[RE023] Quick analysis and removal tool of a series of
new malware variant of Panda group that has recently
targeted to Vietham VGCA

L= blog.vincss.net/2021/07/re023-quick-analysis-and-removal-tool-series-of-new-malware-variant-of-Panda-group-that-
has-recently-targeted-to-Vietham-VGCA.html

Through continuous cyber security monitoring and hunting malware samples that were used
in the attack on Vietham Government Certification Authority, and they also have attacked
a large corporation in Vietnam since 2019, we have discovered a series of new variants of
the malware related to this group. Readers can re-read and compare the information below
with the previously analyzed article: [RE018-2]Analyzing_new malware of China Panda
hacker group used to attack supply chain against Vietnam Government Certification
Authority - Part 2

. Analysing loaders

Sample 2b15479eb7ec43f7a554dce40fe6a4263a889ba58673b7490a991e7d66703bc8 was
discovered by us on VirusTotal on 11/06/2021, and was submitted from Vietnam:

Submissions

Dt BT SoHirC

Supmissions Per Courry Submiagions Per Date Pravakancg Summany

The remarkable point in this file is the .NLS (National Language Support) extension, but it's
exactly a DLL PE64. We conduct an in-depth analysis of this sample and determined it
seems to be crafted by the same hacker who wrote and built smanager_ssl.dll, msiscsi.dll,
verifierpr.dll, wercplsupport.dll.

e Hash:
2B15479EB7EC43F7A554DCE40FE6A4263A889BA58673B7490A991E7D66703BC8

o Compiled time: Tuesday, 04.08.2020 06:48:49 UTC

e Original DLL: DIISvchDtchX64.bin

o Malicious file: C_20253.NLS, in \Windows\System32

o Visual Studio version: 2015, linker 14.0, update 3

e Coding language: C

1/23

https://blog.vincss.net/2021/07/re023-quick-analysis-and-removal-tool-series-of-new-malware-variant-of-Panda-group-that-has-recently-targeted-to-Vietnam-VGCA.html
https://blog.vincss.net/2020/12/re018-2-analyzing-new-malware-of-china-panda-hacker-group-used-to-attack-supply-chain-against-vietnam-government-certification-authority.html
https://www.virustotal.com/gui/file/2b15479eb7ec43f7a554dce40fe6a4263a889ba58673b7490a991e7d66703bc8
http://www.virustotal.com/
https://1.bp.blogspot.com/-WVd7ppFx0tE/YN_tdCh8CQI/AAAAAAAAChg/f1luppSFaUQquiWenui6tTV9YQWj9vxiwCNcBGAsYHQ/s1460/image1.png
https://docs.microsoft.com/en-us/windows/win32/intl/nls-terminology

RichID Information:

@comp.id Counter
0x00FF5ES2 i
0x000210000 109
Ox01005E97 1
0x00937309 7
0x01025E97 i
0x00F19CE4 S
0x01035E36 r
Ox00F29CE4 13
0x01045E3E 16
0x01085E97 11
Ox00F39CE4 113
0x01055E36 20

Version

14.0.24210

14.0.24215
9.0.30729
14.0,24215
12.10.40116
14.0.24123
18.10.40116
19.0,24123
19.0.24215
18.10.40116
19.0.24123

Toal

CVTRES, RES to COFF
IAT Entry

Linker, Exports in DEF file
Linker, Impart Library
Linker, Link

MASM, ASM COFF
MASM, ASM COFF
UTC CL, C COFF

uTc CL, C COFF

LTC CL, C OB] (LTCG)
UTC CL, C++ COFF
UTC CL, C++ COFF

Toolset

W5 2015 14.0 Upd 3

VS 2015 14.0 Upd 3 5R4
V5 2008 9.0 5P1

VS 2015 14.0 Upd 3 5R4
W5 2013 12,10

VS 2015 14.0 Upd 3 RC
V5 2013 12.10

Y5 2015 14.0 Upd 3RC
V5 2015 14.0 Upd 3 5R.4
V5 2013 12,10

VS 2015 14.0 Upd 3RC

You can compare with the RichID information in Figure 3 of this article. Attackers used
impersonating NLS in the Windows\System32 and Windows\SysWow64 folders, which
contain config and C&C info during the attack on a large Vietnam corporation (Eigure4). After
that, attackers upgraded in April 2020 to real PE(s) to perform other tasks.
DIISvchDtchX64.bin is written as a service DIl, the code and style is exactly like the code of
smanager_ssl.dll and wercplsupport.dil. The ServiceMain, SvcCtrIHandler, and SetSvcStatus
functions are all the same.

ServiceMain function (compare with Figureb):

2/23

https://1.bp.blogspot.com/-rPA3ge0VgC4/YN_t0Y9RkeI/AAAAAAAACho/58qHiFqwI54gA301rEym_SSgOHFpaHSKACNcBGAsYHQ/s598/image2.png
https://blog.vincss.net/2020/12/re018-2-analyzing-new-malware-of-china-panda-hacker-group-used-to-attack-supply-chain-against-vietnam-government-certification-authority.html
https://blog.vincss.net/2020/12/re018-2-analyzing-new-malware-of-china-panda-hacker-group-used-to-attack-supply-chain-against-vietnam-government-certification-authority.html
https://blog.vincss.net/2020/12/re018-2-analyzing-new-malware-of-china-panda-hacker-group-used-to-attack-supply-chain-against-vietnam-government-certification-authority.html

ceName,

OWN_PROCESS;

_PENDING;
EFT_PAUSE_CONTINUE | SERVICE_ACCEPT_SHUTDOWN

. EstatusRunning);

Another small difference is that in addition to the global variable g_dwServiceState, the
hacker has added another global variable, g_dwSvcStopped to Sleep continuously until this
service of DIISvchDtchX64.bin was stopped by Windows. With this sample, the main task of
executing malware code is not included in the ServiceMain function, but directly in the
DlIMain function.

