Unpacking UPX Manually

f;.’ kausrini.github.io/2021-06-20-unpacking-upx-manually/

@ Detect It Easy v3.01 =
File mame
C: UsersfAdmin/Desktop fsample

File type Entry point Base address
PE32 00486970 > || Disasm |

= _ Disasm_

Sections TimeDateStamp SireOflmage

0003 Z:=-J 2013-10-14 05:10:28 L]

Scan Endianness Mode Architecture
Detect Tt Easy(DiE) LE 32 3386

packer UPX(3.05)[LZMA, brute]
compiler Microsoft Visual CfC++ (2008)[-]
linker Microsoft Linker(9.0)[GUI32]

Signatures . | |:| Deep scan

e i R AR R | > | Log ; 83 msec

UPX [1] is one of the most common packers used by malware authors to obfuscate their
binaries. Obfuscated binaries are harder to analyze than the original binary. UPX is a
packer, so it does have legitimate usage like compressing a binary for reduced file size. Not
all UPX packed files are malicious but for this blogpost, we will be choosing something
malicious.

UPX packed executables can be automatically unpacked by UPX tool (which available
online for free). To prevent this, malware authors often tamper with the packed binary in
such a way that they can’t be unpacked by UPX tool but the binary unpacks itself in
memory without any issues. So, learning to unpack them manually always helps. Moreover,
the general principle mentioned below can be used to unpack any custom packer or
obfuscation techniques used by malware authors.

| took a long time to search for a sample malicious file and in the end, chose one randomly
in VirusTotal (VT) by searching for “UPX Ransomware” [2]. | used Detect It Easy (DIE) [3]
tool to confirm that the binary is UPX packed.

1/10

https://kausrini.github.io/2021-06-20-unpacking-upx-manually/

For the purpose of this post, I'll be using packed and obfuscated interchangeably. I've
renamed the downloaded binary to “sample”. Using the long hash value as the binary name
makes the x32dbg debug windows look cluttered as the function names are referred to as
filename.memory_address in the debugger.

Theory Crafting

Before we proceed, we need to talk about how a packed binary is unpacked. A packed
binary, when executed (starts from a point called Entry Point - EP), allocates memory space
to unpack itself and then populates it with the unpacked instructions. This process of writing
to the memory is unpacking.

Once unpacked, the packer will start executing instructions from the unpacked section (The
starting address is called Original Entry Point - OEP). By debugging the packed executable,
we can execute/debug until we can identify the OEP. Once we identify OEP, we can dump
the instructions into a binary file and this is the unpacked code. This can be considered as
the standard process for unpacking manually.

We already know it's packed. If we did not know that, we can use a tool like PelD [4] or
Detect It Easy to check for packers. Before we start debugging, let’s take a look at the
packed binary in the tool - PeStudio. It gives us a quick look at the PeFile structure, strings
and imported libraries. Each of these sections provides us with more context to focus on
while analyzing the binary.

Pe File Structure

property value value value

narne UPX0 UPX1 JEFC

md3 2AATTAATS6FERAABT875664A... 820662818CDAFSTERIZ06FC..,
entropy 7.993 3.7

file-ratio (97.27%) 96,50 % 0,77 %

raw-address (s 00000400 (00000400 (e OD04EADD

raw-size (323584 bytes) O 00000000 (0 bytes) CreDDOWEGDD (321024 bytes) e OOD00ADD (2560 bytes)
virtual-address (500401000 (e 00439000 (500438000

virtual-size (357056 bytes) (00033000 (229376 bytes) CreDDDFO00 (323584 bytes) 00001000 (4096 bytes)
entry-point 0x00086970

characteristics (s EODODD20 O EQOOOCA0 (e COOOD0AD

writable X X X

executable X X

Figure 1: PE File Structure

The basic unit of code within a PE file is contained within a section [5]. There are 3
sections, UPXO0, UPX1 and .rsrc in the packed binary. Sections being named as UPX is a
hint to what packer might be used.

2/10

Warning: PE File section names can be anything and is not a reliable indicator of the
contents within.

The section UPXO0 has raw size of 0 bytes but virtual size of 0x3800 bytes. And the section
UPX1 has 96.5% entropy. High entropy value indicates packed or encrypted data. In this
case, the packed data in UPX1 will be unpacked into the empty space of UPXO0.

Note: Sections with high entropy indicate compressed or encrypted data. Sections with 0
raw size but large virtual size might be used to write instructions dynamically and execute
them during runtime.

Strings

It shows 3935 strings, but maijority of it is unreadable/gibberish. The small percentage of
readable strings also indicates that binary might be obfuscated. There is not much more to
do here, let’'s move on.

