhw2iuZkan2sb.sluaknhbsoe.com: type A a5 24.69.38.1
» tfzdddddddddy999dddhdddddpvng. nyh33qududaycxhw2iuZkan2sb. sluaknhbsoe.com: type A i 32.43.48. 34
Lrzdddddddddy998dddhdddddpvng. nyh33qududaycxhw2 iu2kan2sb. s luaknhbsoe.com: Lype A, class 28.93.59.59
CTzdddddddddy999dddhdddddpvng. nyh33qududaycxhwZiuZkanzZsb.s luaknhbsoe.com: Type A A58 44,58.51. 68
tfzdddddddddy999dddhdddddpvng. nyh3dqududaycxhw2 iuZkan2sh. s luaknhbsoe.com: type lass 1 16.6.17.5

Authored by: Kryptos Logic Vantage Team on Thursday, July 15, 2021
Tags: anchor

Overview

AnchorDNS is a backdoor used by the TrickBot actors to target selected high value victims. It has been seen
delivered by both TrickBot and Bazar! malware campaigns2. AnchorDNS is particularly difficult to track given
that it is deployed only post-infection and that too only after a period of reconnaissance, once the malware
operators have established that the target is of special interest.

Following analysis of AnchorDNS samples published in recent reporting23, we have observed that the C2
communications protocol of AnchorDNS has changed. We also see the use of another Anchor component
called AnchorAdjuster. The newer variants contain a modification to the structure of the messages sent to
the C2, and have added additional encryption routines when creating the DNS queries. Data received from
the C2 is now encoded, thereby making the traffic less obvious.

In this post we analyze the role that AnchorAdjuster plays and outline the changes made to the
communication protocol by the recent AnchorDNS samples.

AnchorAdjuster

AnchorAdjuster is a tool that is used to modify an AnchorDNS sample with an updated config and the
victim’s UUID. The tool is executed by an external command and has been seen being run by CobaltStrikeZ2.

A valid series of arguments need to be passed to the AnchorAdjuster for it to execute succesfully. If
arguments are not passed, the tool outputs a message onto the console detailing the arguments required:
using:

anchorAdjuster* --source=<source file> --target=<target file> --domain=<domain name>

--period=<recurrence interval, minutes, default value 15>-guid

Below is a description of the arguments:

1/8

https://www.kryptoslogic.com/blog/2021/07/adjusting-the-anchor/
https://twitter.com/kryptoslogic
https://www.kryptoslogic.com/blog/tag/anchor

Argument Description Requirements

--source AnchorDNS sample with a blank config Required
--target Name to save the modified AnchorDNS sample Required
--domain Domain C2s to save as config Required
--period Interval between each cycle of DNS queries; default is 15 minutes = Optional
--lasthope Number of communication attempts; default is 100 Optional
-guid Flag for initializing the Victim’s UUID in the sample Required

The AnchorAdjuster tool works as follows:

Firstly, if it finds a 16 byte string of AAAAAAAAAAAAAAAA in the AnchorDNS bot, it rewrites it with a UUID
that it generates by calling CoCreateGuid . This creates a UUID unique to the victim machine. The string
AAAAAAAAAAAAAAAA acts as a placeholder for the UUID and is typically stored in the .rand section.

Secondly, if it finds a 66 byte string of all B s, it overwrites this string with XOR encoded C2s. The C2s are
the values that were passed to the AnchorAdjuster’s --domain argument. The XOR key used is a
hardcoded hex value ©x23 .

Finally, using the name passed to the --target argument, the tool creates a new AnchorDNS bot with
these modifications.

Below is an example standard output log from the tool after successful execution:

source file size 347648

guid: 743E900F5861EF468E120559E9D23EF8, shift Ox00053C00(343040)
domain: shift Ox00053A04(342532)

OK

This technique reuses an AnchorDNS sample to be able to communicate to new C2s that it provides,
without having to re-compile an entirely new AnchorDNS binary. This also helps the threat actors to hide any
new C2s created, especially if the AnchorDNS sample were to be discovered by a threat researcher.

AnchorDNS

AnchorDNS communicates to its C2 servers using DNS Tunnelling. Using the DNS protocol for command &
control benefits AnchorDNS because such requests are often allowed to pass through firewalls. Using this
method, AnchorDNS is able to exfiltrate data to its C2s in the form of DNS queries. The data is encoded and
made to appear as subdomains. In addition, the C2 can communicate back to the bot by sending information
in the form of DNS A records whereby the data is reconstructed by the bot based on AnchorDNS’s specific
format.

Review on how AnchorDNS works

To get a better grasp on what new changes have been implemented to this DNS communication, this section
will do a quick high-level review on how AnchorDNS works.

