
1/20

Kamila Babayeva June 21, 2021

Dissecting a RAT. Analysis of the Saefko RAT.
stratosphereips.org/blog/2021/6/2/dissecting-a-rat-analysis-of-the-saefko-rat

This blog post was authored by Kamila Babayeva (@_kamifai_) and Sebastian Garcia
(@eldracote).

The RAT analysis research is part of the Civilsphere Project
(https://www.civilsphereproject.org/), which aims to protect the civil society at risk by
understanding how the attacks work and how we can stop them. Check the webpage for
more information.

This is the eighth blog of a series analyzing the network traffic of Android RATs from our
Android Mischief Dataset [more information here], a dataset of network traffic from Android
phones infected with Remote Access Trojans (RAT). In this blog post we provide the
analysis of the network traffic of the RAT06-Saefko [download here]. The previous blogs
analyzed Android Tester RAT, DroidJack RAT, SpyMax RAT, AndroRAT, HawkShaw,
AhMyth and Command-line AndroRAT.

RAT Details and Execution Setup

The procedure followed for each of our RAT experiments is to configure and execute the
RAT software and to do every possible action while capturing all traffic and storing all logs.
These RAT captures are functional and used as in real attacks.

The Saefko RAT is a software package that contains the controller software and builder
software to create an APK. We executed the builder on a Windows 7 Virtualbox virtual
machine with Ubuntu 20.04 as a host. The Android Application Package (APK) built by the
RAT builder was then installed in an Android virtual emulator called Genymotion with
Android version 8.

While performing different actions on the RAT controller (e.g. upload a file, get GPS
location, monitor files, etc.), we captured the network traffic on the machine running the
Android virtual emulator. The network traffic was captured on the Android virtual emulator
network interface.

Configuration parameters of the C&C Controller and the phone victim:

https://www.stratosphereips.org/blog/2021/6/2/dissecting-a-rat-analysis-of-the-saefko-rat
https://www.civilsphereproject.org/
https://www.stratosphereips.org/android-mischief-dataset
https://mcfp.felk.cvut.cz/publicDatasets/Android-Mischief-Dataset/AndroidMischiefDataset_v2/RAT06_Saefko/
https://www.stratosphereips.org/blog/2020/12/14/ngwqj0h060yv40w1afp51fg7wo9ijy-pzlhk
https://www.stratosphereips.org/blog/2021/1/22/analysis-of-droidjack-v44-rat-network-traffic
https://www.stratosphereips.org/blog/2021/2/26/dissecting-a-rat-analysis-of-the-spymax
https://www.stratosphereips.org/blog/2021/3/29/dissecting-a-rat-analysis-of-the-androrat
https://www.stratosphereips.org/blog/2021/5/6/dissecting-a-rat-analysis-of-the-hawkshaw
https://www.stratosphereips.org/blog/2021/5/6/dissecting-a-rat-analysis-of-the-ahmyth
https://www.stratosphereips.org/blog/2021/5/6/dissecting-a-rat-analysis-of-the-command-line-androrat

2/20

Controller:

IPv4: 192.168.131.1

IPv6: 2001:718:2:903:f410:3340:d02b:b918

Link-Local IPv6: fe80::8052:f37c:25e9:69f0

Victim:

IPv4: 192.168.131.2

IPv6: 2001:718:2:903:b877:48ae:9531:fbfc

Link-local IPv6: fe80::2efc:36f:ce23:fac1

Details of the network capture pcap file:

First Packet of the Infection: 36728

UTC Time of the Infection: 2021-04-10 14:55:09

First connections from the infected phone

Compared to other analyzed RATs in the Android Mischief Dataset, where the first malicious
connection from the victim phone is direct to the C&C server, in the case of Saefko RAT, the
infected phone first connects to the webpage https://ipinfo.io/geo. The connection from the
phone to the service ipinfo.io is displayed in Figure 1. The phone tries to retrieve the latitude
and longitude of the victim’s device location according to its IP address. In the malicious
APK, there is a function for this automatic action of ‘getting the location’, called
GetLocationInfo(), which is responsible for this action as shown in Figure 2.

