WildPressure targets the macOS platform

SL securelist.com/wildpressure-targets-macos/103072/

Authors

(a Denis Legezo

New findings

Our previous story regarding WildPressure was dedicated to their campaign against
industrial-related targets in the Middle East. By keeping track of their malware in spring 2021,
we were able to find a newer version. It contains the C++ Milum Trojan, a corresponding
VBScript variant with the same version (1.6.1) and a set of modules that include an
orchestrator and three plugins. This confirms our previous assumption that there are more
last-stagers besides the C++ ones, based a field in the C2 communication protocol that
contains the “client” programming language.

Another language used by WildPressure is Python. The Pylnstaller module for Windows
contains a script named “Guard”. Perhaps the most interesting finding here is that this
malware was developed for both Windows and macOS operating systems. The coding style,
overall design and C2 communication protocol is quite recognizable across all three
programming languages used by the authors.

1/11

https://securelist.com/wildpressure-targets-macos/103072/
https://securelist.com/author/denislegezo/
https://securelist.com/wildpressure-targets-industrial-in-the-middle-east/96360/

The versioning system shows that the malware used by WildPressure is still under active
development. Besides commercial VPS, this time the operators used compromised legitimate
WordPress websites. With low confidence this time, we believe their targets to be in the oil
and gas industry. If previously the operators used readable “clientids” like “HatLandid3”, the
new ones we observed in the Milum samples appear to be randomized like “6CUSEQLOSI”
and “C29QoCli33jjxtb”.

Although we couldn’t associate WildPressure’s activity with other threat actors, we did find
minor similarities in the TTPs used by BlackShadow, which is also active in the same region.
However, we consider that these similarities serve as minor ties and are not enough to make
any attribution.

Python multi-OS Trojan

SHA1 872FC1D91E078F0A274CAG04785117BEB261B870

File type PE32 executable (GUI) Intel 80386 (stripped to external PDB), for MS
Windows

File size 3.3 MB

File svchost.exe
name

This Pylnstaller Windows executable was detected in our telemetry on September 1, 2020,
showing version 2.2.1. It contains an archive with all the necessary libraries and a Python
Trojan that works both on Windows and macOS. The original name of the script inside this
Pylnstaller bundle is “Guard”. The malware authors extensively relied on publicly available
third-party codelll to create it. Near the entry point one can find the first operating system-
dependent code, which checks on macOS if another instance of the Trojan is running.

2/11

@staticmethod
check daemon_runni :
terminal = subprocess.Popen(["launchctl" ,"list"] , stdout=subproc
terminal .wait()
processList= terminal.communicate()[0].split("\n")
isScript = C latformTools.isScript()
for row in proce
try:
if(isScript):
cols=row.split()
if(len(cols)>1):
1f(PLIST SIG
return

else:

1f(PLIST SIGN KEY row) :

return

return

@staticmethod
my process 1is daemon():
terminal = subpro 5. Popen(["launchctl" ,"list"] , stdout=subproc
terminal.wait()
pid = os.getpid()
processList= terminal.communicate()[0].split("\n")
isScript = C
for row in
t Py -

)

macOS-specific code snippet to check if another Trojan instance is already running

The Guard class constructor contains initial values, such as an XOR key (enc_key field) to
decrypt the configuration. In this sample, it is set to decimal 110 and the C2 message type
(answer_type_value field) to “Check”. The code that initializes class members for encryption
and network communications is OS independent, but persistence methods aren’t.

For macOS, Guard decodes an XML document and creates a plist file using its contents at
$HOME/Library/LaunchAgents/com.apple.pyapple.plist to autorun itself; while for Windows,
the script creates a RunOnce registry key
Software\Microsoft\Windows\CurrentVersion\RunOnce\gd_system. We provide the full list of
persistence |oCs at the end of this article.