2/8

1. Upon initial execution, AnchorDNS gains persistence on the machine by creating a scheduled task that
is set to run every 15 minutes.
The frequency of the scheduled task can be modified again by the bot if the C2 sends a
command with instructions to do so.

2. Each run cycle involves a series of commands transmitted as DNS queries between the bot and the

C2.

o Initial beacon message.

o Request from the bot for command to be executed.
o Request from the bot for a payload (if the command requires one).
o Send report on the command’s execution.

Preparing the messages for the C2

The name of the bot at the start of the message has changed from anchor_dns to stickseed . This new
name is very different from that of the name used in the past variants. One possible explanation is that

tick in stickseed represents the Windows APl GetTickCount and seed for a pseudorandom
number generator, the two functions that we see being frequently used in the new variant.

The GUID created by the Bot is recorded by the C2 to keep track of the different infected machines. The

format of the GUID is as follows:
<Computer_Name>_W<major version><minor version><version build number>.<16 bytes UUID>

The 16 byte UUID is hardcoded inthe .rand section of the AnchorDNS PE file. If there are no 16 bytes in
the .rand section or if there is a string AAAAAAAAAAAAAAAA in that section, the bot skips making any DNS

queries.

Example GUID :

ADMINWIN10O_W629200.1BDD88D8278746A68CE4BCF8DCF27B7E

Below is a summary of the messages and the command sent to the C2:

Cc2

Command Description

0 Register Bot

1 Request Bot
command

5 Request
File

10 Send result
of Bot
command
execution

The DNS Queries

Info sent by New Variant

/stickseed/<GUID>/0/<Windows
0S Tvpe>/1001/<Bot IP>/<32
random hex bvtes>/<32 random
alphanumeric characters>/

/stickseed/<GUID>/1/<32 random
alphanumeric characters>/

/stickseed/<GUID>/5/<filename>

/stickseed/<GUID>/10/<Bot
Command>/<Bot Command
ID>/<Result of Command
execution>/

Info sent by Previous Variant

/anchor dns/<GUID>/0/<Windows
0S Tvpe>/1001/<Bot IP>/<32
random hex bvtes>/<32 random
alphanumeric characters>/

/anchor dns/<GUID>/1/<32 random
alphanumeric characters>/

/anchor_dns/<GUID>/5/<filename>

/anchor dns/<GUID>/10/<Bot
Command>/<Bot Command
ID>/<Result of Command
execution>/

3/8

Each message above, made by the AnchorDNS bot, to send to the C2 involves a sequence of 3 types of
DNS queries. This order is still maintained in the new variants. The table below shows a summary of the
sequence of DNS queries made:

Query

Order Info Sent Info Received

0 Send info including command Receive IP record from C2

1 Convert IP to identifier and send to C2 Receive IP record from C2

2 Convert IP to size; send identifier and size to Receive data in the form of multiple IP

Cc2 records

Crafting the Queries

The new variants make changes to the way in which the queries are crafted.
Old Variant:

To better understand the changes made, this section will briefly review how the queries were crafted in the
previous variants. Each query would contain information about the query type and a 16 byte UUID. The
query type would inform the C2 on what type of message it is receiving and the UUID helps it keep track of
the queries. If the crafted query is type 0, the message gets divided into parts. This is to ensure that the
length of the query remains under 255 characters. Finally, the queries are XOR’ed with the key 0xb9 . This
is the only encoding we see in the previous variants.

The table below summarizes the queries crafted in the old variants®:

Query Query

Order Type Old Variant Format Encoding
0 0 O<UUID><(BYTE)Current Part><(BYTE)Total Parts> xor with
<Divided Message> Oxh9
1 1 1<UUID><(DWORD)Identifier> xor with
0xb9
2 2 2<UUID><(DWORD)Identifier><(DWORD)Size> xor with
0xb9
New Variant:

In the new variant, before a query is crafted, the message in each DNS query type is XOR’ed with the key
United States of America (USA) . After encoding the message, a 16 byte UUID is generated for each

query type (like the previous variant, the UUID is for the C2 to keep track of the query) and is further

encoded with a custom Base32 algorithm using the custom dictionary
dghbcijklmnfqrwxyz23stuopaev4569 .

The bot then calculates if the message needs to be divided into parts for all 3 DNS query types (in the
previous variant we see this for only the query type 0).

