
1/25

July 8, 2021

Decoding Cobalt Strike: Understanding Payloads
decoded.avast.io/threatintel/decoding-cobalt-strike-understanding-payloads/

by Threat Intelligence TeamJuly 8, 202112 min read

Intro

Cobalt Strike threat emulation software is the de facto standard closed-source/paid tool
used by infosec teams in many governments, organizations and companies. It is also very
popular in many cybercrime groups which usually abuse cracked or leaked versions of
Cobalt Strike.

Cobalt Strike has multiple unique features, secure communication and it is fully modular
and customizable so proper detection and attribution can be problematic. It is the main
reason why we have seen use of Cobalt Strike in almost every major cyber security incident
or big breach for the past several years.

There are many great articles about reverse engineering Cobalt Strike software, especially
beacon modules as the most important part of the whole chain. Other modules and
payloads are very often overlooked, but these parts also contain valuable information for
malware researchers and forensic analysts or investigators.

The first part of this series is dedicated to proper identification of all raw payload types and
how to decode and parse them. We also share our useful parsers, scripts and yara rules
based on these findings back to the community.

Raw payloads

Cobalt Strike’s payloads are based on Meterpreter shellcodes and include many similarities
like API hashing (x86 and x64 versions) or url query checksum8 algo used in http/https
payloads, which makes identification harder. This particular checksum8 algorithm is also
used in other frameworks like Empire.

https://decoded.avast.io/threatintel/decoding-cobalt-strike-understanding-payloads/
https://decoded.avast.io/author/threatintel/
https://www.cobaltstrike.com/
https://github.com/avast/ioc/tree/master/CobaltStrike
https://github.com/rapid7/metasploit-framework/blob/04e8752b9b74cbaad7cb0ea6129c90e3172580a2/external/source/shellcode/windows/x86/src/block/block_api.asm
https://github.com/rapid7/metasploit-framework/blob/04e8752b9b74cbaad7cb0ea6129c90e3172580a2/external/source/shellcode/windows/x64/src/block/block_api.asm
https://github.com/rapid7/metasploit-framework/blob/master/lib/rex/payloads/meterpreter/uri_checksum.rb
https://github.com/EmpireProject/Empire/blob/e37fb2eef8ff8f5a0a689f1589f424906fe13055/lib/common/http.py#L55

2/25

Let’s describe interesting parts of each payload separately.

Payload header x86 variant

Default 32bit raw payload’s entry points start with typical instruction CLD (0xFC) followed
by CALL instruction and PUSHA (0x60) as the first instruction from API hash algorithm.

x86 payload
Payload header x64 variant

Standard 64bit variants start also with CLD instruction followed by AND RSP,-10h and
CALL instruction.

x64 payload

https://decoded.avast.io/wp-content/uploads/sites/2/2021/06/001_x86_payload_eop.png
https://decoded.avast.io/wp-content/uploads/sites/2/2021/06/002_x64_payload_eop.png

3/25

We can use these patterns for locating payloads’ entry points and count other fixed offsets
from this position.

Default API hashes

Raw payloads have a predefined structure and binary format with particular placeholders for
each customizable value such as DNS queries, HTTP headers or C2 IP address.
Placeholder offsets are on fixed positions the same as hard coded API hash values. The
hash algorithm is ROR13 and the final hash is calculated from the API function name and
DLL name. The whole algorithm is nicely commented inside assembly code on the
Metasploit repository.

Python implementation of API hashing algorithm
We can use the following regex patterns for searching hardcoded API hashes:

We can use a known API hashes list for proper payload type identification and known fixed
positions of API hashes for more accurate detection via Yara rules.

https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/003_arch_patterns.png
https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/004_hash_algo_python.png
https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/005_api_hash_patterns.png

4/25

Payload identification via known API hashes
Complete Cobalt Strike API hash list:

API hash DLL and API name

0xc99cc96a dnsapi.dll_DnsQuery_A

0x528796c6 kernel32.dll_CloseHandle

0xe27d6f28 kernel32.dll_ConnectNamedPipe

0xd4df7045 kernel32.dll_CreateNamedPipeA

0xfcddfac0 kernel32.dll_DisconnectNamedPipe

0x56a2b5f0 kernel32.dll_ExitProcess

0x5de2c5aa kernel32.dll_GetLastError

0x0726774c kernel32.dll_LoadLibraryA

0xcc8e00f4 kernel32.dll_lstrlenA

0xe035f044 kernel32.dll_Sleep

0xbb5f9ead kernel32.dll_ReadFile

0xe553a458 kernel32.dll_VirtualAlloc

0x315e2145 user32.dll_GetDesktopWindow

0x3b2e55eb wininet.dll_HttpOpenRequestA

0x7b18062d wininet.dll_HttpSendRequestA

0xc69f8957 wininet.dll_InternetConnectA

0x0be057b7 wininet.dll_InternetErrorDlg

0xa779563a wininet.dll_InternetOpenA

https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/006_payload_identification.png

5/25

0xe2899612 wininet.dll_InternetReadFile

0x869e4675 wininet.dll_InternetSetOptionA

0xe13bec74 ws2_32.dll_accept

0x6737dbc2 ws2_32.dll_bind

0x614d6e75 ws2_32.dll_closesocket

0x6174a599 ws2_32.dll_connect

0xff38e9b7 ws2_32.dll_listen

0x5fc8d902 ws2_32.dll_recv

0xe0df0fea ws2_32.dll_WSASocketA

0x006b8029 ws2_32.dll_WSAStartup

Complete API hash list for Windows 10 system DLLs is available here.

Customer ID / Watermark

Based on information provided on official web pages, Customer ID is a 4-byte number
associated with the Cobalt Strike licence key and since v3.9 is embedded into the payloads
and beacon configs. This number is located at the end of the payload if it is present.
Customer ID could be used for specific threat authors identification or attribution, but a lot of
Customer IDs are from cracked or leaked versions, so please consider this while looking at
these for possible attribution.

DNS stager x86

Typical payload size is 515 bytes or 519 bytes with included Customer ID value. The DNS
query name string starts on offset 0x0140 (calculated from payload entry point) and the null
byte and max string size is 63 bytes. If the DNS query name string is shorter, then is
terminated with a null byte and the rest of the string space is filled with junk bytes.

DnsQuery_A API function is called with two default parameters:

Parameter Value Constant

DNS Record Type (wType) 0x0010 DNS_TYPE_TEXT

DNS Query Options (Options) 0x0248 DNS_QUERY_BYPASS_CACHE
 DNS_QUERY_NO_HOSTS_FILE
 DNS_QUERY_RETURN_MESSAGE

Anything other than the default values are suspicious and could indicate custom payload.

https://github.com/avast/ioc/tree/master/CobaltStrike/api_hashes
https://docs.microsoft.com/en-us/windows/win32/dns/dns-constants
https://docs.microsoft.com/en-us/windows/win32/dns/dns-constants#dns-query-options

6/25

Python parsing:

Default DNS payload API hashes:

Offset Hash value API name

0x00a3 0xe553a458 kernel32.dll_VirtualAlloc

0x00bd 0x0726774c kernel32.dll_LoadLibraryA

0x012f 0xc99cc96a dnsapi.dll_DnsQuery_A

0x0198 0x56a2b5f0 kernel32.dll_ExitProcess

0x01a4 0xe035f044 kernel32.dll_Sleep

0x01e4 0xcc8e00f4 kernel32.dll_lstrlenA

Yara rule for DNS stagers:

SMB stager x86

The default payload size is 346 bytes plus the length of the pipe name string terminated by
a null byte and the length of the Customer ID if present. The pipe name string is located
right after the payload code on offset 0x015A in plaintext format.

