
1/7

Microsoft signed a malicious Netfilter rootkit
gdatasoftware.com/blog/microsoft-signed-a-malicious-netfilter-rootkit

06/25/2021

G DATA Blog
What started as a false positive alert for a Microsoft signed file turns out to be a WFP
application layer enforcement callout driver that redirects traffic to a Chinese IP. How did this
happen?

Last week our alert system notified us of a possible false positive because we detected a
driver named "Netfilter" that was signed by Microsoft. Since Windows Vista, any code that
runs in kernel mode is required to be tested and signed before public release to ensure
stability for the operating system. Drivers without a Microsoft certificate cannot be installed
by default.

In this case the detection was a true positive, so we forwarded our findings to Microsoft who
promptly added malware signatures to Windows Defender and are now conducting an
internal investigation. At the time of writing it is still unknown how the driver could pass the
signing process.

[1]

https://www.gdatasoftware.com/blog/microsoft-signed-a-malicious-netfilter-rootkit

2/7

String decoding

The first thing I noted after opening the strings view are some strings that looked encoded or
encrypted. While this is not necessarily a sign of a malicious file, it is odd that a driver
obfuscates a part of their strings.

I decoded the strings using the following Python snippet.

def decryptNetfilterStr(encodedString): key = [9,0,7,6,8,3,1] i = 0 decodedString
= "" for ch in encodedString: decodedString = decodedString + chr(ord(ch) ^
key[i%7]) i += 1 return decodedString

3/7

Encrypted strings

Decrypted strings

Similar samples

Searching for this URL as well as the PDB path and the similar samples feature on Virustotal
we found older samples as well as the dropper of the netfilter driver. The oldest sample
signatures date back to March 2021. Virustotal queries to find similar samples via URL and
PDB path are listed below.

content:{5c68656c6c6f5c52656c656173655c6e657466696c7465726472762e706462}
content:{687474703a2f2f3131302e34322e342e3138303a323038302f75}

[2] [3]

4/7

Additionally the following Yara rule will find samples via retrohunting.

rule NetfilterRootkit : Rootkit x64
{ meta: author = "Karsten Hahn @ GDATA CyberDefense" description =
"Netfilter kernel-mode rootkit" sha256 =
"115034373fc0ec8f75fb075b7a7011b603259ecc0aca271445e559b5404a1406" sha256 =
"63D61549030FCF46FF1DC138122580B4364F0FE99E6B068BC6A3D6903656AFF0" strings:
$s_1 = "\\??\\netfilter\x00" wide $s_2 = "IPv4 filter for redirect\x00" wide
$s_3 =
"\\Registry\\Machine\\SOFTWARE\\Microsoft\\SystemCertificates\\ROOT\\Certificates\\\x0

$s_4 = "Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,
exchange;v=b3;q=0.9\x0D" $url = "http://110.42.4.180:2080/u\x00" $pdb_1 =
"C:\\Users\\omen\\source\\repos\\netfilterdrv\\x64\\Release\\netfilterdrv.pdb\x00"
//RSDS [20] G:\<symbol>\hello\x64\Release\netfilterdrv.pdb $pdb_2 = {52 53 44 53
[20] 47 3A 5C E6 BA 90 E7 A0 81 5C 68 65 6C 6C 6F 5C 78 36 34 5C 52 65 6C 65 61 73 65
5C 6E 65 74 66 69 6C 74 65 72 64 72 76 2E 70 64 62} condition: any of
($pdb_*, $url) or all of ($s_*)
}

Dropper and installation

The dropper places the driver into %APPDATA%\netfilter.sys. Then it creates the file
%TEMP%\c.xalm with the following contents and issues the command regini.exe x.calm to
register the driver.

Contents of %TEMP%\x.calm

Command and control server

The URL hxxp://110.42.4.180:2081/u in the decoded string listing is the server of the rootkit.
The Netfilter driver connects to it for fetching configuration information.

After connecting to the hardcoded URL hxxp://110.42.4.180:2081/u the server replies with
the following string.

Each URL has a specific purpose.

URL Purpose

hxxp://110.42.4.180:2081/p Proxy settings

[1]

5/7

URL Purpose

hxxp://110.42.4.180:2081/s Redirection IPs

hxxp://110.42.4.180:2081/h? Ping with CPU-ID

hxxp://110.42.4.180:2081/c Root certificate

hxxp://110.42.4.180:2081/v? Self update

IP redirection

The core functionality of the malware is its IP redirection. A list of targeted IP addresses are
redirected to 45(.)248.10.244:3000. These IP addresses as well as the redirection target are
fetched from hxxp://110.42.4.180:2081/s.

Researcher @jaydinbas reversed the redirection configuration in this tweet and provided the
latest decoded configuration in a pastebin. The general format as observed
by @cci_forensics and @jaydinbas is [<redirection_target>-<port_number>]
{<ip_to_redirect1>|<ip_to_redirect2>|...}

Encoded redirection configuration

Update mechanism

The sample has a self-update routine that sends its own MD5 hash to the server via
hxxp://110.42.4.180:2081/v?v=6&m=<md5>. A request might look like this:
hxxp://110.42.4.180:2081/v?v=6&m=921fa8a5442e9bf3fe727e770cded4ab. The server
then responds with the URL for the latest sample, e.g., hxxp://110.42.4.180:2081/d6 or with
OK if the sample is up-to-date. The malware replaces its own file accordingly.

https://twitter.com/jaydinbas
https://twitter.com/jaydinbas/status/1405915486727065603
https://pastebin.com/ZtEENLe2
https://twitter.com/cci_forensics
https://twitter.com/jaydinbas
https://www.gdatasoftware.com/fileadmin/web/general/images/blog/2021/06/netfilter_encoded_config.png

6/7

Code that checks if the driver is up-to-date and replaces it with a newest version.

Root certificate

The rootkit receives a root certificate via hxxp://110.42.4.180:2081/c and writes it to
\Registry\Machine\SOFTWARE\Microsoft\SystemCertificates\ROOT\Certificates\. The
data that is returned from the server has the format [<certificate name>]:{<certificate data
blob>}

Root certificate data as it is sent by the server

Proxy

At hxxp://110.42.4.180:2081/p the malware requests the proxy which it sets as
AutoConfigURL in the registry key \Software\Microsoft\Windows\CurrentVersion\
Internet Settings. The returned value at the time of writing is
hxxp://ptaohuawu.bagua.com.hgdjkgh.com:2508/baidu.txt

Sample hashes

7/7

Description SHA256

[1] Netfilter
driver

63d61549030fcf46ff1dc138122580b4364f0fe99e6b068bc6a3d6903656aff0

[2] Netfilter
dropper

d64f906376f21677d0585e93dae8b36248f94be7091b01fd1d4381916a326afe

[3] Netfilter
driver, older
version
signed in
March

115034373fc0ec8f75fb075b7a7011b603259ecc0aca271445e559b5404a1406

Contributions

Many thanks to all the contributors below.

Johann Aydinbas for the splendid analysis on Twitter

Takahiro Haruyama for additions to the analysis above

Florian Roth for the sample collection sheet and additional Yara rules

Karsten Hahn
 Malware Analyst

https://twitter.com/jaydinbas
https://twitter.com/jaydinbas/status/1406252350302527493
https://twitter.com/cci_forensics
https://twitter.com/cyb3rops

