Quick review of Babuk ransomware builder

Last week, the builder for the Babuk ransomware family was leaked online. Lab52 has
obtained and analyzed this builder sample determining that it is very likely to be authentic.

After their recent official move from Ransomware as a Service to data leaks extortions,
someone uploaded to virusTotal the ransomware builder for unknown reasons, and it was
soon identified as such by British researcher Kevin Beaumont.

B builder.exe 3/16/2021 11:03 AM Application 122 KB
|| d_esxi.out 2/23/201 11:38 &AM OUT File 54 KB
|| d_nas_arm.out 2/23/2021 11:14 AM QUT File 2,090 KB
|| d_nas_xB6.out 2/23/2021 11:14 AM - QUT File 1,985 KB
|| d_win.bin 3/15/2021 10:55 PM BIM File 69 KB
|| e_esxi.out 3/10/2021 10:43 PM OUT File T0KE Content
|| e_nas_arm.out 320/201 5:32 PM OUT File 2,169 KB
|| e_nas_x86.out 3/20/201 5:33 P OUT File 2,048 KB
|| e win.bin 3/23/2021 8:24 PM BIM File T3 KB
B e_win.exe 1/2/2021 5:12 PM Application OKE
note. bt 6/23/202110:32 PM Text Document 1 KB

of Babuk builder leak

What we first find is builder.exe, along with 2 other Windows executable files with .bin
extension, 4 different Unix executables, and note.txt. At a first test, we could see how we
have to tell builder.exe the output folder as an argument, and we noticed that the files
generated were similar to the builder folder files.

C s UzerssDOBE~Desktopshabuk_builder>builder.exe
Uzage: builder.exe FolderHame

G Users~DOBE~Desktop~babuk_builder>builder.exe mybuildongo
Creating folder ‘mybuildongo’

curve2b5l? keys generated.

"mybuildongos~e_win.exe'" writtent

"mybuildongos~d_win.exe" writtent

"mybuildongo*~e_esxi.out" written?

"mybuildongos~d_esxi.out" writtent
"mybuildongo~e_nas_x86 .out" written?

"mybuildongo~d_nas_x86.out" writtent
"mybuildongo*~e_nas_arm.out" written?
"mybuildongo~d_nas_arm.out" writtent
"mybuildongoskp.curve2b519" writtent
"mybuildongo~ks .curve2551?" writtent
Prezz any key to continue . . .

C s Uzers s DOBE~Dezktops~habuk_builder>

usage

1/6

https://lab52.io/blog/quick-review-of-babuk-ransomware-builder/
https://www.virustotal.com/gui/file/82e560a078cd7bb4472d5af832a04c4bc8f1001bac97b1574efe9863d3f66550
https://twitter.com/GossiTheDog/status/1409121823376117772

» mybuildengo arch mybuildo

Include in library - Share with - Mew folder

i Mame . Date modified Type Size

p || d_esxi.out 6/30/2021 237 AM OUT File 54 KB

oads |_| d_nas_arm.out 6/30/2021 9:37 AM OUT File 2,090 KB

Places || d_nas_xB6.out 6/30/2021 9:37 AM OUT File 985 KB
B d_win.exe 6/30/2021 %37 AM Application 69 KB
| | e_esxi.out 6/30/2021 %37 AM OUT File 70 KB

1ents || e_nas_arm.out 6/30/2021 9:37 AM OUT File 2,169 KB
|| e_nas_x86.out 6/30/2021 %37 AM OUT File 2,045 KB

£ B & win.exe 6/30/2021 %37 AM Application 79 KB
|| kp.curve25519 6/30/2021 9:37 AM CURVE25519 File 1 KE
|| ks.curve25519 6/30/2021 9:37 AM CURVE25519 File 1 KE

Babuk builder output

After the successful execution, we get the two eliptic curve keys generated for encryption, 3
encryption executables for Windows, ARM-based NAS decives, and VMWare ESXi servers
respectively, together with its corresponding decryption executables.

One interesting thing that we found after these firsts test was that builder.exe would look for
its files in the folder from where it is called, causing an error in case we want to execute
builder.exe with an absolute path from a different location, which could be considered a bug
or, at least, a not so much elegant implementation.

C:slzers*Cisbabuk_buildersbuilder.exe outputFolder
Creating folder ‘outputFolder’
curve2hhl? keuys generated.

Can't open note.txt, hyet

Cisllzers >

path bug

We decided to compare the Windows crypter executable with real samples uploaded to
public sandboxes, and we could first see useful information that was already suggesting that
the builder could indeed be authentic.