CreateNamedPipeA API function is called with 3 default parameters:

Parameter Value Constant

Open Mode
(dwOpenMode)

0x0003 PIPE_ACCESS_DUPLEX

https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/007_dns_parse.png
https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/008_dns_yara.png
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createnamedpipea

7/25

Pipe Mode (dwPipeMode) 0x0006 PIPE_TYPE_MESSAGE,
PIPE_READMODE_MESSAGE

Max Instances
(nMaxInstances)

0x0001

Python parsing:

Default SMB payload API hashes:

Offset Hash value API name

0x00a1 0xe553a458 kernel32.dll_VirtualAlloc

0x00c4 0xd4df7045 kernel32.dll_CreateNamedPipeA

0x00d2 0xe27d6f28 kernel32.dll_ConnectNamedPipe

0x00f8 0xbb5f9ead kernel32.dll_ReadFile

0x010d 0xbb5f9ead kernel32.dll_ReadFile

0x0131 0xfcddfac0 kernel32.dll_DisconnectNamedPipe

0x0139 0x528796c6 kernel32.dll_CloseHandle

0x014b 0x56a2b5f0 kernel32.dll_ExitProcess

Yara rule for SMB stagers:

TCP Bind stager x86

https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/009_smb_parse.png
https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/010_smb_yara.png

8/25

The payload size is 332 bytes plus the length of the Customer ID if present. Parameters for
the bind API function are stored inside the SOCKADDR_IN structure hardcoded as two
dword pushes. The first PUSH with the sin_addr value is located on offset 0x00C4. The
second PUSH contains sin_port and sin_family values and is located on offset 0x00C9 The
default sin_family value is AF_INET (0x02).

Python parsing:

Default TCP Bind x86 payload API hashes:

Offset Hash value API name

0x009c 0x0726774c kernel32.dll_LoadLibraryA

0x00ac 0x006b8029 ws2_32.dll_WSAStartup

0x00bb 0xe0df0fea ws2_32.dll_WSASocketA

0x00d5 0x6737dbc2 ws2_32.dll_bind

0x00de 0xff38e9b7 ws2_32.dll_listen

0x00e8 0xe13bec74 ws2_32.dll_accept

0x00f1 0x614d6e75 ws2_32.dll_closesocket

0x00fa 0x56a2b5f0 kernel32.dll_ExitProcess

0x0107 0x5fc8d902 ws2_32.dll_recv

0x011a 0xe553a458 kernel32.dll_VirtualAlloc

0x0128 0x5fc8d902 ws2_32.dll_recv

https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/011_bind_x86_sockaddr.png

9/25

0x013d 0x614d6e75 ws2_32.dll_closesocket

Yara rule for TCP Bind x86 stagers:

TCP Bind stager x64

The payload size is 510 bytes plus the length of the Customer ID if present. The
SOCKADDR_IN structure is hard coded inside the MOV instruction as a qword and contains

the whole structure. The offset for the MOV instruction is 0x00EC.

Python parsing:

Default TCP Bind x64 payload API hashes:

Offset Hash value API name

0x0100 0x0726774c kernel32.dll_LoadLibraryA

0x0111 0x006b8029 ws2_32.dll_WSAStartup

https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/013_bind_x86_yara.png
https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/014_bind_x64_socaddr.png
https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/015_bind_x64_parse.png

10/25

0x012d 0xe0df0fea ws2_32.dll_WSASocketA

0x0142 0x6737dbc2 ws2_32.dll_bind

0x0150 0xff38e9b7 ws2_32.dll_listen

0x0161 0xe13bec74 ws2_32.dll_accept

0x016f 0x614d6e75 ws2_32.dll_closesocket

0x0198 0x5fc8d902 ws2_32.dll_recv

0x01b8 0xe553a458 kernel32.dll_VirtualAlloc

0x01d2 0x5fc8d902 ws2_32.dll_recv

0x01ee 0x614d6e75 ws2_32.dll_closesocket

Yara rule for TCP Bind x64 stagers:

TCP Reverse stager x86

The payload size is 290 bytes plus the length of the Customer ID if present. This payload is
very similar to TCP Bind x86 and SOCKADDR_IN structure is hardcoded on the same offset
with the same double push instructions so we can reuse python parsing code from TCP
Bind x86 payload.