The SetSvcStatus function (compare with Figure 7 and 8):

[rsp+28h] [rbp-38h] BYREF

cStatus);

In the DIIMain function, the malware decrypts the SID and Mutex name, creating a thread to
execute another task. This SID and Mutex name are used in the MainThreadProc of the
created thread.

The encrypt and decrypt encryption algorithm used by the hacker in this sample is
Salsa/Chacha20. It can be detected by FindCrypt3 or Capa of FireEye.

3/23

https://1.bp.blogspot.com/-ic9rhWEH7I4/YN_uH_fpPGI/AAAAAAAAChw/go00e1xOcIoe2DzBLfo1SLAyT9k5FWpIwCNcBGAsYHQ/s1020/image3.png
https://blog.vincss.net/2020/12/re018-2-analyzing-new-malware-of-china-panda-hacker-group-used-to-attack-supply-chain-against-vietnam-government-certification-authority.html
https://1.bp.blogspot.com/-fBoaWUaJzhQ/YN_uWdv_mgI/AAAAAAAACh0/AlhmnCSfrQMF-TYvMextr8MrQRwh9G7owCNcBGAsYHQ/s908/image4.png
https://github.com/fireeye/capa

proc mear
per |

Source code C implementing Salsa and Chacha algorithms is abundant in Lib Crypto
libraries, for example Cryptlib, libtomcrypt, libcrypto... But the C source we decompiled is
more similar to the source here: http://cr.yp.to/snuffle/ecrypt.c. We are not 100% sure if the
hacker changed the algorithm or because of the optimization mechanism of the VC compiler.
Readers can refer to it for self comparison.

For decrypting the mutex name and SID, the hacker converts two hardcoded hex strings into
a byte buffer using the Hex2Bytes function at address Ox7FFCD3492220, and then feeds
this buffer to the Salsa/Chacha20 function at address Ox7FFCD34914FO.

g_szMutexHex dh VADETFS !
a0 _pocHutexName: o

: .data:g_pcsiDio

lame-+601 o

After decrypt, we get:

1. SID = S-1-5-18
2. Mutex Name = Global\24yQoCWKY 3kbZexjzTR6hc7pHU1IIOEV

SID = “S-1-5-18" is known as Local System, DIl Services run under this account. Readers
can refer here: Well-known security identifiers in Windows operating_systems. Hackers
declared and used a struct like the one below to save the config that regulate the operation
of this malware family. This struct has sizeof = 0x248 (584 decimal), and has been encrypted
using the Salsa/Chach20 algorithm used above.

declspac{aligni{4)} CConfig

DWORD twSizeData;

DWORD daHash
BYTE rghIv[12];
BYTE TE=eCu
BYTE fCrae

BYTE TCheck5ID;

BYTE fiheckExePath:
char wWsZExePath|24];
OWORD dwShellcodeSise;
char rgbShellcode[532]):

The meaning of these fields in this struct:

4/23

https://1.bp.blogspot.com/-bV3WaGs6dws/YN_ugLqtZBI/AAAAAAAACh4/AtL_RMGMMUsDTpT4xslBupv1hooQ8bCTQCNcBGAsYHQ/s1457/image5.png
http://cr.yp.to/snuffle/ecrypt.c
https://1.bp.blogspot.com/-cSeqt-fKP_4/YN_uqaFgLaI/AAAAAAAACiA/SYbEw0axrrov4UBaoCD_9S1GWEB4wz4qgCNcBGAsYHQ/s1128/image6.png
https://docs.microsoft.com/en-us/troubleshoot/windows-server/identity/security-identifiers-in-windows
https://1.bp.blogspot.com/-k0iX739ACSM/YN_u4sp24vI/AAAAAAAACiI/XVKl0AOF9X0u2ciVuQlid3oQEOkkDgdKwCNcBGAsYHQ/s1211/image7.png

o dwSizeData: The actual size of the real data area from the fExecuteShellcode field

o dwHash: ROL 0xB hash of the whole data range from rgblv

e rgblv: 12-byte array, used as value for parameter Iv for salsa_decrypt_bytes function

o fExecuteShellcode: flag specifies whether the data area in the rgbShellcode array has
shellcode data, and whether the malware will execute this shellcode or not

o fCreateMutex: flag determines whether or not to create a mutex with the above
decoded name

o fCheckSID: check if the malware is being executed correctly in the above decrypted
SID group

o fCheckExePath: check whether the executing malware has the correct Exe name or
the correct Parent Exe name with the szExePath field

o szExePath: Name of Exe or Parent Exe that needed to be checked

o dwShellcodeSize: The actual size of the rgbShellcode area (rgb = Range of Bytes) or
length (in bytes) of the shellcode file's path

o rbgShellcode: Shellcode or path of another dll or shellcode that needs to be loaded and
executed

Source decompiler of MainThreadProc, address = Ox7FFCD3491FDO.

wold *pMem;

rsp+38h] [rbp+18h] BYR

if [.dwSizelata == @ | .dwSizeData + Bxldicd) > @xz248)

LJOdwslizeData + @x14, &

pMem = (@ . . PAGE_EXECUTE_READWRITE);
if { pMem)
I

fCreateMutex)

turn 81i64;

r
recurn @i64;

|

5/23

https://1.bp.blogspot.com/-8viI3qymm_w/YN_vYzo41eI/AAAAAAAACiU/3_JkxCKlvT0rkTreMR4iagpknYRqBaq6wCNcBGAsYHQ/s1146/image8.png

Note: g config is a global variable of the above struct CConfig. 0x14 (20) is the total size of
the 3 fields: DWORD dwSizeData, DWORD dwHash and BYTE rgblv[12].