2/6

property

md5

shal

shal56
md5-without-overlay
shal -without-overlay
sha256-without-overlay
first-bytes-hex
first-bytes-text
file-size
size-without-overlay
entropy

imphash

signature

entry-point
file-version
description

file-type

cpu

subsystem
compiler-stamp
debugger-stamp
resources-stamp

exports-stamp

REAL SAMPLE

value
FOD4CTD334633A72A3CTBOT22E12C378
S5240F71 FE0CAT3B5FIBA100D2CFI DEEFFDBCOBCL

1F2EDDA243404918BT8 AAG1 23 AAL FCSB1ADDGS06E4042 7 A1547B565334527E1

4D 5490 0003 00 00 00 04 00 00 00 FF FF 00 00 B8 00 00 00 00 00 00 00 40 00 00 0

80896 (bytes)

6.144
202FALAFST4CT1 CIFISETEEMDATIZZID

558B EC 81 EC 0 00 00 00 E& 32 52 00 00 E8 CD 81 00 00 E8 AB 9E FF FF A3 60 42

executable

32-bit

GUI

0xG04FDEAT (Mon Mar 15 22:50:31 2021 - UTC)
OxG604FDEAT (Mon Mar 15 22:50:31 2021)

property

md3

shal

sha256
mdS-without-overlay
shal-without-overlay
sha256-without-overlay
first-bytes-hex
first-bytes-text
file-size
size-without-overlay
entropy

imphash

signature
entry-point
file-version
description

file-type

cpu

subsystem
compiler-stamp
debugger-stamp
respurces-stamp
exports-stamp

Comparison between real Babuk sample and built sample
We also compared the encryption timing between two samples, getting similar times, which
would be a reinforcement about its authenticity since Babuk is Top 3 fastest ransomware
encryption speed since they updated their efficiency “flaws” identified by Chuong Dong

value BUILT SAMPLE

4D 54 90 00 03 00 00 00 04 00 00 00 FF FF 00 00 B& 00 00 00 00 00 00 00 40 00 00 O

BOBIG [bytes)
5673

202FA14F574CT1 C2PISATAEA0ATS322D

55 8B EC 81 EC 88 00 00 00 E8 12 52 00 00 EE AD &1 00 00 E8 AZ 9E FF FF A36042.

executable

32-bit

GUL

(eG05A4000 (Tue Mar 23 20:22-40 2021 - UTC)
G0SA4000 (Tue Mar 23 20:22:40 2021

during his great analysis of the three versions of Babuk. We were also able to also identify
that this was a builder for their last version.

As the final comparison to ensure the authenticity of the sample, we compared the assembly
code of both files using a plugin for IDA pro named Diaphora, and resulting to be almost

identical.

| “ Partial matches ||

“ Unmatched in primary m

9

Line
Q0000

Address
00404b20

Marme
sub_404820

sample and built sample

“ Partial matches m

Not matching functions between real Babuk

“ Unmatched in primary || | “ Bestmatches ||

Line

00001

Address

0040zab0

Address 2
0040aad0
0040abco

Mame

sub_40AABD
start

0040aban

functions real Babuk sample vs. built sample

Mame 2

sub_40AAD0
start

0,950

3/6

https://twitter.com/CryptoInsane/status/1408342272438005762/photo/2
https://chuongdong.com/reverse%20engineering/2021/01/16/BabukRansomware-v3/

| ﬂ Partial matches || | ﬂUnmatched in primary ||

®

Best matches

Line
00000
00001

function from real Babuk sample vs. built smple

Address

0040a7a0
0040b 150
0040b 190

004101e0
00410550
004105a0
0041070
00410a50
00412d80
00412d90
00412dc0

Mame

StartAddress
sub_40B150
sub_40B8190
sub_400930
sub_<40FDED
sub_40FDF0
sub_40FES0
sub_4101E0
sub_410550
sub_4105A0
sub_4107E0
sub_410A50
sub_41
sub_412090
sub_4120C0

Address 2

0040a7el
0040b 150
0040b 190
0040d930
0040fde0
0040fdfo
0040)
0041010
00410550
004105a0
004107=0
00410a50
0041
00412d90
00412dch

Mame 2

StartAddress
sub_40B150
sub_40B190
sub_400930
sub_40FDED
sub_40FDFO
sub_40FES0
sub_4101E0
sub_410550
sub_4105A0
sub_4107E0
sub_410A50
sub_412D&0
sub_412090
sub_4120C0

