
1/16

June 17, 2021

Klingon RAT Holding on for Dear Life
intezer.com/blog/malware-analysis/klingon-rat-holding-on-for-dear-life/

Get Free Account

Join Now

Top Blogs

Automate Alert Triage and Response Tasks with Intezer EDR Connect

Integrate with SentinelOne, CrowdStrike, and More One of the biggest pain points of cyber
security... Read more

Elephant Framework Delivered in Phishing Attacks Against Ukrainian Organizations

A recently developed malware framework called Elephant is being delivered in targeted spear
phishing campaigns... Read more

New Conversation Hijacking Campaign Delivering IcedID

This post describes the technical analysis of a new campaign detected by Intezer’s research
team,... Read more

https://www.intezer.com/blog/malware-analysis/klingon-rat-holding-on-for-dear-life/
https://analyze.intezer.com/
https://www.intezer.com/blog/incident-response/alert-triage-edr-integrations/
https://www.intezer.com/blog/incident-response/alert-triage-edr-integrations/
https://www.intezer.com/blog/research/elephant-malware-targeting-ukrainian-orgs/
https://www.intezer.com/blog/research/elephant-malware-targeting-ukrainian-orgs/
https://www.intezer.com/blog/research/conversation-hijacking-campaign-delivering-icedid/
https://www.intezer.com/blog/research/conversation-hijacking-campaign-delivering-icedid/

2/16

With more malware written in Golang than ever before, the threat from Go-based Remote
Access Trojans (RATs) has never been higher. Not only has the number of Go malware
increased but also the sophistication of these threats. This is a technical analysis of an
advanced RAT written in Go that we are calling Klingon RAT. The RAT is well-featured and
resilient due to its multiple methods of persistence and privilege escalation. It was
determined that the RAT is being used by cybercriminals for financial gain. It is important to
stay on top of this threat as it will degrade Antivirus security through killing targeted processes
and hiding communications through encrypted channels.

Technical Analysis

When searching our various hunting platforms for malware one particular sample caught our
eye. This Go sample, active since at least 2019, was flagged as malicious but mostly unique
code by our platform. It is not common to find RATs with very few code reuse. Threat actors
reuse code all the time to expedite malware development. Since it is rare to see a RAT with
such a large amount of code written from scratch, we dug deeper down the gopher hole. This
RAT is full of tactics to combat Antiviruses, maintain persistence and escalate privileges. It
communicates encrypted with its Command and Control (C2) server using TLS and can
receive commands allowing the attacker to fully control the infected machine.

Figure 1: Old analysis with unique code

Initialization

The malware starts by creating an object whose purpose is to store information about the
victim machine, controller setup and paths to dropped utilities. It will then run a WMI command
(wmic process get Caption,ParentProcessId,ProcessId) to get all running processes. The
returned value is parsed and stored in a slice. The malware will check this process list and
match it against a list of targeted Antivirus processes. The taskkill command is used to kill
matching processes and child processes. The targeted processes are linked here. To start
gathering the information on the victim machine, it will get the OS version using the
ver command, then grab the username. A GET request is made to https://api.ipify.org to get
the public IP address. Finally in this function, it will fetch the machine ID from the registry key

https://www.intezer.com/resource/year-of-the-gopher-2020-go-malware-round-up/
https://gist.github.com/aslefhewqiwbepqwefbpqsciwueh/a72fc5fee38a479e48d79710cd64d7c0
https://api.ipify.org/

3/16

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\ as shown in Figure 2. This
ID will later be sent in a beacon to the Command and Control (C2) server.

Figure 2: Function that fetches the key

Dependency Deployment

The malware will decompress and drop three Gzip embedded files into the %temp% directory.
The dropped files are utilities for the threat actor to use once a C2 channel has been
established. The files dropped are Foxmail, PAExec and LSASS, shown below.

4/16

Figure 3: Head of embedded Foxmail.exe file, Gzip compressed

Figure 4: Dropped dependencies Next, the malware will check to see if it is installed at “C:
\Users\IEUser\AppData\Local\Windows Update\updater10.exe.” If not installed, the malware
will be relocated to the path.

Persistence

Persistence can be set up in multiple ways, some of which require admin privileges. Privilege
escalation will be covered in a later section.

Registry Run Key: Current User

The following registry entry is created:
Key: Computer\HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run
Name: Windows Updater
Value: “C:\Users\\AppData\Local\Windows Update\updater10.exe” -1 -0

5/16

Figure 5: Registry Run Key

Registry Run Key: Local Machine

A similar entry as the above is created at:
Computer\HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run

Image File Execution Options Injection

Image File Execution Options are configured by the Windows registry with the intention of
being used for debugging. This can be leveraged for persistence as any executable can be
used as a “debugger.” The malware ensures the following keys exist:
HKEY_LOCAL_MACHINE Software\Microsoft\Windows NT\CurrentVersion\Accessibility
HKEY_CURRENT_USER Software\Microsoft\Windows NT\CurrentVersion\Image File
Execution Options\magnify.exe The Image File Execution Options key has the following
entries set:

Name Data

Configuration mangnifierpane

Debugger “C:\Users\IEUser\AppData\Local\Windows Update\updater10.exe” -1 -0

This causes the binary for Microsoft Screen Magnifier (magnify.exe) accessibility tool to be
backdoored and execute the malware.

