MODeflattener - Miasm's OLLVM Deflattener

@ mrt4ntrd.github.io/MODeflattener/

Suraj Malhotra June 25, 2021

So recently a challenge(Layers) from 3kCTF featured control flow flattening using OLLVM.
Although | did know about control flow flattening | hadn’t encountered it personally. And as
I've been experimenting with miasm for the past few days | thought of developing a tool to
deal with it.

Control Flow Flattenning

am =

41 1 1 1 1]
S

Control flow flattening is an interesting and clever technique to make a reverse engineer’s
day difficult. It basically puts all the basic blocks in a function at the same level and destroys

the control flow. It then uses a dispatcher to reconstruct the control flow along with a
control/state variable which is updated at the end of each block.

The following illustration depicts various parts of a flattened function.

1/10

https://mrt4ntr4.github.io/MODeflattener/
https://mrt4ntr4.github.io/files/modeflattener/layers-729d7c2b1e12d9598e9bf6bc247ce0ba.zip
https://ctftime.org/event/1317
https://mrt4ntr4.github.io/img/modeflattener/cff_pass.png

Various obfuscators employ their own version of control flow flattening transformations :

e OLLVM
e Tigress
o Hellscape

CAUTION : Only Static Analysis used !

As we are primarly focusing on OLLVM for now we can just use some static analysis
techniques to deobfuscate it, but for developing a universal tool to deal with this kind of
obfuscation we need to look more into dynamic approaches.

For example, this looks interesting.

Getting Flattening Information

2/10

https://mrt4ntr4.github.io/img/modeflattener/cff_illustration.png
https://github.com/obfuscator-llvm/obfuscator/wiki/Control-Flow-Flattening
http://tigress.cs.arizona.edu/transformPage/docs/flatten/index.html
https://github.com/meme/hellscape#flattening
https://essay.utwente.nl/67522/1/Scrinzi_MA_SCS.pdf

To start off, we need to identify the relevant blocks and the dispatcher. To find the dispatcher
we need to first find the pre-dispatcher. This is because we rely on the fact that the pre-
dispatcher has the maximum number of predecessors, it is easy to identify. Later we can just
get the first successor of the pre-dispatcher to get the dispatcher, easy!

def get_cff_info(asmcfg):
preds = {}
for blk in asmcfg.blocks:
offset = asmcfg.loc_db.get_location_offset(blk.loc_key)
preds[offset] = asmcfg.predecessors(blk.loc_key)
pre_dispatcher = sorted(preds, key=lambda key: len(preds[key]), reverse=True)
(0]
dispatcher =
asmcfg.successors(asmcfg.loc_db.get_offset_location(pre_dispatcher))[0]
dispatcher = asmcfg.loc_db.get_location_offset(dispatcher)

Also we now already have the relevant blocks as they are just the predecessors to the pre-
dispatcher we just found!

State Variable

The state variable is responsible for maintaining the control flow in the flattened function.

loc_481191:

Mo SEH,
Mo &
sub &
Mo [
Mo [
j=z 1

“bp+var 35C],
“bp+

The state variable is always initialized before the dispatcher and is used in the first line of the
dispatcher. We can use this information to get the state variable automatically.

Relevant Blocks

The blocks that are aligned at the same level in the disassembly graph and include the
useful code are known as relevant blocks. These blocks update the value of the state
variable at the very end.

3/10

https://mrt4ntr4.github.io/img/modeflattener/state_var.png

Note: Currently we also add the tail of the backbone to our relevant blocks as we are just
depending on the predecessors of the pre-dispatcher. Basically the tail is used if the state
variable value doesn’t satisfy any condition in the backbone. It doesn’t update the state
variable and only has a jump to pre-dispatcher. So if we don’t find any code related to
modification of the state variable in a relevant block we mark this as tail.

Having most of the information we can now proceed with deflattening the flow.
Basically we have two types of relevant blocks:

e Simple
Block without any conditions, so the state variable is always updated with the same
value. Only one instruction is used to modify the state variable.

o Conditional
Blocks with conditional statements and loops. Here the state variable could have two
possible values depending on whether the condition results in a true or false. These
often end with a cmov instruction. Several instructions are used to modify the state
variable.