Ratio
1.000
1.000

1.000

1.000

1.000

1.1000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.1000

1.000

Perfect matching

As it could be expected, the builder would take the content of note.txt and use it as the

ransomware note that it would be dropped in the infected machines. Since Babuk decided
not to use any packing mechanism, we could also spot in clear text the ransom note and the

rest of the space reserved for the ransomware note inside the built binaries.

ascii
ascii
ascii
ascii
ascii
ascii
ascii
ascii

ascii

ascil

14
30
29
14
4
17
215
15
25
20

000000460
000000430
0:00000B24
0:00000B58
0:00000BE8
0:00000ESC
0x00000E70
0:00002E84
0:00002E94
0x00002EE0

Strings of built sample

oo00o0ESQ
oo000o0E&N
oooooE?ZQ
oooooEEN
oooaooESQ
o0000EAD
Q0000EED
oooooECH
oooaooEDQ
Q0000EED
00000EFD
oooooron
oooooF1n
oooooF2a
oooooFan
oooooF4n
oooaooFsn
oooooFen
oooaooFE?a
oooooFen
QooaoESn
oo0000FAD

ooo0oFED
ANANNErn

2E
74
4C
61
6F
ED
BiC
65
EE
6E
61
65
20
3
BF
65
0o
78
78
78
78
78

78
7R

oo
20
41
73
74
=3
65
76
4
67
72
2E
74
2E
tE
6C
0o
78
78
78
78
78

78
7R

2E
iF
42
65
20
2E
20
69
20
73
65
20
61
20
20
65
on
78
78
78
78
78

20
7R

oo
70
3k
2
64
20
61
BC
61
20
20
£3
20=]
41
69
74
0o
78
78
78
78
78

78
7R

oo
65
32
20
6F
42
6E
2C
EC
74
6F
74
65
BC
6E
74
oo
78
78
78
78
78

78
A

oo
EE
20
EE
20
=3
4
20
EC
63
70
61
20
73
20
65
0o
78
78
78
78
78
78

Hex content of built sample

oo
50
72
&F
74
20
20
61
20
61
65
79
74
&F
73
2E
0o
78
78
78
78
78

70
A

oo
72
75
BiC
63
EE
64
20
74
74
72
20
63
2C
70
0o
0o
78
78
78
78
78

78
7R

IsWowb4Process

Wowb4 DisableWowbdFsRedirection

Wowhd RevertWowbdFsRedirection
Error Code:

->

Can't OpenProcess

LABS52 rules. Please, folks, do not do this at home. Be nice people and don't be evil. a thieft ...

Can't RmGetlist

Can't RmRegisterResources
Can't RmStartSession

2E
EF
EC
(=]
69
£9
EF
74
£2
20
61
73
65
20
61
oo
0a
78
78
78
78
78

78
7R

oo
63
65
73
73
63
EE
63
EF
72
74
61
20
70
EE
0o
78
78
78
78
78
78

70
7R

oo
65
73
2
20
=3
27
69
73
61
EF
=1
76
75
69
0o
78
78
78
78
78
78

78
7R

on
73
2E
20
61
20
4
65
=3
6E
72
65
61
74
73
on
78
78
78
78
78
78
78
TR

43
73
20
£ 4
74
70
20
66
20
73
73
20
63
20
62
0o
78
78
78
78
78
78

70
7R

61
0o
50
&F
20
23
62
74
74
6F
20
61
63
&F
20
0o
78
78
78
78
78
78

70
A

EE
oo
EC
20
63
EF
65
20
3
6D
61
EE
69
EE
EF
0o
78
78
78
78
78
78

78
7R

27
oa
B5
tE
6F
70
20
61
£9
77
72
4
EE
£9
&D
0o
78
78
78
78
78
78

78
7R

t . OpenProcess. . .
LABSZ rule=. FPle
aze, .folk=s, do.n
ot . do.thi=. at ho
ne. .Be . nice. peop
le.and . don't be.
evil, a.thieft . a
nd.all . tho=se. thi
ng=. that ransonw
are.operators. ar
2. .5tay . =afe. and
.take. the. vaccin
2. . Al=o, put. oni
on.in.spani=sh.om
elette.