1618066509.311319 C1hlpv4rTNvRlsA1k1 192.168.131.2 55536
216.239.36.21 443 ipinfo.io

Figure 1. Zeek flow from the ssl.log that shows the connection form the victim’s device
192.168. to the ipinfo.io.

https://www.stratosphereips.org/android-mischief-dataset
https://ipinfo.io/geo

3/20

Figure 2. The APK function GetLocationInfo() retrieves the longitude and latitude of the
victim’s device location based on the IP address by connecting to the site
https://ipinfo.io/geo.

After retrieving the location information from the ipinfo.io service, the second malicious
connection performed from the phone is the connection to the C&C online database (The
Zeek flow is shown in Figure 3). The C&C uses a web hosting service called
000webhost.com to create an online database. Before starting our experiment, we have
created a website on this hosting 000webhost.com with the name “experimentsas”. In our
hosting website we installed the files “server.php” and “Saefko_db.db” provided by Saefko
RAT software. This C&C database URL link “experminetsas.000webhost.com” was
specified in the APK (Figure 4), so the victim phone knows where to connect.

1618066509.738157 CM6DFg4vphEr3CEc6g 2001:718:2:903:b877:48ae:9531:fbfc
 39812 2a02:4780:dead:494b::1 443 TLSv12 experimentsas.000webhostapp.com

Figure 3. Zeek flow from the ssl.log file that summarizes the first connection from the
infected phone to the C&C online database created by us for this experiment
experimentsas.000webhostapp.com.

Figure 4. APK code with specifications of the database URL
‘https://experimentsas.000webhostapp.com/server.php’ and other necessary parameters.

A few seconds later, after establishing the first connection to the database, the victim
established a second connection to the same online database, so there are two
simultaneous connections established. Figure 5 shows the Zeek flow for the second
connection to the online DB.

1618066510.358715 C82MTR16Hzvg4953R7
2001:718:2:903:b877:48ae:9531:fbfc 39814 2a02:4780:dead:494b::1 443
TLSv12 experimentsas.000webhostapp.com

Figure 5. Zeek flow from ssl.log file that summarizes the second connection to the C&C
online database ‘experimentsas.000webhost.com’.

https://experimentsas.000webhostapp.com/

4/20

C&C methods to control the victim

Saefko RAT is the first RAT in the Android Mischief dataset version 2 that uses 3 types of
connections to control the victim: (i) IRC channels, (ii) HTTP requests and (iii) a TCP
connection directly to the C&C server. We will discuss each connection in detail.

Connection to IRC servers

Once the APK is installed and the C&C enters the control panel on the interface (example is
shown in Figure 6), the victim connects to 5 IRC servers according to the APK function
StartIRCClient() in Figure 7. These connections have a refresh rate set to 99,000
milliseconds, which is approximately 28 minutes. It means that every 28 minutes, the victim
closes the connections with the current IRC servers and connects to 5 other IRC servers.
We know that there are always 5 IRC servers connected, because of the for-loop increasing
from 0 to 4 inclusive. The IRC servers are chosen from the list of IRC servers set up in the
APK. Figure 8 shows several IRC servers presented in this list of total 99 IRC servers. For
each of the chosen IRC server, the victim calls the function IRCInfo.GenerateIRCInfo() that
aims to connect to IRC server with specific parameters such as IRC_SERVER, IRC_PORT
and IRC_NICKNAME. This function is shown in Figure 9. After the list of 5 IRC servers with
their parameters has been created, it is sent to the C&C online database by using the
function update_server_informations (shown in Figure 10). The update to the online
database is done so that the C&C controller will connect to the same IRC servers and will
control the victim by sending IRC private messages.