After checking the correct size, the Decrypt function will decrypt the hardcoded config,
encrypted with the decrypt Salsa/Chacha20 functions.

YPAD CTRL-"+" TO EXPAND]

{ sizeData != @xFFFFFFF4)

(hash, BxB);

siwHash)

ey, pEnd, pIv ig | g (ecuteshellcoda, sirebData);

The value of the local hash variable in the Decrypt function is calculated from the address of
rgblv, the loop size is the value of the field dwSizeData + 0xC (12 = sizeof(rgblv)). If the hash
value matches the dwHash field, the data region will be decoded.

The decryption key is the hardcoded string "uOFBSP2dDyTLhIQ9MXsEexmH7JbiN3k", the
lv value is rgblv, the output decoding starts at the address of the fExecuteShellcode field
(offset 0x14). After decoding the hardcoded config, in the MainThreadProc image above, the
malware starts checking flags, flags that are set to 1 will call the corresponding check
function.

The function checks the user’s SID that the malware is running:

6/23

https://1.bp.blogspot.com/-dZ7Zpzv02ik/YN_vjLuFSuI/AAAAAAAACiY/nF2DZC8nMX0OFG1ttwHSpu84TDRfzUkawCNcBGAsYHQ/s1144/image9.png

L)
/4 [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" TO EXPAND]

bRet = &;

hToken = Bi64;

hProcess = ():

if (1 (hProcess, TOKEN_QUERY, &hToken))

return @;

(ulReturn) = @;
(hToken, TokenUser, Bi64, @, &ulReturn);
() != ERROR_INSUFFICIENT_BUFFER)

return ;

dwSize = ulReturn;

hHeap = ():

pTokenUser = {hHeap, HEAP_ZERO_MEMORY., OwSlze):
if (!'pTokenUser]

L

}

if (hToken, TokenUser, pTokenUser, ulReturn., &ulReturn))
L]

return bRet:;

if | (pTokenUser-=User.5id))
1
pSid = pTokenUser-=User.S5id;
pstrsid = @iG4;
if | (pSid, &pStrsid))

{
if (1 (pStrsid,))

bRet = 1;

(pStr5id);

1
1
hHeap = ():
(hHeap, @, pTokenUser);
return bRet:

i3
The variable g_pwszSID is WCHAR * type, decrypted from the begining (“S-1-5-18"). If the
SID is equal (stricmp return 0) then the function will return TRUE.

Function to check current Exe name or Parent Exe name (when malware runs as a service
DIl). The function also returns TRUE when the Exe Name matches the szExePath field:

lame; // rax
2]; // [rsp+20h] [rbp-128h] BYREF

(szExePath, @, Gx105ui64d]);
(0164, szExePath, 0x104u);
pFileName = (szExePath);
return (pFileName, pszExeCheck) == 0;

Function creates mutex is the same as the regular CreateMutex functions:

https://1.bp.blogspot.com/-0e__Lb5GYDs/YN_vup_5Y6I/AAAAAAAACig/646AUpnOpesgd0trnJOzM-Y1hmh9uxzwwCNcBGAsYHQ/s888/image10.png
https://1.bp.blogspot.com/-hZbtrzkJuxc/YN_v_PCKPoI/AAAAAAAACis/QG_krtYMJG8WGoY2ztEMk5C7KZmv1LVBgCNcBGAsYHQ/s613/image11.png

: fS [rsp+2eh] [rbp-48h]
f/ [rsp+38h] [rbp-38h] BYREF

mutexAttr. lpSecurityD

();

return 1;
} _
(

return @:;

The value of g_pwszMutexName variable has been decoded from the begining:
“Global\24yQoCWKY 3kbZexjzTR6hc7pHU1IIOEV”. The created Mutex will be saved to the
g_hMutex global variable.

As shown in the figure of MainThreadProc, if the fExecuteShellcode field is set to 1, the
shellcode will be executed as usual (VirtualAlloc, copy and execute). When it is 0, the
shellcode file will be read from rgbShellcode.

L)

__intie ShellcodePath[264]; // [rsp+2eh] [rbp-438h] BYREF
__inti6 D1llPath[264]; 7/ [rsp+ n] [rbp-228h] BYREF

(wszShellcodePath, o, 8 ;
(.rgbShellcode, wszShellcodePath, @x184u);
(wszshellcodePath)

(wszD11Path, 8, @x208uiB4);
; .

ZD11Path};

L1Path):

(wszShellcodePath)

return @;

(& , wszShellcodePath, 268
return 1:

g_hlnstDLL is the HINSTANCE of the malware, running as a service DLL, assigned value at
the Entrypoint DIIMain function. Readers notice three functions PathRemoteFileSpec,
PathAddBackslash and PathAppend. These three functions will regenerate the path for the

8/23

https://1.bp.blogspot.com/-m-QnqLvFqpM/YN_wT8fmaVI/AAAAAAAACi0/6ZqKkPnak54Hqbu1pQ0SvXny1V7KTEfLgCNcBGAsYHQ/s816/image12.png
https://1.bp.blogspot.com/-M_kKocQgNrg/YN_wd5LIJlI/AAAAAAAACi4/nDFIsl0xhjozAiF4Id3jvxGDhSqeghBXQCNcBGAsYHQ/s856/image13.png

Shellcode file that is from a subdirectory of the same level as the Malware. In this case,
malware has an impersonation name of C:\Windows\System32\ C_20253.NLS, that
subfolder will also be located in C:\Windows\System32.