Imports

PeStudio shows only 15 functions imported. The small number of library imports is another
indicator of packed or obfuscated content. Malicious files might often contain obfuscate
module and library names (won’t show up in simple string analysis). These obfuscated
libraries names, can then be deobfuscated during runtime and then loaded using
LoadLibraryA api call followed by GetProcAddress to obtain the address to specific
module/function within that library.

This binary has the following interesting imports

¢ VirtualProtect
VirtualAlloc
ShellExecuteW
LoadLibraryA
GetProcAddress

These are sufficient for the binary to unpack itself in memory and run the deobfuscated
code. For the sake of this blogpost size and your time, I'll not go into details of how they are
used. We can discuss them in future posts.

Identifying OEP

Let’s load the binary into x32dbg. As soon as it is loaded, the execution is paused at the
very beginning. As stated above, the next set of instructions are meant to unpack the
original binary instructions and execute them. So, we are looking for an unconditional jump
or a call instruction to a specific memory location.

3/10

You can verify that you are still in packed section of instructions by searching for the
“Intermodular calls” and “String references” in the “current region”. Both these will open a
new window displaying limited data. This is an indicator that you are still in packed
executable region.

B OKETEN B

i- Soarch for boip Curent Begen ® L Comeand Chial
M e refeences 1o Pk Coibodde b Sp constant

e Vo sengrelemen

[bt cals
Parwen il sl

Figure 2: Search for Intermodular Calls
Address |Disassembly Destination
mov dword ptr ds:[70020006] ,eax kernelbase. 75FF5656

FT222726

rC o
240E23

77201505
77 2D1D05

T72D3E3L

Figure 3: Intermodular calls before the code is unpacked
Continue to “step over” the instructions to avoid jumping into function calls. As you continue,

call ws2_32.7710A31C
mov dword ptr ds: [77345D64] ,eax

& |(mov esi,dword ptr ds:[773465E4]
L |mov esi,dword ptr ds:[<=&BaseThreadInitThunk>]

mov dword ptr ds: [773465E4] ,eax

0| mov dword ptr ds:[773465E0] ,eax

mov dword ptr ds: [<&ReleaseActCtx>],eax

mov dword ptr ds:[77345D64] ,ebx

mov esi,dword ptr ds:[7F734685E0]

mov edi,dword ptr ds:[<&ReleaseActCtx>]

mov esi,dword ptr ds:[<&BasefQueryModuleDatax=]
mov dword ptr ds: [7F7345D0C] ,edi

90 mov dword ptr ds: [<&BaseQueryModuleData=],ebx

mov eax,dword ptr ds:[<&BaseThreadInitThunk>]

1| mov dword ptr ds: [F7F345D64] ,ebx

mov dword ptr ds:[77245D64] ,es1i
mov dword ptr ds:[77345D64] ,eax
mov eax,dword ptr ds: [F7345D0C]

ws2_32.7710A31C

apphelp. 75030000
kernel32.7561F0ED
<kernel3z.BaseThreadInitThunk>
kernel32.7561F0ED

kernel32. 7563A680
<kernelbase.ReleaseActCix>
apphelp. 75030000
kernel32.7563A680
<kernelbase.ReleaseActCix>
<kernel32.BasefQueryModuleDatax>
sample. 004000F0
<kernel3iz.BasefQueryModuleData>
<kernel32.BaseThreadInitThunk>
apphelp. 75030000

apphelp. 75030000

apphelp. 75030000

sample. 004000F0

keep an eye on the title of the debugger. If it has ntdll.dll or some other system library, it
means you are in the library code and that does not interest you (usually) as a malware
analyst. You can select “Run to user code” to get back to your binary code.

After a few step instructions, you'll notice that you are now at the very end of the binary. If
you scroll further down, you’ll notice an unconditional jump right before a series of opcodes

0000 signaling the end of the binary.

4/10

0048753B
DO4875 3D

o0487541
00487543
00487545
00487547
00487549
004875 4B
D0O4875 4D
004875 4F
o0487551
00487553
00487555
00487557
00487559
0048755B

5
5

EE NN EEEE RN EEREENRNEENEERNE RN NN EENENERNNEN NN

OO487567
DO487569

504424 50
6A 00
39C4
75 FA
B3IEC BO
ES FZEFFBFF
Qo000
48
o000
0000
0000
0000
0000
Q000
o000
0000
o000
o000
0000
0000
0000
Qo000
o000
0000
o000
0000
0000
0000
0000
Q000
o000
0000
o000
o000
0000
0000
0000

Figure 4: Likely End of the Packed Section

Set a breakpoint right before the jmp sample.416520 instruction and check for
intermodular calls again. You will still see limited number of calls indicating packed data.
Now, step over this instruction, which will jump or change the instruction pointer to a new

location.