5/20

Figure 6. The interface that the controller uses to execute C&C commands. The interface
contains 3 tabs to separate the commands sent over IRC, HTTP and TCP. The tab for the
C&C commands over IRC is command-line alike. The phone connects to three IRC servers
listed in the beginning of Figure 6: irc.immortal-anime.net, irc.caelestia.net,
irc.charrersweb.nl.

Figure 7. APK code that aims to establish a connection with an IRC server with specific
parameters. The function generates a list of 5 IRC servers and sends it to the C&C
database.

6/20

Figure 8. IRC servers listed in the APK code. The infected device connects to IRC servers
from this list of 99 servers.

7/20

Figure 9. APK function GenerateIRCInfo() that aims to connect to an IRC server with
specified parameters IRC_SERVER, IRC_PORT and IRC_NICKNAME.

Figure 10. APK function update_server_informations that sends the information about the
victim’s connected IRC servers to the C&C.

After both the victim and the controller connect to the same IRC servers, the C&C is able to
send the commands to the victim. The list of commands the C&C can perform is shown in
Figure 11.

8/20

Figure 11. The list of C&C commands that can be executed over IRC channels.

As an example of the communication between the C&C and the phone over IRC channels,
we show the communication in the IRC server chat.freenode.net. First, the phone
performed a DNS lookup of the domain chat.freenode.net. Second, the phone established a
connection with this IRC server after resolving its IP address. In Figure 12 it can be seen
how the phone established a connection with this IRC server and then immediately
terminated it.

Figure 12. Connection from the phone to the IRC server chat.freenode.net. The connection
was established and immediately terminated.

Third, the phone reestablished the connection with IRC server chat.freenode.net (Figure 13)
and sent a packet with the USER parameter to the IRC server. The victim connects to this
IRC server with the randomly generated username fcsryk, asdisplayed in Figure 14. The
user string for the infected device is generated by the function GetNickname() shown in
Figure 15. The username and nickname the phone uses inside an IRC server are the same.

Figure 13. Reestablished connection from the infected device to the IRC server
chat.freenode.net.

Figure 14. The packet with the USER command sent from the phone to the IRC server. The
phone’s username is 6 letters long randomly generated string.

9/20

Figure 15. Function GetNickname() inside the APK code that randomly generates a 6
letters long string to create the nick of the user in IRC.

After the phone has successfully connected to the IRC server, there is a heartbeat between
this IRC server and the phone (shown in Figure 16), This heartbeat is a typical behaviour of
an IRC server. The heartbeat stopped after the C&C sent a private message to the phone
over the IRC server with the command ‘location’. The packet with this C&C command
‘location’ is presented in Figure 17.

Figure 16. Ping and pong between the IRC server and the victim’s phone. The heartbeat
continues until the C&C command is received.

Figure 17. The private message from the C&C with the command ‘location’. The top lines in
the figure are the headers of the packet, the lower lines are the content According to the
Internet Relay Chat field, the controller’s nick is zelvmd, the IP is
2001:718:2:903:f410:3340:d02b:b918 and it sends the data
‘SASENCODEbG9jYXRpb25UX1QxNjE4MDY2OTgxNjMw’.

10/20

From Figure 17, it can be seen that the controller’s nick inside the IRC server was zelvmd
and the IPv6 address was 2001:718:2:903:f410:3340:d02b:b918. The data sent by the C&C
was ‘SASENCODEbG9jYXRpb25UX1QxNjE4MDY2OTgxNjMw’. The data contains a string
identifying Saefko: ‘SASENCODE’. The data after this string is
bG9jYXRpb25UX1QxNjE4MDY2OTgxNjMw and is Base64 encoded. Using the command-
line command base64 to decode this string, we have got the following:

$ echo 'bG9jYXRpb25UX1QxNjE4MDY2OTgxNjMw' | base64 -d

$ locationT_T1618066981630

Figure 18. Base64 decoded data sent by the controller to the phone in the IRC server using
a private message, as part of the C&C command ‘location’.