After getting the path of the shellcode file, the shellcode will be read, decrypted, and return a
pointer to the decrypted shellcode.

L
'SED LOCAL DECLARATIONS. PRESS HKEYPAD CTRL-"+" TO EXPAND]
hFile = e . BEMERIC_READ, FILE_SHARE_READ, BiG4, OPEM_EXISTIMG. FILE_ATTRIBUTE_MORMAL, @164);
it [IhFile)
{
return DRet)
(hFLle, @iéd):

pHem = (8i64, dwSize, MEM_RESERVE|MEM_COMMIT. PAGE_EXECUTE_READWRITE);
if { pMem }
{

sRead, @i84))

[]
L]
[]
[]
L]
L]
L
L]
L]
L]
[]
[]

{pHem, 2164, BxEEE&U);

(hFile]};
return bRet;

The memory containing this decrypted shellcode is executed by MainThreadProc. With this
sample, after the Decrypt function, we only have the following config information:

o Allflags are 0
¢ File shellcode is “ErrorSvc.dll”, field dwShellcodeSize = 0x1A (26)

ll. Hunting the same loader

Based on the special hardcoded string “UOFBSP2dDyTLhIQ9MXsEexmH7JbiN3k”, is used
as |V for the Salsa/Chacha20 encrypt/decrypt function, we did a search on VirusTotal and
Hybrid Analysis, there are many similar loaders, most of which are uploaded by users
recently, from Vietnam, Korea, Japan, Hong Kong... and lastest is a sample from China.

 https://www.virustotal.com/gui/search/content%253A%2522u0FBSP2dDyTLhIQ9MXSsE

exmH7JbiN3k%2522/files
e https://www.hybrid-analysis.com/string-
search/results/08f2e828fe16c22515f0b8b7a5ccf9489ceeb58802ded94dad4a3e13acd01

1e32

9/23

https://1.bp.blogspot.com/-06yEY74yoDo/YN_wqizQ5KI/AAAAAAAACjA/2jmfz0guuX45RArA38WoP-R9zlt6DSh9wCNcBGAsYHQ/s1216/image14.png
https://www.virustotal.com/gui/search/content%253A%2522u0FBSP2dDyTLhIQ9MXsEexmH7JbiN3k%2522/files
https://www.hybrid-analysis.com/string-search/results/08f2e828fe16c22515f0b8b7a5ccf9489ceeb58802ded94da4a3e13acd011e32

Until yesterday, we have found and analyzed 7 more loader samples like this. The source
code is completely the same, only the final build format are different (EXE or DLL). And it's
all PE64, include the following samples:

1. 4578b3bf586658c47c8db1d497a8994d7637d28f16a11af9f6af64836085d4ed

e Build Exe
e Flags=0
o Shellcode path: stuffe.dll

o 8061df4d29ea57a420491f0db4bf37964070cc695f4b1b45af40e46194cc8c36
o Build Exe
e Flags=0
o Shellcode path: tmp01.dat

o 4b1928dbaf68e427db2f3971ea2ff5604d210ef0dee876d57281d7e395da8c37
e The impersonated file name is C_892.NLS
» Build as DII, original DIl name: DIISvchDtchX64.bin
e Flags=0
¢ Shellcode path: winsec.dll

o d2beff6d7f5be68cdda36182d010e8103d86053fcc63f1166fecd2727¢c26558d
» Build as DII, original DIl name: DIISvchDtchX64.bin
e Flags=0
e Shellcode path: access.sys

o d28984576620aebfa929767ad9453fe7549c969716d41bad49cbebeca7fae72789
e Build as Exe
o Flag fExcuteShellcode =1
e Shellcode size = 0x107A2 (67490)

o 3714568d8c8b7359259€968664de3ab6c13d6d7c16559dfb0a25f9aa8194e8de4d

o Build as DII, original DIl name: DIIHijkDtchX64.bin

o fCreateMutex, fCheckSID, fCheckExePath set 1

o Exe Parent Name to check: WmiApSrv.exe

¢ Shellcode path: AxLnst.bin
Notice the file name Exe Parent. This exe is the original Windows file, located in the
\Windows\System32\Wbem folder. So this malware and AxLnst.bin will also be in this
directory (according to the GetShellcodePath function). This could be an attack using
WMI Exploitation that the Winnti/Derusbi Group has been using. Read more here.

e b69d9ed06cba8eeal81df01bad146abb004a4cf5fb6b296017d82ebb18975386
e Build as Exe
e Flags=0
¢ Shellcode path: koreanflass.bin

10/23

https://www.virustotal.com/gui/file/4578b3bf586658c47c8db1d497a8994d7637d28f16a11af9f6af64836085d4ed/detection
https://www.virustotal.com/gui/file/8061df4d29ea57a420491f0db4bf37964070cc695f4b1b45af40e46194cc8c36/detection
https://www.virustotal.com/gui/file/4b1928dbaf68e427db2f3971ea2ff5604d210ef0dee876d57281d7e395da8c37/detection
https://www.virustotal.com/gui/file/d2beff6d7f5be68cdda36182d010e8103d86053fcc63f1166fec42727c26558d/detection
https://www.virustotal.com/gui/file/d28984576620aebfa929767ad9453fe7549c969716d41ba49cbe6ca7fae72789/detection
https://www.virustotal.com/gui/file/3714568d8c8b7359259e968664de3a6c13d6d7c16559dfb0a25f9aa8194e8de4/detection
https://www.slideshare.net/Hackerhurricane/detecting-wmi-exploitation-v11
https://www.virustotal.com/gui/file/b69d9ed06cba8eea081df01bad146abb004a4cf5fb6b296017d82ebb18975386/detection

Hunting the updated malware of this group

Continuing to hunt for signs of old malware samples that this group has used in campaigns
targeted Vietnam over the years, we found that this group still uses old samples, has
updated code and rebuilt with Visual Studio 2019, v16.4 or later. Completely build in x64
mode.