3/11

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/07/06131925/Wildpressure_01.png

version="1.0" encoding="UTF-8
PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd"
version="1.0

Label
apple.scriptzxy.plist
ProgramArguments

/usr/bin/python
[pyscript]

KeepAlive

Malware decodes the XML, fills [pyscript] placeholder with its path and drops .plist file
for persistence

For fingerprinting Windows and macOS operating systems, Guard uses standard Python
libraries. Beacon data for the C2 contains the hosthname, machine architecture, OS release
name. To fingerprint Windows targets, Guard also uses WQL (WMI Query Language)
requests similarly to Milum and WMIC command line utility features. For example, to
distinguish the installed security products it executes the following command:

1 cmd /c wmic INAMESPACE:\\\root\SecurityCenter2 PATH AntiVirusProduct GET
displayName,

productUptoDate /Format:List

On macOS, Guard enumerates running processes using the “Is /Applications” command and
compares the results against a list of security solutions: [‘kaspersky security.app”,’kaspersky

anti-virus for mac.app”, “intego”, “sophos anti-virus.app” , “virusbarrier.app”,”"mcafee internet
security.app”]

The path to the file containing Guard’s configuration data is
%APPDATA%\Microsoft\grconf.dat under Windows and $HOME\.appdata\grconf.dat under
macOS.

Guard’s configuration data has to start with the string “*grds*”. Below is a comparison
between different WildPressure sample parameters, including magic values used to pre- and
post-fix the configuration data.

Parameter C++ Milum Python Guard VBScript Tandis

Version 1.0.1 -1.6.1 2.2.1 1.6.1

4/11

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/07/06131955/Wildpressure_02.png

Serial Comparable to “clientid” 1——-C29QoCli 1——-Tandis_7
with values like

“HatLandid3”
Relays List of .php pages hosted List of hacked List of hacked
on VPS WordPress WordPress websites
websites
Encoded (ws32) (we32) *grds* *grde* Configuration
configuration embedded inside
start\end the script

These prefix and suffix values allowed us to decode Mulim and Guard configuration data as
well as the self-decrypted Tandis with Bash and Python scripts. Following configuration
parsing, the Trojan is ready for its main working cycle. It awaits commands from its C2 that
are XML-based and XOR-encrypted with the aforementioned decimal value 110. Among
them are typical Trojan functions: downloading files, uploading files, executing commands
with the OS command interpreter, updating the Trojan and cleaning up the target.

VBScript self-decrypted variant

SHA1 CD7904E6D59142F209BD248D21242E3740999A0D

File type Self-decrypting VBScript

File size 51 KB

File name 12dIIYKCQw.vbs

We named the Tandis Trojan after its “serial” configuration parameter. This VBScript Trojan
version is Windows-only and relies much more on WQL queries than Guard. It was first
detected in our telemetry on September 1, 2020, showing version 1.6.1. The abilities,
parameters and working cycle are quite similar to Guard and other WildPressure malware.

The persistence is again system registry-based (please check the loCs at the end). The
function HexToBin() is in charge of the additional encryption used inside the script for some
strings and C2 communication. The basic unhexlify-XOR algorithm is the same as in the
initial self-decryption; and to read plain text we used the same aforementioned script with
corresponding key (again 110 decimal, stored in a class data member). The C2
communication protocol is “encrypted XML over HTTP” (using MsxmI2.XMLHTTP and
Msxml2.DOMDocument objects).

Below are the commands that Tandis supports:

Command Description

5/11

1 Wait

2 Silently execute command with interpreter with cmd /c

3 Download file

4 Update the script from server

5 Clean up, remove persistence and the script file

6 Upload file

7 Update wait timings in the configuration

8 Fingerprint the host. In particular, Tandis gathers all the installed security

products besides Defender with a WQL query

Plugin-based C++ malware

In addition to the already enumerated scripting implants that WildPressure uses, some
findings are related to C++ developments. We discovered several, previously unknown,
interconnected modules used to gather data on target hosts in our telemetry. The compilation
times seen in this malware precedes our detection date by a large margin, and we therefore
consider them to be tampered with.

The plugins we found are rather simplistic. We will therefore focus on the implemented
interface between the orchestrator and its plugins.

Orchestrator

SHA1 FA50AC04D601BB7961CAE4ED23BE370C985723D6

File type PE32 executable (console) Intel 80386, for MS Windows

File size 87 KB

File name winloud.exe

This main module checks for the presence of a configuration file named “thumbnail.dat”. The
precise directory of this configuration file varies across Windows versions:

¢ %ALLUSERSPROFILE%\system\thumbnail.dat
¢ %ALLUSERSPROFILE%\Application Data\system\Windows\thumbnail.dat

The orchestrator uses a timer function that runs every two minutes and parses the
configuration file for the plugin file path, function name, etc., and attempts to execute the
corresponding plugin.