WMI Event Subscription

In this option the malware utilizes “WMIC” to create an event subscription for persistence.
Three commands are executed to create events in the “\rootsubscription” namespace that will
start the payload within 60 seconds of Windows booting up. The commands executed are:
wmic /namespace:’\\root\subscription’ PATH __EventFilter CREATE
Name=’GuacBypassFilter’, EventNameSpace=’root\cimv2′, QueryLanguage=’WQL’,
Query=’SELECT * FROM __InstanceModificationEvent WITHIN 60 WHERE TargetInstance
ISA ‘Win32_PerfFormattedData_PerfOS_System” wmic /namespace:’\\root\subscription’
PATH CommandLineEventConsumer CREATE Name=’GuacBypassConsumer’,
ExecutablePath='”C:\Users\IEUser\AppData\Local\Windows Update\updater10.exe” -1 -0′,
CommandLineTemplate='”C:UsersIEUserAppDataLocalWindows Updateupdater10.exe” -1 -0′

6/16

wmic /namespace:’\\root\subscription’ PATH __FilterToConsumerBinding CREATE
Filter=’__EventFilter.Name=’GuacBypassFilter”,
Consumer=’CommandLineEventConsumer.Name=’GuacBypassConsomer”)

Winlogon Helper DLL

The malware can modify the “Winlogon” key in order to run itself during Windows logon. The
path of the executable is appended to the “Userinit” entry.

Figure 6: Winlogon registry modified

Scheduled Task

The malware can create a scheduled task called “OneDriveUpdate” to maintain persistence.
The task is configured from an XML file, “elevator.xml” dropped to APPDATA, to trigger upon
logon.

7/16

Figure 7: Task configuration file

Figure 8: Action of triggering the task The file “elevator.xml” is then removed from the disk.

Privilege Escalation

There are multiple avenues that the malware can take for privilege escalation. It will first test
to see if it already has admin privileges and if it is a Windows server. To check if the process
has admin privileges, it will attempt to open “\\\\.\\PHYSICALDRIVE0;” if unsuccessful, the
malware will attempt to open “\\\\.\\SCSI0.” If successful for either of these, it will return “True”
from the function. If “False,” the program will check to see if it is a Windows server by running
the command “systeminfo,” and parsing for the string “Microsoft Windows Server,” as shown
in Figure 9.

8/16

Figure 9: Check for Windows Server The malware has four options for privilege escalation,
one of which is not implemented properly:

UAC Bypass: Computer Defaults

This exploit starts by opening the following registry key: HKEY_CURRENT_USER
(0x80000001) Software\Classes\ms-settings\shell\open\command The default entry is set to
the path of the malware, and an entry “DelegateExecute” has an empty string value added.
Next, the program “computerdefaults.exe” is executed to complete the exploit.

Figure 10: Registry set for exploit The key is deleted after exploitation.

UAC Bypass: Fodhelper

This exploit is similar to the Computer Defaults UAC bypass but this time it leverages the
program “Features on Demand Helper” (Fodhelper.exe), a binary with the “autoelevate”
setting set to true. The same registry entries are used.

9/16

Figure 11: UAC bypass with Fodhelper.exe

UAC Bypass: Disk Cleanup

This UAC bypass works by leveraging the scheduled task named “SilentCleanup.” This task
runs with the highest privileges but is configured to have the ability to be executed by
unprivileged users.

10/16

Figure 12: Config for SilentCleanup The malware attempts to leverage the environment
variable “%windir%” to execute itself with higher privileges. The scheduled task runs an action
“%windir%\system32\cleanmgr.exe,” therefore the malware tries to set the “windir” variable to
the path of the malware.

Figure 13: Action of the scheduled task (SilentCleanup)

Figure 14: “windir” variable set in the registry After setting the registry, the malware runs the
scheduled task.

11/16

Figure 15: Execution of the scheduled task The resulting process:

Figure 16: The elevated process

UAC Bypass: Event Viewer

Based on the strings in this path, it appears that the malware intended to leverage the “Event
Viewer” UAC bypass. But this does not appear to be properly implemented in the program.

https://pentestlab.blog/2017/05/02/uac-bypass-event-viewer/

12/16

Figure 17: References to “eventvwr” in a function called by “MakeAdmin” parent

Command and Control

Before Command and Control (C2) is established the malware initiates a controller struct:
type control.Controller struct{ bot model.Bot socksSessions []control.SocksProxy
 shellSessions []control.Shell connection net.Conn keepAlive net.Conn }

13/16

First, a x509 keypair is decoded from Base64 and loaded by the function tls.x509KeyPair.