This group continues to use files that impersonate Windows' NLS files as config containers
or as shellcode files. The identification point is that this group has a coder who specializes in
CryptoPP library and coding in C++ style, using std::string.

The samples we collected were released recently, in May and June, also from the countries
mentioned above. We collected and analyzed the following samples:

1.

5afc41060cf62d1613219caa108eb9714074479a413f4a26797c0358fc95a4db

Built with Visual Studio 2019 v16.9

PDB Path: C:\Users\VS\Desktop\Auto_Firefox\x64\Release\8.1.pdb

Using CryptoPP, C++ style

Xor value: 0x28

Build time: 08/06/2021 - 1:24:48 AM (UTC)

Export function: ServiceMain, run as a service DIl

Read and execute MSIscSI.Dll in the same directory and load vsmapi.dil in SysWow64,
calling the netEntryApi export function.

o 8dd13f34d1734d3c844474ce98a4f39244e511bafbefd59b18bb7fb0b52ce895

Built with Visual Studio 2019 v16.9

PDB Path:
C:\Users\Machine\Desktop\Work\20200913\Auto_Firefox\x64\Release\8.pdb
Using CryptoPP, C++ style

Build time: 19/09/2020 - 8:58:34 AM (UTC)

Export function: NetworkChecker

11/23

https://www.virustotal.com/gui/file/5afc41060cf62d1613219caa108eb9714074479a413f4a26797c0358fc95a4db/detection
https://www.virustotal.com/gui/file/8dd13f34d1734d3c844474ce98a4f39244e511bafbefd59b18bb7fb0b52ce895/detection

o Decrypt, read two configs from two fake NLS files, C_4868.NLS and C_4869.NLS

SZC486!

9abf047566c6e9bd77120e8eb6c3503eef7c05dd4fd0abac9046d495291e5c8d

 Built with Visual Studio 2008, code C style

o Export two functions Run and main. Two different functions but the code is exactly the
same

o PDB path: C:\Dev\16\3\x64\Release\F71.pdb

e Build time: 01/06/2016 - 4:38:32 PM (UTC)

e Impersonate as Windows VIWWDM.dII in Resource Version Info

e C2 hardcoded, xor with 0x27, is “www.newshcm.com”

¢ Read two files is NLS fake are C_436.NLS and C_20130.NLS. The xor value to decode
the contents of 2 files is 0x26 and 0x27

60fe689bafb1ced4def3fab1c91e69e46b223869314e4364fa8efb12e6albafba

¢ Built with Visual Studio 2019 v16.9, C style

o PDB path: C:\Users\VS\Desktop\Auto_Firefox\x64\Release\8.1.pdb

o Export function: ServiceMain

o Xor value: 0x2B, load dll pubiapi.dll in Windows\SysWow64, calling export function
netEntryApi of this DII.

68e871190f405131635ccaa851339c9ca3f61c3b6a9d84dbd7afc99b65edd588
e Built with Visual Studio 2019 v16.9

e Using CryptoPP, C++ style

e Build time: 12/04/2021 - 9:18:26 PM (UTC)

o Export function: netEntryApi

o Load 2 fake NLS files are C_4868.NLS and C_4869.NLS like (2)

918ad6c918b26de1e112281393f6ced9141712484bb0da5f8250fb36fc0d476b
¢ Built with Visual Studio 2012, C style

12/23

https://1.bp.blogspot.com/-tauve2ZLgQA/YN_4YaH7w1I/AAAAAAAACjM/CTp-K5hpZlYn-vqfkW8gdvisLAX6OAiYACNcBGAsYHQ/s432/image15.png
https://www.virustotal.com/gui/file/9abf047566c6e9bd77120e8eb6c3503eef7c05dd4fd0abac9046d495291e5c8d/detection
https://www.virustotal.com/gui/file/60fe689bafb1ce4def3fab1c91e69e46b223869314e4364fa8efb12e6a0bafba/detection
https://www.virustotal.com/gui/file/68e871190f405131635ccaa851339c9ca3f61c3b6a9d84dbd7afc99b65edd588/detection
https://www.virustotal.com/gui/file/918ad6c918b26de1e112281393f6ced9141712484bb0da5f8250fb36fc0d476b/detection

PDB Path: C:\Dev\17D\Release\7.pdb

Build time: 30/04/2017 - 12:29:05 AM (UTC)

Export two functions are Run and main like (3)

CC hardcoded, xor with 0x1B, is “www.sexphm.com” and IP hardcoded 172.16.22.22
Read two fake NLS files are C_20831.NLS and C_20832.NLS in Windows\System32

o 092546€9db9424d454cc21047d847ad93424440e7a4d339fe58fa9a4d8f6913
e |Is vsmapi.dll of (1)
e Built with Visual Studio 2019 v16.9
e Using CryptoPP, C++ style
o PDB path: C:\Users\VS\Desktop\Auto_Firefox\x64\Release\8.pdb
e Build time: 08/06/2021 - 1:24:51 AM (UTC)
o Export function: netEntryApi
o Load two fake NLS files are C_4868.NLS and C_4869.NLS like (2) and (5)