This new location is the beginning of the the unpacked called or also called as OEP. the
address location 0x416520 is the OEP where the unpacked code (instructions) resides.
You can (and need to) verify this by checking for intermodular calls which will show a larger

o e per

1ea eax,dword ptr ss:[fesp-s50]

push 0

Cmp esp,eax

jne sample. 487520

sub esp,FFFFFF30

jmp sample. 416520

add byte ptr ds:[eax],al
dec eax

add byte ptr ds: [eax],al
add byte ptr ds:[eax],al
add byte ptr ds:[eax],al
add byte ptr ds: [eax],al
add byte ptr ds:[eax],al
add byte ptr ds: [eax],al
add byte ptr ds:[eax],al
add byte ptr ds:[eax],al
add byte ptr ds: [eax],al
add byte ptr ds:[eax],al
add byte ptr ds:[eax],al
add byte ptr ds:[eax],al
add byte ptr ds:[eax],al
add byte ptr ds: [eax],al
add byte ptr ds:[eax],al
add byte ptr ds:[eax],al
add byte ptr ds: [eax],al
add byte ptr ds:[eax],al
add byte ptr ds:[eax],al
add byte ptr ds: [eax],al
add byte ptr ds:[eax],al
add byte ptr ds: [eax],al
add byte ptr ds:[eax],al
add byte ptr ds:[eax],al
add byte ptr ds: [eax],al
add byte ptr ds:[eax],al
add byte ptr ds:[eax],al
add byte ptr ds:[eax],al
add byte ptr ds:[eax],al

number of function calls, indicating that the binary has been packed.

5/10

Address |Disassembly Destination
00401037 [call dword ptr ds: [<&GetVersionExw:=] <kernel32.GetversionExw:=
00401204 (call dword ptr ds: [<&GetModuleFileNamew:] <kernelz2.GetModuleFileNamew:
00401310 | call dword ptr ds: [<&GetTempPathw>] <kernel32.GetTempPathw>
00401352 (mov edi,dword ptr ds: [<&GetFileAttributesw:>] <kernel32.GetFileAttributesws
03401275 (call dword ptr ds:[<&DeleteFilew:] <kernelz2.DeleteFrilew:=
00401322 (call dword ptr ds: [<&GetTempPathw=] <kernel32.GetTempPathw:
00401444 (call dword ptr ds: [<&DeleteFilews] <kernelzz.DeleteFilew:
104014EA | mov edi,dword ptr ds:[<&0penEventh:] <kernel32.0penEventin:>
0040150F (mov ebp,dword ptr ds: [<&51eep=] <kernel32.5leep>
00401519 (mov ebx,dword ptr ds:[<&CloseHandlex] <kernel22.CloseHand]ex>
00401530| call dword ptr ds: [<&CreateEventw:=] <kernel32.CreateEventih:>
00401584 (call dword ptr ds: [<&DeleteFilews] <kernel32.DeleteFilew=
03401754 call dword ptr ds: [<&GetTempPathw:] <kernel 2. GetTempPathw:-
0040176F [call dword ptr ds: [<&GetSystemDirectoryws] <kernel32.cetSystemDirectoryw:=
00401704 (call dword ptr ds: [<&DeleteFilews] <kernelzz.DeleteFilew:=
10401927 | call dword ptr ds: [<&GetTickCount>] <kernel32.GetTickCount>
00401845 [call dword ptr ds: [<&ReglpenkKeyExXw:=] <advapi32.ReglpenkeyExw=
00401B7E | call dword ptr ds: [<&RegSetvValueExw:] <advapi32.RegsetvalueExw:=
004018580 | call dword ptr ds: [<&8RegClosekey>] <dadvapi32.RegClosekey:
00401845 call dword ptr ds: [<&ShellExecutew:] <shel132.5hell1Executen:
00401CECQ | call dword ptr ds: [<&GetTempPathw:] <kernel22.GetTempPathw:-
00401000 (call dword ptr ds: [<&GetSystemDirectoryws] <kernel32.GetSystemDirectoryw:=
00401E06 | call dword ptr ds: [<&GetTempPathws] <kernelz2.GetTempPathw:
10401ED1 | call dword ptr ds: [<&GetSystemDirectoryi:>] <kernel32.GetSystemDirectoryiw:>
00401EF2 | call dword ptr ds: [<&GetTempPathw:=] <kernel32.GetTempPathw:=
00401F0B [call dword ptr ds: [<@wsprintiwe] <user32.wsprintfw:
00401FEC | call dword ptr ds: [<&GetModuleFileNamew:] <kernel32.cetModul eFileNamew:>
0040211E [call dword ptr ds: [<&GetSystemDirectoryws] <kernel32.GetSystemDirectoryw:
004021AE (call dword ptr ds: [<&CreateFilew:] <kernel22.CreateFilew=
004022092 call dword ptr ds: [<&51eep=] <kernel32.Sleep>
0040224F [call dword ptr ds: [<&DeviceIloControls>] <kernelz2.DeviceloControl>
304023220| call dword ptr ds: [<&Sleep>] <kernel32. 5leep>