Default TCP Reverse x86 payload API hashes:

Offset Hash value API name

0x009c 0x0726774c kernel32.dll_LoadLibraryA

https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/016_bind_x64_yara.png

11/25

0x00ac 0x006b8029 ws2_32.dll_WSAStartup

0x00bb 0xe0df0fea ws2_32.dll_WSASocketA

0x00d5 0x6174a599 ws2_32.dll_connect

0x00e5 0x56a2b5f0 kernel32.dll_ExitProcess

0x00f2 0x5fc8d902 ws2_32.dll_recv

0x0105 0xe553a458 kernel32.dll_VirtualAlloc

0x0113 0x5fc8d902 ws2_32.dll_recv

Yara rule for TCP Reverse x86 stagers:

TCP Reverse stager x64

Default payload size is 465 bytes plus length of Customer ID if present. Payload has the
same position as the SOCKADDR_IN structure such as TCP Bind x64 payload so we can
reuse parsing code again.

Default TCP Reverse x64 payload API hashes:

Offset Hash value API name

0x0100 0x0726774c kernel32.dll_LoadLibraryA

0x0111 0x006b8029 ws2_32.dll_WSAStartup

0x012d 0xe0df0fea ws2_32.dll_WSASocketA

0x0142 0x6174a599 ws2_32.dll_connect

0x016b 0x5fc8d902 ws2_32.dll_recv

https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/017_reverse_x86_yara.png

12/25

0x018b 0xe553a458 kernel32.dll_VirtualAlloc

0x01a5 0x5fc8d902 ws2_32.dll_recv

0x01c1 0x614d6e75 ws2_32.dll_closesocket

Yara rule for TCP Reverse x64 stagers:

HTTP stagers x86 and x64

Default x86 payload size fits 780 bytes and the x64 version is 874 bytes long plus size of
request address string and size of Customer ID if present. The payloads include full request
information stored inside multiple placeholders.

Request address

The request address is a plaintext string terminated by null byte located right after the last
payload instruction without any padding. The offset for the x86 version is 0x030C and
0x036A for the x64 payload version. Typical format is IPv4.

Request port

For the x86 version the request port value is hardcoded inside a PUSH instruction as a
dword. The offset for the PUSH instruction is 0x00BE. The port value for the x64 version is
stored inside MOV r8d, dword instruction on offset 0x010D.

Request query

The placeholder for the request query has a max size of 80 bytes and the value is a
plaintext string terminated by a null byte. If the request query string is shorter, then the rest
of the string space is filled with junk bytes. The placeholder offset for the x86 version is
0x0143 and 0x0186 for the x64 version.

Cobalt Strike and other tools such as Metasploit use a trivial checksum8 algorithm for the
request query to distinguish between x86 and x64 payload or beacon.

https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/018_reverse_x64_yara.png

13/25

According to leaked Java web server source code, Cobalt Strike uses only two checksum
values, 0x5C (92) for x86 payloads and 0x5D for x64 versions. There are also
implementations of Strict stager variants where the request query string must be 5
characters long (including slash). The request query checksum feature isn’t mandatory.

Python implementation of checksum8 algorithm:

Metasploit server uses similar values:

You can find a complete list of Cobalt Strike’s x86 and x64 strict request queries here.

Request header

The size of the request header placeholder is 304 bytes and the value is also represented
as a plaintext string terminated by a null byte. The request header placeholder is located
immediately after the Request query placeholder. The offset for the x86 version is 0x0193
and 0x01D6 for the x64 version.

The typical request header value for HTTP/HTTPS stagers is User-Agent. The Cobalt Strike
web server has banned user-agents which start with lynx, curl or wget and return a
response code 404 if any of these strings are found.

https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/019_cs_webserver_checksum.png
https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/020_checksum8_python.png
https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/021_metasploit_webserver_checksum.png
https://github.com/avast/ioc/tree/master/CobaltStrike/checksum8

14/25

API function HttpOpenRequestA is called with following dwFlags (0x84600200):

Python parsing:

Default HTTP x86 payload API hashes:

Offset Hash value API name

0x009c 0x0726774c kernel32.dll_LoadLibraryA

0x00aa 0xa779563a wininet.dll_InternetOpenA

0x00c6 0xc69f8957 wininet.dll_InternetConnectA

0x00de 0x3b2e55eb wininet.dll_HttpOpenRequestA

0x00f2 0x7b18062d wininet.dll_HttpSendRequestA

0x010b 0x5de2c5aa kernel32.dll_GetLastError

0x0114 0x315e2145 user32.dll_GetDesktopWindow

0x0123 0x0be057b7 wininet.dll_InternetErrorDlg

0x02c4 0x56a2b5f0 kernel32.dll_ExitProcess

0x02d8 0xe553a458 kernel32.dll_VirtualAlloc

0x02f3 0xe2899612 wininet.dll_InternetReadFile

https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/022_user_agent_filter.png
https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/023_http_flags.png
https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/024_http_parse.png

15/25

Default HTTP x64 payload API hashes:

Offset Hash value API name

0x00e9 0x0726774c kernel32.dll_LoadLibraryA

0x0101 0xa779563a wininet.dll_InternetOpenA

0x0120 0xc69f8957 wininet.dll_InternetConnectA

0x013f 0x3b2e55eb wininet.dll_HttpOpenRequestA

0x0163 0x7b18062d wininet.dll_HttpSendRequestA

0x0308 0x56a2b5f0 kernel32.dll_ExitProcess

0x0324 0xe553a458 kernel32.dll_VirtualAlloc

0x0342 0xe2899612 wininet.dll_InternetReadFile

Yara rules for HTTP x86 and x64 stagers:

16/25

HTTPS stagers x86 and x64

The payload structure and placeholders are almost the same as the HTTP stagers. The
differences are only in payload sizes, placeholder offsets, usage of InternetSetOptionA
API function (API hash 0x869e4675) and different dwFlags for calling the
HttpOpenRequestA API function.

The default x86 payload size fits 817 bytes and the default for the x64 version is 909 bytes
long plus size of request address string and size of the Customer ID if present.

Request address

The placeholder offset for the x86 version is 0x0331 and 0x038D for the x64 payload
version. The typical format is IPv4.

Request port

The hardcoded request port format is the same as HTTP. The PUSH offset for the x86
version is 0x00C3. The MOV instruction for x64 version is on offset 0x0110.

https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/025_http_yara.png

17/25

Request query

The placeholder for the request query has the same format and length as the HTTP
version. The placeholder offset for the x86 version is 0x0168 and 0x01A9 for the x64
version.

Request header

The size and length of the request header placeholder is the same as the HTTP version.
Offset for the x86 version is 0x01B8 and 0x01F9 for the x64 version.

API function HttpOpenRequestA is called with following dwFlags (0x84A03200):

InternetSetOptionA API function is called with following parameters:

Python parsing:

Default HTTPS x86 payload API hashes:

https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/026_https_flags.png
https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/027_setinternetoption_flags.png
https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/028_https_parse.png

18/25

Offset Hash value API name

0x009c 0x0726774c kernel32.dll_LoadLibraryA

0x00af 0xa779563a wininet.dll_InternetOpenA

0x00cb 0xc69f8957 wininet.dll_InternetConnectA

0x00e7 0x3b2e55eb wininet.dll_HttpOpenRequestA

0x0100 0x869e4675 wininet.dll_InternetSetOptionA

0x0110 0x7b18062d wininet.dll_HttpSendRequestA

0x0129 0x5de2c5aa kernel32.dll_GetLastError

0x0132 0x315e2145 user32.dll_GetDesktopWindow

0x0141 0x0be057b7 wininet.dll_InternetErrorDlg

0x02e9 0x56a2b5f0 kernel32.dll_ExitProcess

0x02fd 0xe553a458 kernel32.dll_VirtualAlloc

0x0318 0xe2899612 wininet.dll_InternetReadFile

Default HTTPS x64 payload API hashes:

Offset Hash value API name

0x00e9 0x0726774c kernel32.dll_LoadLibraryA

0x0101 0xa779563a wininet.dll_InternetOpenA

0x0123 0xc69f8957 wininet.dll_InternetConnectA

0x0142 0x3b2e55eb wininet.dll_HttpOpenRequestA

0x016c 0x869e4675 wininet.dll_InternetSetOptionA

0x0186 0x7b18062d wininet.dll_HttpSendRequestA

0x032b 0x56a2b5f0 kernel32.dll_ExitProcess

0x0347 0xe553a458 kernel32.dll_VirtualAlloc

0x0365 0xe2899612 wininet.dll_InternetReadFile

Yara rule for HTTPS x86 and x64 stagers:

19/25

The next stage or beacon could be easily downloaded via curl or wget tool:

You can find our parser for Raw Payloads and all according yara rules in our IoC repository.