Thus, we can see that the samples that this group used in this campaign are mostly rebuilt,

besides some old samples in their inventory that have not been detected. Maybe they have
been used, installed and infected in many companies and organizations of many countries,

including Vietnam since 2016. Until now, we have discoverd a number of fake NLS files that
this group used throughout, including:

« C_201263a.NLS
C_20130.NLS
C_20253.NLS
C_20831.NLS
C_20832.NLS
C_20834.NLS
C_20835.NLS
C_21871.NLS
C_21872.NLS
C_436.NLS
C_4868.NLS
C_4869.NLS
C_877.NLS
C_878.NLS
C_892.NLS

And probably many more impersonated NLS files out there that we may not discovered.
IV. Analysing Windows C_xxxx.NLS files

The value xxxx is a number, which is a codepage identifier. For example, Vietnam has a
codepage of 1258, the file C_1258.nls on Windows is for Vietham.

13/23

https://www.virustotal.com/gui/file/c092546e9db9424d454cc21047d847ad93424440e7a4d339fe58fa9a4d8f6913/detection

For more codepage definition, readers can read it here. Values of Codepages that
international and Windows have a convention can refer here. The current maximum value of
Codepage is 65501, Unicode UTF-8. Between 1 and 65535 (OxFFFF), you will see a lot of
space, more than 65,000 numbers. This group used numbers not on the above Codepage
identifiers to name the impersonated C_XXXX.NLS files.

The original Windows C_xxxx.NLS files are used for mapping and converting from MultiByte
to Unicode characters. Two common API functions commonly used in Windows,
MultiByteToWideChar and WideCharToMultiByte, are based on these C_xxxx.nls files
corresponding to the current Windows Codepage on the user's machine.

On Windows 2000, XP operating systems, these .nls files are not included in the list of
Windows Protection Files files, only .exe, .dll, .sys, .ocx files. From Windows Vista onwards,
the list of Windows Protection Files file types is expanded and the .nls file is added. Readers
can refer to protected files here.

The C_xxx.nls are installed when the user installs Windows, located in the
Windows\System32 and Windows\WinSXS\ folders in several subfolders named
xxx.codepage-core.xxx and xxx.codepage-additional-xxx.

These C_xxxx.nls files all have Owner Trust Installer, users with System and Administrators
rights can only Read, no change rights. When trying to switch Owner and change these files,
Windows Resource Protection will notify and recover immediately.

Advanced Securty Settings for C_10000.MLS

Marme: CAWindows\Systern32\C_10000.MNLS
Chamer: Trustedinstaller 9 Change
Permissions Auditing Effective Access

For additional infermation, double-click a permission entry. To medify a permission entry, select the entry and click Edit

Permission entrnes:

Type Principal Access Inherted from
B Allow Trustedinstaller Full control Mone
BB Allow Administrators Read & execute None
BB Allow SYSTEM Read & execute Mone

When the user installs Windows, the list of C_xxxx.nls files were created by Windows is
located at KEY _LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\NIs\CodePage. The
name value is the codepage number and the Data value is the codepage file name.

14/23

https://docs.microsoft.com/en-us/windows/win32/intl/code-pages
https://docs.microsoft.com/en-us/windows/win32/intl/code-page-identifiers
https://docs.microsoft.com/en-us/windows/win32/wfp/protected-file-list
https://1.bp.blogspot.com/-jWqZG1qA8-Q/YN_8F67A1kI/AAAAAAAACjU/54B9Fpst7GocA5Ul5clzp1-OMlgAljPNwCNcBGAsYHQ/s655/image16.png

Mame - Type Data

ab 369 REG 57 c_Bad.nls
ab) 366 REG_SZ c_Bbb.nls
ab’ 365 REG_5Z c_8B3.nls
ab 364 REG_5Z c_Bbd.nls
ablgag REG_5Z ¢_Bb3.nls
abg62 REG_57 c_862.nls
Al gg1 REG_5Z ¢_Bbl.nls
ab] 350 REG 57 c_860.nls
ab|a53 REG_SZ ¢_B38.nls
ab 357 REG_SZ c_857.nks
ab| 855 REG_SZ ¢_B55.nls
ab g5 REG 54 c_83%2.nls
ab 350 REG 57 c_B50.nls
ab|T7s REG_5Z c_Ia.nls
ab| 737 REG_57 c_737.nls
Aablyan REG_SZ c_T20.nls
ab 708 REG 57 c_T08.nls
Al 57011 REG 57 c_iscindll
abl 57010 REG 57 c_iscindll
ab| 57009 REG_S5Z c_iscindll
ab! 57008 REG 57 c_iscindll

The image above is part of the list of Windows 10. In addition to .nls files, Windows also uses
C_xxxx.dll files to serve for mapping, converting between that codepage back and forth
Unicode. These dlls only export a single function is NIsDIICodePageTranslation. Prototype of
this function: DWORD __stdcall NIsDIlICodePageTranslation(DWORD CodePage, DWORD
dwFlags, LPSTR IpMultiByteStr, int cchMultiByte, LPWSTR IpWideCharStr, int cchWideChar,
LPCPINFO IpCPInfo)

On Windows XP and 2000, the number of codepages in the above registry is less, although
there are many .nls files copied by the Windows installer to System32\dlicache, they are not
considered to have been installed and updated in the above registry.