Below is a python function that calculate the number of parts a message would get divided into and the size
of each part:

4/8

import random

def get_parts(msg_len: int, c2_len: int) -> list():
blocks = list()
foo = 5 * (0Oxba - Oxla - c2_len - 8)
fee = ((foo & 7) + foo) >> 3
faa = fee * 0.85
if faa > (fee - 5):
faa = (fee - 5) * 0.85
i, count = 0, 0
while i < msg_len:
block_sz = msg_len - i
if (msg_len - i) > fee:
rand = random.randint (0, Ox7fff)
fii = fee - 5
if count:
fii = fee
block_sz = int(((rand * (fii - faa)) / 32767.0) + faa)
i += block_sz
count += 1
blocks.append(block_sz)
return blocks

In the new variant, the DNS query types are labeled differently (but still follow the same order as the
previous):

Query Order Query Type Message

0 0x0001 /stickseed/<GUID>/<C2 Command>/<Info if any>/
1 Oxfffe <Identifier DWORD>
2 Oxffff <Identifier DWORD><Size in DWORD of data received>

For each divided message part, additional information is appended. The image below gives an example of a
message for DNS query type 0x0001 and how each divided part is crafted:

5/8

00000pE0: 2f73 7469 636b 7365 6564 243 Af4d 504e /stickseed/COMPN
00000010: 414d 455f 5736 3239 3230 302e 3142 4444 AME_W629200.1BDD
0OEEEE20: 3838 4438 3237 3837 3436 4136 3843 4534 88DB8278746A68CE4
00000030: 4243 4638 4443 4632 3742 3745 2f30 2f57 BCF8DCF27BYE/0/W
0POOBO40: 696e 646T 7773 2038 2078 3634 2f31 3030 indows 8 x64/100
000EEE50: 312f 302e 302e 302e 302f 4641 3041 3944 1/0.0.0.0/FAPASD
0EEEEEE6O: 3739 4541 3930 3744 4330 3039 3230 4231 7S9EA907DCOO920B1
QEEEEETEO: 3335 3532 3742 3843 3132 3941 3041 3438 35527BBC129ADA48
DEEEEEE0: 3438 4341 4241 3244 3041 3937 4542 3232 4BCABAZDDASTEB22
00000090: 3137 3942 4244 3243 3130 2f63 4b57 5673 179BBD2C10/cKWVs
000000a0: 776e 454a 4c30 6449 676 5754 7244 7646 wnEJLOdIgoWTrDvF

00EEBBbE: 556a 554f 4569 754a 5961 572f UjUOEiuJYawW/
XOR Data
00EE0EEE: 7ald 1did ©@60f 5336 1105 5b26 3c6d 3f28 z..... S6..[&=<m?(

00080010: 610c 283a 255f 5158 1218 657d 706b 112a a.(:%_QX..e}pk.*
00088020: 514c 215c 1264 4c56 4053 3216 5725 6575 QL!\.dLV@S2.Wkeu)
. o 00688030: 226 3451 2722 661a 6211 766c 7aSe 4623 /&4Q'"f.b.v1zAF#
XOR e?d data divided o0000040: gcoa 443c 0312 545d 5358 5952 OF70 5d55 . .D<. .T]SXYR.p]JU
into parts 0OPEEE5@: 4346 534f 1006 657d 7106 132f 5935 5c20 CFSO..el}q../Y5\
00000060: 176a 3120 4d55 4464 2c56 1078 5f55 3058 .j1 MUDd,V.x_UBX—
00088070: 5054 151a 6211 796a 645c 5035 5525 146b PT..b.yjd\P5U%.k
000ORE8A: 4059 3724 3161 5d22 1000 5452 372b 5153 @Y7$1a]"..TR7+0QS
00080090: 111f 6c1l 036d 672d 5844 4a@7 6be4 2212 ..1..mg-XDJ.k.". ~
006000a0: B30b 366a 2356 4408 Gafa 253d 1125 566e ..6j#VD...%=.%Vn
0e6090he: 0039 1466 1007 1c3e 3c@5 777c e

Y
P0E0000O: 7ald 1did ©60Ff 5336 1105 5b26 3c6d 328 z..... S6. . [&<m?(

: PPEEEO1@: 61@c 283a 255f 5158 1218 657d 706b 112a a.(:% QX..elpk.*

First part 0O0E0E20: 514c 215c 1264 4c56 4053 3216 5725 6575 QL!\.dLV@S2.Wkeu
POER0E30: 2f26 3451 2722 661a 6211 766c 7abe 4623 /&4Q'"f.b.vlzAF#
POEBOE4O: Bcla 443c 0312 545d 530070160 G003 080 ..D<..TISHE.....
POEBEE50: BOF3 49 j.1