Use of SSA Expressions

We further simplify the IR to SSA to deal with the conditional relevant blocks.
We only make use of do_propagate_expressions ssa simplification pass.

4/10

https://mrt4ntr4.github.io/img/modeflattener/relevant_blocks.png

head = loc_db.get_offset_location(addr)
ssa_simplifier = IRCFGSimplifierSSA(lifter)
ssa = ssa_simplifier.ircfg_to_ssa(ircfg,

head)
ssa_simplifier.do_propagate_expressions(ssa,
head)
RCX.2 = 0x30110039
IRDst = (signExt_64(@32[RBP + OxFFFFFFFFFFFFFCF8]) <u (RAX.1 >> 0x3))?(loc_key_4, loc_40laea)
|
v
loc_key 4

RCX.4 = Ox7A3F9928
IRDst = loc_40laea

\

4 ™\
loc_40laea

RCX.3 = Phi(RCX.2, RCX.4)

@32[RBP + OXFFFFFFFFFFFFFCFO] = RCX.3[0:32]

RIP = loc_401c84

IRDst = loc_401c84
o J

loc_401c84

In the SSA form we observe a Phi operation which basically means that one of the variables
arriving from different predeccesors is chosen depending on which path the control flow took.

RCX.2 RCX 4
0x30110039 Ox7A3F9928

5/10

https://mrt4ntr4.github.io/img/modeflattener/ssacfg_401a9d.png
https://mrt4ntr4.github.io/img/modeflattener/cmov_example.png

In the above example we observe that if the condition is true the state variable is assigned
the value = 0x7A3F9928 (RCX.4) and if false value = 0x30110039 (RCX.2).

We get the block where the phi variables are assigned using the following code and then get
their values from those blocks.

if irblock_has_phi(irblock):
for dst, sources in viewitems(irblock[0]):
phi_vars = sources.args
parent_blks =
get_phi_sources_parent_block(
ircfg,
irblock.loc_key,
phi_vars

We get the following information from a relevant block:

0x401a9d: {'cond': 'CMOVB',
'false_next':
0x30110039,
"true_next':
0x7a3f9928}

Now we need to iterate over the backbone blocks and get their destinations if it includes
condition regarding any of the possible state variable values. We can map these to the
original state variable values and make use of it to correct the flow.

if isinstance(arg, ExprInt):
if int(arg) in val_list:
cmp_val = int(arg)
var, locs = irblock[-1].items()[0]
true_dst =
main_ircfg.loc_db.get_location_offset(locs.srcl.loc_key)
backbone[hex(cmp_val)] = hex(true_dst)

After resolving these values from the backbone, the final result looks like this.

0x401a9d: {'cond': 'CMOVB',
'false_next':
0x401bbo,
"true_next':
0x401af5}

6/10

Removing Useless Instructions

Modeflattener finds the addresses to nop out using the def-use graph for the state variable.
This is one of the data flow analysis feature provided by miasm. This algorithm returns all the
instructions affecting the state variable and therefore we call these as useless instructions.
Read more about it here

loc_key_@ (0)
RAX = Ox30110639

loc_key_@ (1)
RCX = BOx7A3F9928

A
loc_key_0 (4) loc_key_@ (5)
@32[RBP + OXFFFFFFFFFFFFFBAC] = RAX[0:32] @32[RBP + DXFFFFFFFFFFFFFBAB] = RCX[0:32]
, /
q loc_key @ (11) loc_key @ (12)
RCX = zeroEXt 64(@32[RBP + OXFFFFFFFFFFFFFBAC]) RSI = zeroEXt 64(@32[RBP + OXFFFFFFFFFFFFFBAS])
L

loc_key @ (13) loc_key_4 (0)
RCX = zeroExt 64(RCX[0:32]) RCX = zeroExt 64(RSI[0:32])

loc_key 5 (8)
@32[RBP + OxFFFFFFFFFFFFFCF@] = RCX[0:32]