call dword ptr ds: [<éReadFilex] <kernel32.ReadFilex>
00402423 (call dword ptr ds: [<&CreateFilew:s] <kernel22.CreateFilew:=
00402458 call dword ptr ds: [<&DewviceloControl>] <kernel3z2.DeviceloControl>
004024584 (call dword ptr ds: [<&CToseHandlex] <kernel32.CloseHand]ex>
03402762 call dword ptr ds: [<&GetTempPathw:] <kernel22.GetTempPathw:-
00402800 (call dword ptr ds: [<&GetTickCounts] <kernel32.GetTickCount>
004029326 (call dword ptr ds: [<&GetTempPathas] <kernelz2.GetTempPatha>
30402952 | call dword ptr ds: [<&GetModuleFileNamei:] <kernel32.GetModuleFileNamed>
00402983 (call dword ptr ds: [<&CreateFileax] <kernel32.CreateFileA>
00402463 (call dword ptr ds: [<EwriteFile=] <kernelz2.writeFile»
00402454 call dword ptr ds: [<&CTloseHandlex] <kernel32.CloseHand] ex
00402452 (call dword ptr ds: [<&ShellExecuteAs] <shel132.5hellExecutes>
00402AEF [call dword ptr ds: [<&WSAStartups] <wWs2_32.WSAStartups>

Figure 5: Truncated Image of Intermodular calls after the code is unpacked

Note: Figure 5 has significantly greater number of function calls than Figure 3. Furthermore,
the function names are indicated clearly and not obfuscated. This indicates that we have
successfully unpacked the binary.

Before we proceed, make sure your Instruction Pointer is pointing to the OEP we have
identified above.

Dump Unpacked Binary From Memory

Once we have the unpacked binary instructions and the instruction pointer is pointing to the
OEP, we can use the “OllyDumpEXx” plugin [6] for x32dbg to dump the process to a file.
Make sure that the OEP is pointing to the very first instruction after the Jump instruction we
previously identified. This makes sure that we are dumping only the unpacked code in
memory to a file. This plugin takes care of building the PE file structure around the dumped
file. There is no need to change any parameters in the OllyDumpEx window. Select Dump
and you will have the unpacked binary.

6/10

OllyDumpEx v1.72 - sample >

bodule
B ase; (®) Module | C:\Users\Admin\Desktophsample i
(O Memory | 00400000 (00001000 / Imag /B / sample / PE
O Address | 00400000 cotcd
List Section: (@) Basze Only () Al Memony () Address Range | 00400000 - 03400000
Dump Mode: (@) Rebuild () Binary [Raw] () Binary [Virtual]
Image Source; (8 Memory () Disk FieScan Memany
Search
Search Area; (@) Select () Al Memany [exclude listed moduls] Eaarchimane Format
Search Mode: (8 Strict () Fuzzy [zlow] (®) PE
Search Result {JELF
Image Option
Image Base: |00400000 Fix Wirtual Offzet Frefer Original Characteristics [Meed Rescan)

Fix Corupted Image Header Structure

Image Size: | 00033000 [] Dizable Relocation

Entv Point | O00RES70 [] &uto Adjust Image Ease Address
}. be Bl e QEE [] Rebuild Datalirectory [Follaws ImageR ase Changes)

[]5earch &l Dcourences

Section
Select All Select BazeModule| | Select Privateddll | | Select Private/Exec DeSelect Al
Addresz Size Owner Section Twpe Accesz irtualdffzet WitwalSize Characterniztics
00401000 00032000 sample R0 Imag RAWE Q000000 00022000 BO0000S0
00433000 0OD4FOO0 sample R Imag AWE 00033000 0O004F000 BO000040
00488000 00001000 sample NE: [Imag AW 00028000 00007000 Cooooo40

PE32 8E EXE loaded. Basafddress=00400000

Figure 6: OllyDumpEx Plugin

The dumped file is named as “sample_dump.exe”. Opening this file in PeStudio, will show
you 15 imports with no name values. This is because the OllyDumpEx does not take care of
rebuilding the imports while dumping it from memory. Imports on a file and imports in
memory have different address offsets and this causes the dumped binary to be
‘incomplete’ in some ways as shown in the image below.