The decoded data from the Figure 18 can be organized in the following structure:

location C&C command

T_T delimiter

1618066981630 timestamp

Figure 19. Structure of the C&C command ‘location’ sent to the phone over IRC.

Overall, every C&C command sent by the controller over IRC server has the following
structure:

‘SASENCODE’+base64_encode(C&C command + ‘T_T’ + timestamp)

Figure 20. Structure of the C&C commands sent to the infected device over IRC.

After the phone received the C&C command ‘location’, it replied with 6 packets separated
by a one second interval. The phone is connected to three IRC servers and it receives the
command in all three of them (probably as redundancy backup), and then it answers with 6
packets to all three of them too. Figure 21 shows the encoded and decoded data field of the
6 packets sent as a reply to the C&C command ‘location’. The packets sent from the phone
have the same structure as the packets sent from the C&C.

11/20

Figure 21. The phone’s 6 packets sent as a reply to the C&C command ‘location’. The
packets from the phone follow the same structure as the C&C packets.

It is important to note that the phone is connected to several IRC servers simultaneously
(Figure 22). The C&C commands to execute are sent to the phone through each connected
IRC server as well as the replies from the phone are also sent to each of the connected
servers:

Figure 22. The C&C commands are sent to each connected IRC server and the infected
device replies to the C&C command in each server.

HTTP requests from the C&C

Besides IRC connections, the C&C controls the victim by sending HTTP requests to the
phone with the commands. However, there are no HTTP requests seen in the traffic from
the controller or in the IRC chat, meaning that the commands are sent over the C&C online
database. The phone has an HTTP server implemented in the APK, which is unusual. The
controller acts as a client that sends HTTP requests with C&C commands to execute, but
the HTTP response might be sent back over the online database as well. The C&C
commands possible to execute using HTTP requests are very limited, namely Message
Box, Shell commands, Visit Webpage and Open TCP Connection. According to the
configuration, these commands are queued and will be executed every 21 minutes, which is
the refresh rate parameter. An example of queued C&C commands over HTTP is shown in
Figure 23.

12/20

Figure 23. The queue of HTTP requests with C&C commands to be executed on the
phone. These commands will be executed according to the refresh rate parameter set in the
configuration folder.

These HTTP commands are also sent to the online database that was set up in this
experiment. The connections from the phone and the controller to this database are over
HTTPs that provides encrypted communication. It means that HTTP requests with C&C
commands sent from the controller are encrypted and cannot be analyzed.

TCP connection to the C&C

A direct TCP connection established from the phone to the C&C gives the attacker more
power to control the victim’s device. It allows the controller to send and receive large data
such as photos, videos, audios, calls, messages, files, etc. Figure 24 shows the C&C
interface with a list of the commands to perform over TCP.

Figure 24. A list with C&C commands that are possible to perform over TCP connection
between the controller and the phone.

Due to the RAT code being of medium quality, several TCP connections with really little
data exchange were established between the C&C and the phone (Figure 25). However,
the C&C interface was not displaying these established TCP connections and did not allow
the attacker to perform any C&C command. It explains why only the first connection has
data exchange. Importantly, the amount of bytes sent from the infected device is much
bigger than the response bytes. The other four connections have exactly the same amount
of sent and received bytes. Moreover, the C&C was not able to close any of the connections

13/20

with a 4-way termination handshake. Connections from Zeek’s conn.log in Figure 25 have
flags RSTR and S1. RSTR means there was a rejection from the response IP address (in
our case the C&C IP address) and S1 means the connection was opened and not closed.

id.orig_h id.orig_p id.resp_h id.resp_p proto conn_state orig_bytes
resp_bytes

192.168.131.2 35690 192.168.131.1 8000 tcp RSTR 343220
1797

192.168.131.2 35728 192.168.131.1 8000 tcp RSTR 96
56

192.168.131.2 35730 192.168.131.1 8000 tcp RSTR 96
56

192.168.131.2 35732 192.168.131.1 8000 tcp S1 96 56

192.168.131.2 35736 192.168.131.1 8000 tcp S1 96 56

Figure 25. All the connections from the phone established with the C&C over port
8000/TCP. Due to poor code quality, some of the connections were established but without
a big exchange of data and a termination with the RSTR state.