The state variable is always located in one of the leaves in the graph, we can easily get all of
its parents using the following code.

def find_state_var_usedefs(ircfg, search_var):
var_addrs set()
reachings = ReachingDefinitions(ircfg)
digraph = DiGraphDefUse(reachings)

for leaf in digraph.leaves():
if leaf.var == search_var:
for x in (digraph.reachable_parents(leaf)):
var_addrs.add(ircfg.get_block(x.label)
[x.index].instr.offset)
return var_addrs

Patching and Reconstructing the Control Flow

While cleaning these useless instructions we have to keep in mind that the call instructions
will get affected by this as they are based on relative offsets.
We can fix it using the following code :

7/10

https://miasm.re/blog/2017/02/03/data_flow_analysis_depgraph.html
https://mrt4ntr4.github.io/img/modeflattener/defuse_state_var_401a9d.png

rel = lambda addr, patch_addr: hex(addr - patch_addr)

for instr in instrs:
#omitting useless instructions
if instr.offset not in nop_addrs:
if instr.is_subcall():
#generate asm for fixed calls with relative addrs
patch_addr = start_addr + len(final_patch)
tgt =
loc_db.get_location_offset(instr.args[0].loc_key)
call patch_str = "CALL %s" % rel(tgt, patch_addr)
call_patch = asmb(call_patch_str, loc_db)
final_patch += call_patch
else:
#add the original bytes
final_patch += instr.b

At last we need to generate a patch for jumps and reconstruct the control flow.
For a simple relevant block we only need a single patch.

asmb = lambda patch_str, loc_db: mn_x86.asm(mn_x86.fromstring(patch_str, loc_db,

32))[e]
patch_addr = start_addr + len(final_patch)

n_addr = link['next']
patch = "JMP %s" % rel(n_addr, patch_addr)
jmp_patches = asmb(patch, loc_db)

We have two instruction patches for a conditional relevant block. We replace the conditional
move with a conditional jump to the true address and add another jump in succession to the
false address.

t_addr link['true_next']
f_addr link['false_next']
jcc = link['cond'].replace('CMOV', 'J")

patchl_str = "%s %s" % (jcc, rel(t_addr,
patch_addr))

jmp_patches += asmb(patchl_str, loc_db)
patch_addr += len(jmp_patches)

patch2_str = "JMP %s" % (rel(f_addr,

patch_addr))
jmp_patches += asmb(patch2_str, loc_db)

8/10

We can nop out the backbone as it is useless now.

backbone_start, backbone_end = dispatcher, tail.offset +
tail.l

nop_len = backbone_end - backbone_start
patches[backbone_start] = b"\x90" * nop_len

Final Results

Graph View

F5 View

9/10

https://mrt4ntr4.github.io/img/modeflattener/results_dg.png

__intea _ fastcall sub_40@DA0
I

i < strlen(al); ++i)

Hattened Function Deflattened Function

Get MODeflattener

I've open sourced the tool on my github. I've added some samples to test it as well. Try
it out!
https://github.com/mrT4ntr4/MODeflattener

Bonus

» Tim Blazytko’s flattening_heuristic script
While disassembling the specified function we can look out for other functions used by
it and can make use of this script to automatically detect whether it is a flattened one
and try to deobfuscate it. This has already been integrated into the tool!

e nop-hider idapython script
This script hides the nop instructions from IDA graph view as the backbone is
converted into a long nop chain after deobfuscation.

References

Dissecting LLVM Obfuscator - RPISEC
Automated Detection of Control-flow Flattening - Tim Blazytko

10/10

https://mrt4ntr4.github.io/img/modeflattener/dec_comparision.png
https://github.com/mrT4ntr4/MODeflattener
https://gist.github.com/mrphrazer/da32217f231e1dd842986f94aa6d9d37
https://gist.github.com/JusticeRage/795badf81fe59454963a06070d132b06
https://rpis.ec/blog/dissection-llvm-obfuscator-p1/
https://synthesis.to/2021/03/03/flattening_detection.html