Raw Payloads encoding

Cobalt Strike also includes a payload generator for exporting raw stagers and payload in
multiple encoded formats. Encoded formats support UTF-8 and UTF-16le.

Table of the most common encoding with usage and examples:

Encoding Usage Example

Hex VBS, HTA 4d5a9000..

https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/029_https_yara.png
https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/030_curl_command.png
https://github.com/avast/ioc/tree/master/CobaltStrike

20/25

Hex Array PS1 0x4d, 0x5a, 0x90, 0x00..

Hex Veil PY \x4d\x5a\x90\x00..

Decimal Array VBA -4,-24,-119,0..

Char Array VBS, HTA Chr(-4)&”H”&Chr(-125)..

Base64 PS1 38uqIyMjQ6..

gzip / deflate compression PS1

Xor PS1, Raw payloads, Beacons

Decoding most of the formats are pretty straightforward, but there are few things to
consider.

Values inside Decimal and Char Array are splitted via “new lines” represented by
“\s_\n” (\x20\x5F\x0A).
Common compression algorithms used inside PowerShell scripts are GzipStream and
raw DeflateStream.

Python decompress implementation:

XOR encoding

The XOR algorithm is used in three different cases. The first case is one byte XOR inside
PS1 scripts, default value is 35 (0x23).

The second usage is XOR with dword key for encoding raw payloads or beacons inside PE
stagers binaries. Specific header for xored data is 16 bytes long and includes start offset,
xored data size, XOR key and four 0x61 junk/padding bytes.

https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/031_decompress_python.png
https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/032_xor_ps1.png

21/25

Python header parsing:

We can create Yara rule based on XOR key from header and first dword of encoded data to
verify supposed values there:

The third case is XOR encoding with a rolling dword key, used only for decoding
downloaded beacons. The encoded data blob is located right after the XOR algorithm code
without any padding. The encoded data starts with an initial XOR key (dword) and the data
size (dword xored with init key).

There are x86 and x64 implementations of the XOR algorithm. Cobalt Strike resource
includes xor.bin and xor64.bin files with precompiled XOR algorithm code.

Default lengths of compiled x86 code are 52 and 56 bytes (depending on used registers)
plus the length of the junk bytes. The x86 implementation allows using different register
sets, so the xor.bin file includes more than 800 different precompiled code variants.

https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/033_xored_payload.png
https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/034_xor_header_parse.png
https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/035_xor_payload_yara.png

22/25

Yara rule for covering all x86 variants with XOR verification:

https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/036_xor_x86_algo.png

23/25

The precompiled x64 code is 63 bytes long with no junk bytes. There is also only one
precompiled code variant.

https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/037_xor_x86_yara.png

24/25

Yara rule for x64 variant with XOR verification:

You can find our Raw Payload decoder and extractor for the most common encodings here.
It uses a parser from the previous chapter and it could save your time and manual work. We
also provide an IDAPython script for easy raw payload analysis.

https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/038_xor_x64_algo.png
https://decoded.avast.io/wp-content/uploads/sites/2/2021/07/039_xor_x64_yara.png
https://github.com/avast/ioc/tree/master/CobaltStrike

25/25

Conclusion

As we see more and more abuse of Cobalt Strike by threat actors, understanding how to
decode its use is important for malware analysis.

In this blog, we’ve focused on understanding how threat actors use Cobalt Strike payloads
and how you can analyze them.

The next part of this series will be dedicated to Cobalt Strike beacons and parsing its
configuration structure.

Tagged ascobalt strike

https://decoded.avast.io/tag/cobalt-strike/