EEEEEEEEEEEEEERER
EEEEEEEE N EE
EEEEEEEEEEEEEERER
EEEEEEEEEEEEEEER
EEEEEEEE N EE

HEEEEEEEEEEEEEEER
AR R A TA TR T AT T Ta R Tt e R T

4/6

After this, we decided to take a deeper look into the actual builder executable, and we found
out that we could pass as a second argument an actual eliptic curve encyption key, instead
of letting the builder generate it for us, allowing the ransomware operator to use the same
decryption executable for different builds. Furthermore, it has been observed that, if no
encyption key is specified as an argument, the key would be generated randomly.

cnp edi, 2 ; checks N of args
jz short loc_132443

=2 ¥
ol =
cp edi, 3
jz short loc_1324443)
Wreng N of args i L]
=]
push offset sUsageBuilderEx ; “Usage: b
call print_message loc_1324A43:
add esp, 2 push dword ptr [esit4]
wor eax, eax push offset acrestingfolder ; “Creating folder "¥s'\n
pop edi call
pop esi add
pop ebx push
mov ecx, [ebptvar_4] push
wor ecx, ebp call
call t 3 ecurity_check kie(x push
maw esp, ebp moy
pap ebp push
retn call
push
push
call ebx ; lstre
push offset String2 ; “\\kp.curvelss
push offset Stringl ; lpStringl
call ds:lstrcata
push set aksCurve2SS19 ; “\\ks.cur
push set byte_133FS08 ; lpStringl
call cata
cnp checks N of args (args > 1 {
jnz
Generate random keys ' S ¥ Read key file
= s =
mov i, ds:C eContextid s
R loc_1324B26: i hTemplatefile
push push @
push push aeh ; dwrlagsandattributes
push push 3 ; dwCreationDisposition
push push @ ; lpSecurityAttributes
sk push 1 j dwSharedode
call push 20pa00nsh | dwbesiredAccess
test . push dword ptr [esi+B] ; 1pFileName
inz shart loc_1324AE7 call dsic
= nov edi,
| ap e
| jz loc_13240%8
1
11
|
| J |) \ II
¥
=/ m== P
push offset Buffer ; pbBuffer
push 28h i dwien loc_1324058:
push eax ; hProv push dword ptr [esi+d]
call ds:Cryptienkandom push offset aCanTOpenkeyfil ; “Can’t open keyfile
mo al, byte ptr smeword 24FGFO+BFh call print_message
and byte ptr Buffer, @F&h moy ecx, [ebpevar_a)
and al, 3Fh add esp, B
or al, seh r eex, ebp
push ecx r ax, ea
ma byte ptr xmeword 24FGFB+8Fh, al pop edi
eall sub_2344F@ pop esi
push offzet afurvedSS19Keys ; “curve2S519 keys generated.\n” pep b
call print_message call
mov esp, eby
pep ebp

Argument parsi'nlg of Babuk builder

It could also be predictable that the builder would use the binary files as templates, and we
could identify this operations within the assembly code, where it would first read the
“template” file, modify it, and finally write the modification as a new file in the specified folder.

5/6

R .
Mo ehx, eax
lea eax, [ebpHiumberOfBytesWritten]
push @ ; lpOverlapped
push eax ; lpNumberOfBytesRead
push esi 3 NNumberOfBytesToRead
push ebx ; lpBuffer
push [ebpthObject] ; hFile
call ds:ReadFile
Xor edw, edx
test esl, esd Babuk builder read of
jz short loc_13E498B
‘ L]
ol s =]
loc_13E4BES:
®or eax, eax
nop word ptr [eaxteax+@0888088h]
binary files as Templates
movups xmm@, xmmword 13FF71@
push a ; lpOverlapped
push eax ; 1lpNumberOfBytesWritten
push [ebptnNumberOfBytesTolrite] ; nNumberOfBytesTolirite
movups xmmword ptr [esi+leh], xmm@ Babuk builder write of
push ebx 3 lpBuffer
push edi ; hFile
call ds:WriteFile
push [ebpthobject] ; hobject

output binary files

Since Babuk binaries did not use any packer, anyone having these files and a deep
knowledge about them, could have written this builder. However, according to the
compilation dates which seem legit, we do not think this is the actual scenario.

About the decrypter, we have not analyzed its code, but during the tests we realized that it
does not contain the eliptic curve keys hardcoded, therefore it needs to be run from a
command prompt located in the same folder than these generated keys. We could also
identify that it works, but it takes a ridiculous amount of time to decrypt go through the whole
disk and decrypt all the files.

This could be considered important since new ransomware gangs could try to take
advantage of this leak for their own Raas “startup”. However, it is also valuable for
researchers since it will allow us to generate better detection rules, or even track new
unofficial variations of the ransomware family.

6/6