Figure 18: Loading x509 key pair The decoded keypair is linked here and here. Strings from
this certificate can be matched to strings in the Issuer DN of a similar certificate with subject
“UrbanCulture, Inc.” A further PEM certificate is decoded and appended to the cert pool. A
TLS handshake is performed with the C2 server 185.188.183[.]144 on the port 1141 and then
creates a Goroutine called “Controller.WaitCommands.” The malware is able to:

Start a SOCKS proxy (‘proxy’)
Start a reverse shell (‘shell’)
Start an RDP server (‘rdp’)
Start a binary (‘binary’)
Update binary (‘update’)
Run PowerShell command (‘cmd’)

The malware will initiate further Goroutines to collect information from the system. If running
as administrator, it will run the Lsass binary previously dropped into the temp folder.

Figure 19: Path of the Lsass binary to be executed The results are stored in a file called
“Andrew.dmp” inside the temp folder. This information is sent to the C2 server through a HTTP
POST request.

https://golang.org/pkg/crypto/tls/#X509KeyPair
https://gist.github.com/aslefhewqiwbepqwefbpqsciwueh/b283988a0bf4f2d51f9a3f4697055901
https://gist.github.com/aslefhewqiwbepqwefbpqsciwueh/bd0ec3fbbf3b1bb1496dd8a53c4fb7e6
https://search.censys.io/certificates/226a9e9c05935884da5507c7647c5e404faf349bdbaf170b9a4c064f7cc697fe

14/16

Figure 20: Location of dump file Another routine will take a fingerprint of the machine,
concatenating the results into a string, and send this off in a HTTP POST request. It runs the
following commands in this order:

1. systeminfo
2. ipconfig
3. net view /all
4. net view /all domain
5. net users /domain
6. nltest /domain_trusts
7. nltest /domain_trusts /all_trusts

Finally, the malware will periodically get information about the local network and adapters.

Detect and Respond to Klingon RAT

Detect if your Windows machine or server has been compromised by Klingon RAT or any
variant that reuses code using the Intezer Analyze Live Endpoint Scanner available via the
enterprise edition. Running the scanner will classify all binary code residing in your machine’s
memory.

Figure 21: Endpoint scan of an infected system

Indicators of Compromise

https://analyze.intezer.com/endpoint-analyses
https://www.intezer.com/pricing/

15/16

MD5 C2

8d44ccac6b5512a416339984ad664d79 185.188.183[.]144

14471a353788bb6cdb6071d0e0a83004 94.177.123[.]134

327090cbddf94fc901662f0e863ba0cb 88.214.27[.]40

39d550fd902ca4c1461961d01ad1aeb6 51.83.216[.]211

MITRE ATT&CK

Tactic ID Name

Execution T1059.001 PowerShell

T1059.003 Windows Command Shell

T1047 Windows Management Instrumentation

Persistence T1547.001 Registry Run Keys / Startup Folder

T1547.004 Winlogon Helper DLL

T1546.003 Windows Management Instrumentation Event
Subscription

T1546.012 Image File Execution Options Injection

T1053.005 Scheduled Task

Privilege Escalation T1548.002 Bypass User Account Control

Defense Evasion T1562.001 Disable or Modify Tools

T1070.004 File Deletion

Credential Access T1003.001 LSASS Memory

Discovery T1082 System Information Discovery

T1016 System Network Configuration Discovery

T1018 Remote System Discovery

Command and
Control

T1571 Non-Standard Port

T1071.001 Web Protocols

https://attack.mitre.org/tactics/TA0002/
https://attack.mitre.org/techniques/T1059/001/
https://attack.mitre.org/techniques/T1059/003/
https://attack.mitre.org/techniques/T1047/
https://attack.mitre.org/tactics/TA0003
https://attack.mitre.org/techniques/T1547/001/
https://attack.mitre.org/techniques/T1547/004/
https://attack.mitre.org/techniques/T1546/003/
https://attack.mitre.org/techniques/T1546/012/
https://attack.mitre.org/techniques/T1053/005/
https://attack.mitre.org/tactics/TA0004/
https://attack.mitre.org/techniques/T1548/002/
https://attack.mitre.org/tactics/TA0005/
https://attack.mitre.org/techniques/T1562/001/
https://attack.mitre.org/techniques/T1070/004/
https://attack.mitre.org/tactics/TA0006/
https://attack.mitre.org/techniques/T1003/001/
https://attack.mitre.org/tactics/TA0007
https://attack.mitre.org/techniques/T1082/
https://attack.mitre.org/techniques/T1016/
https://attack.mitre.org/techniques/T1018/
https://attack.mitre.org/tactics/TA0011/
https://attack.mitre.org/techniques/T1571/
https://attack.mitre.org/techniques/T1071/001/

16/16

Ryan Robinson
Ryan is a security researcher analyzing malware and scripts. Formerly, he was a researcher
on Anomali's Threat Research Team.