15/23

https://1.bp.blogspot.com/-sj6kKgZg-oM/YN_8MuzkNaI/AAAAAAAACjY/hqLSRdcbG3Mtwn_Q9jhGQh79iDuRP4GWgCNcBGAsYHQ/s433/image17.png

Hanms
A} Daf k)
a8 10000
b 10001
Ab]janne
A5 10003
b 10004
Ab] 10005
A 10008
b pooo?
A 1o
A 10010
AblioaL7
B 10021
_,J 10023
b 10079
Ab] 10061
A 10082
b 1026
ab] 147 REG_5Z
ab1140 REG_SZ
ab1141 REG_SZ
ably 142 REG_S2
1143 REG_SZ
[FEL REG_SZ
Abp1as REG_S2
AB]1 146 REG_SZ
b1 147 REG_52
)14 REG_S2
I REL] REG_ST

The number of codepages that are considered installed and supported on each version of
Windows is also different. From Windows Vista onwards, all .nls files that are installed are
turned on as installed. Codepage installed and supported on Windows XP:

Dats
valoe not set)

c_ 10000, nls

Humbey of CodePage supported: 134
Humber of CodePage installed: 55

Supported CodePages [37 437 508 708 728 737 775 858 852 855 857 858 868 861 8

62 863 864 865 866 869 870 874 875 932 936 949 958 1826 1847 1148 1141 1142 1143
1144 1145 1146 1147 1148 1149 1250 1251 1252 1253 125 5 125%6 1257 1258 1

ll-'IHHJ' LBRB3 18084 IHHH' 14 1 ‘J' 18888 1 i 10817 HiH'*I 188 |

: gmua 20187 28188 201

04280 28423 20424

21866 2

? 28598 {3599 2 E’ ﬂahnr'13€9u 59220 502
LR 57003 SVER4 5VeRLS L7806 LTEaT L7008

37 437 bME VAV WD 858 B5:2 355 85 H6H Bol H6Z HbD Hbb
758 1826 1258 15"5‘] 1252 1253 1254 1255 1256 1257 1
1|-11-1MH 1I'1HHF- 18887 10018 10817 19629 18879 10881 10882 20127 28261 20866
571 28592 28574 28575 28597 28577 28683 28685 65888 65881]

Codepage installed and supported on Windows 7

16/23

https://1.bp.blogspot.com/-NI6AJ0jLmXg/YN_8VAKMwfI/AAAAAAAACjc/s6QueigC5swz0B4Ct_uPO8ctZG2cjcCAwCNcBGAsYHQ/s526/image18.png
https://1.bp.blogspot.com/-CG0OQwk_Cos/YN_8nJmfyOI/AAAAAAAACjo/JV-nfwpFo30d-QWYCsRoXJwizGcaVB2UACNcBGAsYHQ/s685/image19.png

Number of CodePage supported: 135

10 10817 10021 10029 1¢
' 27 2

Since Microsoft does not disclose the structure of the .nls file, we searched the Internet and
relied on the WinNLS.h file in the Windows SDK to create the NLS.bt file. This file is used as
a template parser for 010 Editor, a HexEditor program that supports scripts and parse
templates very strongly, widely used by the RE community, forensics When using
010Editor to open an NLS file and select the template file as NLS.bt, 010Editor will show us
the internal structure of an NLS file. We uploaded NLS.bt here.

17/23

https://1.bp.blogspot.com/-DQ0WeZSSnDI/YN_8t722vjI/AAAAAAAACjs/GNnJzpkZtbES3_23zWfdk7_klkaMnQOfwCNcBGAsYHQ/s768/image20.png
https://1.bp.blogspot.com/-tVo-iEcaBhA/YN_8zcrCR9I/AAAAAAAACjw/3sOgFwsr3aYKfr7AXRsVTYxJ-Jq7Y8p9ACNcBGAsYHQ/s965/image21.png
http://www.010editor.com/
https://github.com/VinCSS-Public-Projects/VinCSS-RE-Tools-Ultilities/tree/main/NLSScan

V. Tools to check the number of codepages and scan fake NLS files file

After analyzing the structure of an official, original Windows C_xxxx.NLS file, VinCSS has
developed two tools to check and scan fake NLS files of this group. These two tools are

written in Delphi (Object Pascal) and built with Free Embarcadero Delphi Community Edition.

We provide both the built exe and the source code for your reference, which can be easily
tested, rebuilt by yourself, also in the above repo. According to this report by Positive
Technologies, hackers have now updated to new fake NLS.

18/23

https://1.bp.blogspot.com/-7OkSDPod3bk/YN_884xY51I/AAAAAAAACj0/FaRRIEDGeIkbFZ4FfJDK4w-zT9u_yZOxwCNcBGAsYHQ/s679/image22.png
https://www.embarcadero.com/products/delphi/starter/free-download
https://github.com/VinCSS-Public-Projects/VinCSS-RE-Tools-Ultilities/tree/main/NLSScan
https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/higaisa-or-winnti-apt-41-backdoors-old-and-new/

1. CheckCP:
Based on the EnumSystemCodePages API function with two parameters
CP_INSTALLED and CP_SUPPORTED, CheckCP will display a list of installed and
supported codepages on the current Windows. If you detect a suspicious C_xxxx.NLS
file, you can enter that number into the CheckCP program to check if the codepage
number is fake or belong to Windows. XXXX is a number, for example: file
C_20130.NSL, the number to check is 20130.