As an example of the controller operating over TCP, we will look at the first TCP connection
between the phone and the C&C. After a successful 3-way TCP handshake (Figure 26), the
C&C sent the first packet with encoded data, as displayed in Figure 27:

Figure 26. A 3-way TCP handshake to establish the connection over TCP/8000 between
the phone and the controller.

eyJUeXBlIjoiSWRlbnRpZml5IiwiRGF0YSI6Im9xb2V6cWpyd2YifQ

Figure 27.The data field of the first packet sent from the C&C to the phone.

The data in Figure 27 is base64 encoded, the decoded text is
{"Type":"Identifiy","Data":"oqoezqjrwf"}. The value of the ‘Type’ key is the command to be
executed, in our case is ‘Identify’. "Oqoezqjrwf” might be the identification ID that the
controller uniquely generates for each connected infected device.

The phone answers the command ‘Identity’ with 2 packets, shown in Figure 28 and Figure
29. The first packet defines the length of the data sent in the second packet. Byte 0x5C in
hexadecimal format is 92 in decimal. The second packet is the actual base64 encoded
response to the C&C command. The decoded data of this response will result into JSON

14/20

format {"Data":{"ID":"6","RequestID":"oqoezqjrwf"},"Type":"Identification"}. “ID” defines an
ordinal number of the connected device and “RequestID” is the ID given by the C&C. The
data length of it being 92 bytes as it was defined in the first packet.

0000 00 00 00 5c ...\

Figure 28. The first packet sent by the phone after receiving the C&C command. The data
defines the length of the data sent in the next packet.

Figure 29. The data field of the second packet sent by the phone after receiving the C&C
command. The data is base64 encoded.

The APK code with the function SendMessage that aims to send replies to the C&C
commands is shown in Figure 30. The function produces two packets: (i) a packet with the
length of the data and (ii) a packet with base64 encoded data.

Figure 30. Function sendMessage() in the APK code that aims to send the information from
the phone to the C&C. The function sends two packets: (i) a packet with the data length of
the next packet and (ii) a packet with the actual data.

The complete communication between the phone and the controller goes the same way:

1. The C&C sends the base64 encoded command.

2. The phone answers with two packets: the first packet with the hexadecimal
representation of the data length in the next packet, the second packet with base64
encoded reply to the C&C command.

15/20

As an example, we will analyze the C&C command ‘read SentSMS’ that retrieves all SMS
sent from the infected device. The data field of the packet with C&C command ‘read
SentSMS’ is displayed in Figure 31.

Figure 31. The data field of the packet with the C&C command ‘read SentSMS’ that aims to
retrieve all SMS sent from the infected device. The data is base64 decoded.

The phone replies with two packets: the first packet in Figure 31 and the second packet in
Figure 32. Bytes 0x01d8 from the first packet defines 472 bytes in decimal format as the
length of the data in the second packet.

0000 00 00 01 d8

Figure 31. The data field of the first packet sent from the phone as a reply to the C&C
command ‘read SentSMS’. Bytes 0x01D8 in hexadecimal form presents 472 bytes in
decimal form.

Figure 32. The data field of the second packet sent from the phone as a reply to the C&C
command ‘read sentSMS’. The data has a length of 472 and is base64 encoded.

During the complete communication between the phone and the controller, there was no
heartbeat performed in the TCP connection.

PCAP Statistics

16/20

In order to create some statistics for this capture, we have been looking at all the malicious
connections: connection to the database, TCP connections directly with the C&C and
connections to the IRC server.

In total, there were 21 connections to the RAT’s 000webhost.com database (Figure 33).
According to the APK code, a new connection to the database was established every time
the IRC servers were refreshed.