6/11

Orchestrator Plugin

Initialize common plugin class object Export accessPlugininterface()

Call accessPlugininterface() to get wbw Return plugin class vtbl
Call second function in vtbl Execute second function in vtbl, the real plugin’s entry point

The overall communication workflow between orchestrator and the plugins

Plugins come in the form of a DLL that exports a function named accessPlugininterface(),
which returns a pointer to a class object to the orchestrator. This main module then runs the
second function from the virtual functions table, passing it the pointer to instantiated class
objects. The plugins we’ve seen so far contained RTTI information.

Fingerprinting plugin

SHA1 c34545d89a0882bb16ea6837d7380f2c72be7209

File type @ PE32 executable (DLL) (GUI) Intel 80386, for MS Windows

File size 194 KB

File name GetClientinfo.dll

This plugin gathers really detailed data about the host with WQL queries and creates a JSON
with a publicly available library. The data includes OS version and the set of installed hotfixes,
BIOS and HDD manufacturers, installed and running software and security products
separately, user accounts and network adapters settings, etc. The corresponding executed
WQL queries look like this:

1 SELECT Domain, DomainRole, TotalPhysicalMemory, UserName, SystemType FROM
Win32_ComputerSystem

SELECT DHCPServer, DNSDomain, MACAddress, DHCPEnabled, DefaultiPGateway,
IPAddress,

A 0N

IPSubnet FROM Win32_NetworkAdapterConfiguration WHERE IPEnabled ="TRUE"

7/11

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/07/06132717/Wildpressure_03.png

Keylogging and screenshotting plugins

SHA1 fb7f69834ca10fe31675bbedf9f858ec45¢c38239

File type PE32 executable (DLL) (GUI) Intel 80386, for MS Windows

File size 90.5 KB

File name Keylogger.dll

SHA1 2bb6d37dbba52d79b896352¢37763d540038eb25

File type @ PE32 executable (DLL) (GUI) Intel 80386, for MS Windows

File size 78 KB

File name ScreenShot.dll

These plugins are quite straightforward. The keylogger sets a WH_KEYBOARD _LL hook to
gather the keystrokes and gets clipboard content and Windows titles. The second takes
screenshots by timer and by mouse events, setting a WH_MOUSE_LL hook.

Campaign infrastructure

The actor used both VPS and compromised servers in their infrastructure, most of which
were WordPress websites. The legitimate, compromised websites served as Guard relay
servers. In our previous 2019 investigation, we were able to sinkhole the Milum C2,
upiserversys1212[.Jcom. During our current investigation we managed to sinkhole another
Milum C2, mwieurgbd114kjuvtg[.Jcom. However, we haven't registered any recent Milum
requests sent to these domains with the corresponding main.php or url.php URI.

Domain IP First seen ASN Malware
N/A 107.158.154[.]66 2021-04-07 62904, EONIX Milum
185.177.59[.1234 2021-04-07 44901,

BELCLOUD
37.59.87[.]172 2014-12-26 16276, OVH
80.255.3[.]86 2019-08-28 201011,

NETZBETRIEB

mwieurgbd114kjuvtg[.Jcom 139.59.250[.]183 2021-04-07 14061,
(Sinkholed) (Sinkholed) DIGITALOCEAN

Legitimate, compromised Guard relay servers:

8/11

hxxp://adelice-formation[.]Jeu
hxxp://ricktallis[.]Jcom/news
hxxp://whatismyserver123456[.Jcom
hxxp://www.glisru[.]eu
hxxp://www.mozh[.]org

Who was hit and by whom

We have very limited visibility for the samples described in this report. Based on our
telemetry, we suspect that the targets in the same Middle East region were related to the oll
and gas industry.

We consider with high confidence that the aforementioned Tandis VBScript, Pylnstaller and
C++ samples belong to the same authors that we dubbed WildPressure due to the very
similar coding style and victim profile. However, another question remains: is WildPressure
connected to other threat actors operating in the same region?

Among other actors that we’ve covered in the region Chafer and Ferocious Kitten are worth
mentioning. Technically, there’s not much in common with their malware, but we observed
some minor similarities with another actor in the region we haven’t described publicly so far.
Minor similarities with WildPressure are:

o The “pk” parameter in HTTP requests to distinguish the Trojan beacons from, for
example, scanners;
* The usage of hacked WordPress websites as relays.