Y
00000008: 5859 520f 705d 5543 4653 4f1@ 0665 7d71 XYR.pJUCFSO..e}q

Second part 00000016: 8613 2f59 355¢ 2017 6a31 204d 5544 642¢ ../YS\ .j1 MUDd,
00P00028: 5616 785F 5530 5850 5415 1a62 1179 6a64 V.x UGXPT..b.yjd
00000038 5c50 3555 2514 6b4® 5937 2431 615d 2210 \P5U%.k@Y7$1a]".
00000040: 0OPE 6106 A3 BAE® @lbe 5b Li....... [

v

Third part 00000000 5452 372b 5153 111f 6cll 036d 672d 5844 TR7+(QS..1..mg-XD
00000010: 4a07 6b04 2212 030b 366a 2356 4408 Gada J.k."...6j#VD...
00000020: 253d 1125 566 0039 1466 1007 1c3e 3c05 %=.%Vn.9.f...><.
00600030: F77c 0081 0060 0380 @062 e75d [R 1

Query Type Current Part

Total Parts CRC16

Message being built for the queries

The resulting data is encoded with a custom Base32 algorithm and the encoded Base32 UUID is appended
at the end. So for example, the message parts above would result in the following types of DNS queries
being made:

efkezwpdxpsg3lsdv2mp3u5kl.mppdslkiaohigmhplaekp.rrzynhijic42cljjandeschbf4nim
.anoopcsmswhzpqgeyphgvzre3oqsz.ygndzp3glhsnojidcddddjddddddabb.ygacszigpmpqcvdkb2zhu2gjzg
.domain.com

pnuctkdw5Sntjcbrnxhcqy2txz3gjzo.cftgod2flrzglesnzlcbfgildx9ntdbqggns
.nisgziha3eljwgntmtnhngrdnuwb2cjgfoch.ldddlddddgddddhdpby.ygacszigpmpgcvdkb2zhu2gjzg
.domain.com

s2sw3tcn3nc6guihblvwuudfc22wytzdhz.cjyipjnvlgihggnyhn26chizt4jdcksya
.dzbyb6gxnyvgdgdddygdddydjlqd.ygacszigpmpqgcvdkb2zhu2gjzg.domain.com

6/8

https://www.kryptoslogic.com/blog/2021/07/adjusting-the-anchor/images/queries.jpg

Query Responses

The query responses for each DNS query type have been slightly modified. Before the start of making the 3
types of DNS queries, the bot tries to resolve the C2 domain to an IP address. This IP address is used as a
check by the bot to confirm if the C2 has received the message. Below is a table on what each response
means.

C2 IP Record

Response Description

2 o 2818 o 28 o 25FS Retry, cannot reach

<C2_IP> Message received by C2, send next message part of the query type

288) o 28 o 2508 0 25D Sleep and retry

Single IP For query type oxfffe , the IP is the identifier

Multiple IPs For query type oxffff , the IPs form as a structure for the Bot to parse to

data

As with the previous version, the DNS query type oxffff responds with multiple IP records. These
records form a particular structure (that has been reverse engineered before2®), whereby the final message
is constructed. The change seen is that the resulting data built from the IP records is xor encoded. The
key to decode the message is Miguel de Cervantes Saavedra .

Conclusion

Despite their simplicity, the changes seen in AnchorDNS are still effective in evading detection. The use of
AnchorAdjuster allows the threat actors to modify the AnchorDNS backdoor in-place, providing a stealthy
way to add fresh C2s that have been created for new targets. The actors behind AnchorDNS continue to
actively develop their toolset, increasing flexibility and raising the barrier for detection.

I0Cs

SHA256 Description

cbff159d0b178734248209ae70565d09dddf397ea4e897bf99206ddd74673e6f AnchorDNS 64-bit DLL
aB8a8c66b155fcfbfdf34balaca98991440c3d34b8a597c3fdebc8da251¢c9634 AnchorDNS 64-bit DLL
9fdbd76141ec43b6867f091a2dca503edb2a85e4b98a4500611f5fe484109513 AnchorDNS 64-bit DLL
ba801f1c2e2c5f5cd961e887cb0776f2d5cee8d17164f29b138a8952dd162165 AnchorDNS 64-bit DLL
0d6a10df6eeb1dbb88b4d625873ed13daa367e165374a72daa16170af3ee31a0 AnchorDNS 64-bit DLL

f93b838dc89e7d3d47b1225¢5d4a7b706062fd8a0f380b173c099d0570814348 AnchorAdjuster 64-bit
EXE

3ab8alee10bd1b720e1c8a8795e78cdc09fec73a6bb91526¢c0ccd2dc2efbec28d AnchorAdjuster 64-bit
EXE

7/8

SHA256

c1ae70683da042792a504847b426a55cdcbca80dca12517f581a4e089a1f8932 AnchorAdjuster 64-bit

C2s

farfaris[.]com
kalaradal[.]com
xyskencevli[.]com
sluaknhbsoe[.]com
jetbiokleas[.]com
nyhgloksal.]com

References

Description

EXE

8/8