7/10

pestudio 9.12 - Malware Initial Assessment - www.winitor.com [chusers\admin'desktop\sample_dump.exe] i O *
file settings about

< B 7

el

=-] c\users\admin\desktopisample_dump.exe name (15) hint (0) thunk (0) group (0) type (1)

----- > dos-header (64 bytes)
- {B8 dos-stub (176 bytes)
..... = rich-header (9)

----- > file-header (Oct.2013)
..... > optional-header (GUI)
----- = directories (3)

..... » sections (file)

iy | libraries (10) *

i imports (count) *

----- i resources (PKZIP) *
----- abe strings (4667)

----- Ej manifest (aslnvoker)

Figure 7: PeStudio Output For The Dumped File

To rebuild the import table, we will use a different plugin - Scylla x86 [7] which searches for
the Import Address Table in the packed binary and obtains the imports from it. Select “IAT
Autosearch” and when prompted for advanced search choose no. The plugin will return with
the starting address of the IAT. Now select “Get Imports” to obtain the list of imports for the
binary.

In this case, it will return with 247 valid APIs and missing 4 APIs as shown below. If there
were large number of missing APlIs, try the advanced search mentioned earlier and check if
it returns better results.

8/10

B 5oz xs6v0.9.8 — e

File Imports Trace Misc Help

Attach to an active process
4720 - sample - C:\Users\AdminiDesktop\sample v | Pick DLL

Imports

advapi32.dll (4) FThunk: 00029000 ~
gdi32.dll (23) FThunk: 00029014
IPHLPAPI.DLL (1) FThunk: 00029074
kernel32.dll (114) FThunk: 0002907C
oleacc. dll {Z) FThunk: 00029248
oleaut32.dil (3) FThunk: 00029254
shell32.dll (2) FThunk: 00029264
user32.dil (51) FThunk: 00029270
7(2) FThunk: 0002933C

user32.dil (7) FThunk: 00029344

7 {1) FThunk: 00029380

=-B-g-u-u-g-a-g-a-a-g-a
R R

neer3? Al fRY FThonk: N0n249364 o
Show Invalid Show Suspect Clear
IAT Info Actions Dump
oep | 00416520 W Autotrace pump | | PERebuid
VA | 0D428FFC '
Get Impaorts Fix D
size | 00000414 i L
Log
getApiByVirtualAddress :: Mo Api found 7504 16C0 ~

getApiByVirtualaddress @ Mo Api found 75041370
getApiByVirtualaddress ;: Mo Api found 75042040
getApiByVirtualAddress :: Mo Api found 75044100

IAT parsing finished, found 247 valid APIs, missed 4 APIs

DIRECT IMPORTS - Found 0 ris with O unigue APIs!

Imports: 251 ® Invalid: 4 Imagebase: 00400000 sample

Figure 8: Scyllax86 Plugin

Once Scylla returns the above response, select “Fix Dump”, and this will generate a new file
called “sample_dump_scy.exe”. As shown in the image below, opening
“sample_dump_scy.exe” in the PeStudio shows that the imports are now populated.

9/10

pestudio 9.12 - Malware Initial Assessment - www.winitor.com [chusers\admin'desktop\sample_dump.exe] O
file settings about

S XH?

=-] c\users\admin\desktopisample_dump.exe name (15) hint (0) thunk (0) group (0) type (1)

..... s rich-header (9)

----- = directories (3)
..... » sections (file)
| libraries (10) *
i imports (count) *

----- abe strings (4667)

----- > dos-header (64 bytes)
- {B8 dos-stub (176 bytes)

----- > Afile-header (Oct.2013)
----- > optional-header (GUI)

----- i resources (PKZIP) *

----- Ej manifest (aslnvoker)

Figure 9: PeStudio Output For The Dumped File
Compare Figure 7 with Figure 9 to see how Scyllax86 helps with populating the imports. We

have successfully extracted the UPX packed binary into a file
“sample_dump_scy.exe”. We can now continue analayzing this sample for identifying its
functionality and purpose. Subsequent posts will be focused on this.

References

Tags: malware analysis upx unpacking

Next Post —

10/10

https://kausrini.github.io/tags#malware
https://kausrini.github.io/tags#analysis
https://kausrini.github.io/tags#upx
https://kausrini.github.io/tags#unpacking
https://kausrini.github.io/2021-06-23-maldoc-analysis-basic/