With the list of fake NLS files above, we immediately see that all the codepage
numbers are fake (1258 and 1252 are valid, we added):

CheckCP.exe source code you download at the above repo, in the subdirectory .\src,
file CheckCP.dpr

19/23

https://1.bp.blogspot.com/-JYB8pFHuUxs/YN_90Mj_fYI/AAAAAAAACkE/dDVA74JfM74IPN9uDteAd8usBlf7ddWWgCNcBGAsYHQ/s726/image23.png

2. NLSScan.exe:

NLSScan is the main program to scan all C_xxxx.NLS files in Windows\SysWow64 and
Windows\System32 folders, deep into all subfolders. This file is built with 32bit mode,
running on old Windows such as XP, 2000 because there is a high possibility that many
computers in organizations still use these operating systems.

This group always put fake NLS files in the above two folders. NLSScan checks many
factors to ensure that a C_xxxx.NLS file must meet all of those conditions to not be
considered fake or malware. When running NLSScan with no parameters, NLSScan
will request Admin privileges to read only a small portion of the files C_xxxx.NLS finds.
If you choose Yes, NLSScan will automatically run again in Admin privilege.

For example, a requirement that the codepage number be consistent in the file name
and in the file content. We found two cases where the content of the .NLS file was valid
when parsed in NLS.bt, but the codepage number in the file name was invalid, and the
codepage number in the content was inconsistent. Hackers copied the original
Windows file C_037.NLS into two new files C_21871.NLS and C_21872.NLS,
overwriting the config of the content of the file.

Compare these two files with the C_037.NLS file and you will see the overwritten area:

20/23

https://1.bp.blogspot.com/-vYrdquc6Ffc/YN_-MzY1p6I/AAAAAAAACkM/ybf1IN9riuY5at0AcDzw-NdW0ShaJLhTACNcBGAsYHQ/s590/image24.png

EF LT of GF 6F 6F 60 &F 84 6 &F o6f GF 6P G0 Gr &F &0 &1 L GFGE GF GF 6F &0 &0 B B of 6F OF O Gr 6F &F &5 6

When NLSScan detects fake NLS files, the tool will ask the user for permission to copy those
files to the % TEMP% folder and delete them. If the tool fails to remove it, NLSScan will
prompt you to reboot to delete it at the next reboot. When you receive the NLSScan
message as above, there is a fake NLS file, you should allow copying and deleting, then
reboot Windows immediately, run the tool again. If the tool still cannot be deleted, please
restart Windows in Safe Mode, run the tool again or find and delete those fake NLS files
manually.

When NLSScan has detected a fake NLS file, it is almost certain that your computer has
been infected with some malware of this group. You should disconnect from the Internet,
rescan your system with AV programs, change the passwords, review all security factors.

You can send us the fake NLS files that have been copied to the %Temp% folder, and if you
need helping with finding, review, etc. please contact us at the email address:
malware.report@yvincss.net

21/23

https://1.bp.blogspot.com/-ZY44pZYWq5U/YN_-VvP781I/AAAAAAAACkQ/f-pUko18o4I2uK-GQ-xQDk9UrJz_h_I0gCNcBGAsYHQ/s1888/image25.png
http://10.10.0.46/mailto:malware.report@vincss.net

This is a test result by using NLSScan on our Windows 10 machine. Especially, you can see
the file C_878.NLS that we mentioned in part Il, which is a PE x64 dll file, which Windows
Defender has not detected at the time of this article.

NLSScan can also scan each or multiple NLS files (user can enter the path of those NLS
files). Currently, NLSScan only supports scanning C_XXXX.NLS files. On Windows there are
a number of other NLS files such as: |_intl.nls, locale.nls, normidna.nls, normnfc.nls,
normnfd.nls, normnfkc.nls, normnfkd.nls, SortXXX.nls. But because the format of these files
is not announced by Microsoft, we cannot check. When you encounter files with such names,
you use the Windows tool sfc.exe (System File Checker).

20253 . HNLS>sTc Sscanfile=

the requested oper

“Windows'System3z

urce Protection did not find any integrity violations,

The file C_20253.NLS is invalid, so sfc will say “WRP could not perform....”, C_037.NLS is
a valid file, located in Windows Protection Files, not compromised, so sfc says “WRP did not
find ...”

22/23

https://1.bp.blogspot.com/-hUG62XvvX9I/YN_-q4BNq4I/AAAAAAAACkc/jUXzqUjsTygYBSvt7VjNzIehia8jniSAACNcBGAsYHQ/s1091/image26.png
https://1.bp.blogspot.com/-ZgZRkBr25A4/YN_-0Jt5bBI/AAAAAAAACkg/sp3ENKCXDIAHmQLFarzs-aHORm6eQUdywCNcBGAsYHQ/s1026/image27.png

We also upload a small bat file sfenls.cmd in the above repo for you to periodically run and
check with NLSScan all .nls files in the Windows directory. We hope you will share these
tools to scan all Windows-based computers in Viethamese companies, agencies,
organizations and economic groups. In our opinion, this group is very dangerous, may has
been able to penetrate and lies deep inside with undetected for a long time, causing great
harm to Vietnam.

We wish you good health, peace, ... and together overcome this pandemic.

Click here for Vietnamese version.

Sincerely,
Author: Truong Quoc Ngan (HTC), Dang Dinh Phuong

VinCSS (a member of Vingroup)

23/23

https://blog.vincss.net/2021/07/re023-phan-tich-va-xu-ly-loat-bien-the-ma-doc-moi-cua-Panda-da-tung-tan-cong-BCYCP-VN.html