Figure 33. All the connections performed to the 000webhost.com database from the phone.
In total, there are 21 connections.

From the APK list of IRC servers, it is clear that the phone connects over ports 6667/TCP,
6668/TCP, 6669/TCP, 7000/TCP and 7020/TCP. After filtering the Zeek conn.log file with all
these ports, there were 34 connections to IRC servers in total:

17/20

Figure 34. All connections from the phone to IRC servers over ports 6667/TCP, 6668/TCP,
6669/TCP, 7000/TCP, and 7020/TCP.

As for the connection to the C&C over port 8000/TCP, there were in total 5 connections: 3
connections were closed with a RESET packet from the C&C, and 2 connections were not
closed.

Figure 32. Five connections over TCP established with the C&C. The connections were
ended with the flags RSTR and S1.

Through all the malicious connections, the heartbeat was only performed with IRC servers,
which is a normal behaviour of such type of protocol.

Conclusion

In this blog post we have analyzed the network traffic from a phone infected with the Saefko
Attack Systems RAT that uses 3 different methods to operate and control devices. All the
retrieved data from the devices was stored in a database stored in the 000webhost.com
hosting provider. We were not able to decode the secure connection to the database, but

18/20

we have successfully decoded the connection to the IRC servers, HTTP and TCP
connections. The Saefko RAT seems to be complex in its communication protocol, but it is
still not sophisticated in its work.

To summarize, the details found in the network traffic of this RAT are:

The RAT is capable of controlling the targeted phone over IRC servers, HTTP request,
and TCP connection.

The RAT’s database is hosted on the 000webhost.com web hosting service. And is up
to the user to install it.

The connection from the infected device to the database in the 000webhost.com
hosting is encrypted.

The packets sent from the controller and the phone over IRC servers follow the
structure: ‘SASENCODE’+base64_encode(data + ‘T_T’+timestamp)

The packets sent from the controller and the phone over TCP follow the structure:
base64_encode(data in JSON format)

The phone connects to the website ipinfo.io to retrieve and send its location to the
C&C.

There is no heartbeat in the TCP communication between the C&C and the phone.

There is a heartbeat between the IRC server and the victim, but it is a normal
behaviour for this protocol.

The connections with the C&C over TCP were closed with RSTR and S1 states.

There are 34 connections established to different IRC servers.

There are 21 connections established to the database in the 000webhost.com hosting
with the server_name ‘experimentsas.000webhostapp.com’.

Thanks to Vitaly Kim (@mercury0169) for drawing the blog cover picture.

Biographies

19/20

KAMILA BABAYEVA

Sebastian Garcia is a malware researcher and security teacher with experience in applied
machine learning on network traffic. He founded the Stratosphere Lab, aiming to do
impactful security research to help others using machine learning. He believes that free
software and machine learning tools can help better protect users from abuse of our digital
rights. He researches on machine learning for security, honeypots, malware traffic
detection, social networks security detection, distributed scanning (dnmap), keystroke
dynamics, fake news, Bluetooth analysis, privacy protection, intruder detection, and
microphone detection with SDR (Salamandra). He co-founded the MatesLab hackspace in
Argentina and co-founded the Independent Fund for Women in Tech. @eldracote.
https://www.researchgate.net/profile/Sebastian_Garcia6

Kamila Babayeva is a 20 years old and third-year bachelor student in the Computer
Science and Electrical Engineering program at the Czech Technical University in Prague.
She is a researcher in the Civilsphere project, a project dedicated to protecting civil
organizations and individuals from targeted attacks. Her research focuses on helping
people and protecting their digital rights by developing free software based on machine
learning. Initially, she worked as a junior Malware Reverser. Currently, Kamila leads the
development of the Stratosphere Linux Intrusion Prevent System (Slips), which is used to
protect the civil society in the Civilsphere lab.

20/20

SEBASTIAN GARCIA