Both tactics aren’t unique enough to come to any attribution conclusion — it's possible both
groups are simply using the same generic techniques and programming approaches.

9/11

https://securelist.com/chafer-used-remexi-malware/89538/
https://securelist.com/ferocious-kitten-6-years-of-covert-surveillance-in-iran/102806/

https://youtu.be/1v79QRhi1HM

Learn threat hunting_and malware analysis with Denis Legezo and other GReAT experts.

Indicators of Compromise

Milum version 1.6.1
0efd03fb65c3f92d9af87e4caf667f8e

Pyinstaller with Guard
92A11FODCB973D1A58D45C995993D854 (svchost.exe)

Self-decrypting Tandis VBScript
861655D8DCA82391530F9D406C31EEE1 (12dI'YKCQw.vbs)

Orchestrator
C116B3F75E12AD3555E762C7208F17B8 (winloud.exe)

Plugins

F2F6604EB9100F58E21C449AC4CC4249 (ScreenShot.dll)
D322FAAG4F750380DE45F518CA77CA43 (Keylogger.dll)
9F8D77ECEQFF897FDFD8B00042F51A41 (GetClientinfo.dll)

File paths

macOS .plist files
$HOME/Library/LaunchAgents/com.apple.pyapple.plist
$HOME/Library/LaunchAgents/apple.scriptzxy.plist

10/11

https://youtu.be/1v79QRhi1HM
https://xtraining.kaspersky.com/?utm_source=securelist&utm_medium=blog&utm_campaign=gl_xtr-generic-leaders_ay0073&utm_content=link&utm_term=gl_securelist_organic_tezngjogj73rli8&redef=1&THRU&reseller=gl_xtr-generic-leaders_acq_ona_smm__onl_b2b_securelist_post_______
https://opentip.kaspersky.com/0efd03fb65c3f92d9af87e4caf667f8e/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/92A11F0DCB973D1A58D45C995993D854/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/861655D8DCA82391530F9D406C31EEE1/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/C116B3F75E12AD3555E762C7208F17B8/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/F2F6604EB9100F58E21C449AC4CC4249/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/D322FAA64F750380DE45F518CA77CA43/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/9F8D77ECE0FF897FDFD8B00042F51A41/?utm_source=SL&utm_medium=SL&utm_campaign=SL

Config files under Windows

%APPDATA%\Microsoft\grconf.dat

%APPDATA%\Microsoft\vsdb.dat
%ALLUSERSPROFILE%\system\thumbnail.dat
%ALLUSERSPROFILE%\Application Data\system\Windows\thumbnail.dat

Config files under macOS
$HOME/.appdata/grconf.dat

Registry values
Software\Microsoft\Windows\CurrentVersion\RunOnce\gd_system

WQL queries examples

SELECT * FROM Win32_Process WHERE Name = ‘<all enumerated names here>’
Select * from Win32_ComputerSystem

Select * From AntiVirusProduct

Select * From Win32_Process Where ParentProcessld = ‘<all enumerated ids here>’

Milum C2

hxxp://107.158.154[.]66/core/main.php
hxxp://185.177.59[.]234/core/main.php
hxxp://37.59.87[.]172/page/view.php
hxxp://80.255.3[.]86/page/view.php
hxxp://www.mwieurgbd114kjuvtg[.Jcom/core/main.php

[11 E g. https://gist.github.com/vaab/2ad7051fc193167f15f85ef573e54eb9 and
https://code.activestate.com/recipes/65222-run-a-task-every-few-seconds/

o Apple MacOS

o APT

¢ Industrial threats

¢ Malware Descriptions
e Microsoft Windows

o Targeted attacks
 Trojan

Authors

& Denis Legezo

WildPressure targets the macOS platform

Your email address will not be published. Required fields are marked *

11/11

https://gist.github.com/vaab/2ad7051fc193167f15f85ef573e54eb9
https://code.activestate.com/recipes/65222-run-a-task-every-few-seconds/
https://securelist.com/tag/apple-macos/
https://securelist.com/tag/apt/
https://securelist.com/tag/industrial-threats/
https://securelist.com/tag/malware-descriptions/
https://securelist.com/tag/microsoft-windows/
https://securelist.com/tag/targeted-attacks/
https://securelist.com/tag/trojan/
https://securelist.com/author/denislegezo/

