What you need to know about Process Ghosting, a new
executable image tampering attack

%¢ elastic.co/blog/process-ghosting-a-new-executable-image-tampering-attack

June 15, 2021

15 Juni 2021Tech Topics

By
Gabriel Landau
Share

Security teams defending Windows environments often rely on anti-malware products as a
first line of defense against malicious executables. Microsoft provides security vendors with
the ability to register callbacks that will be invoked upon the creation of processes on the
system. Driver developers can call APIs such as PsSetCreateProcessNotifyRoutineEx to
receive such events.

Despite the name, PsSetCreateProcessNotifyRoutineEx callbacks are not actually invoked
upon the creation of processes, but rather upon the creation of the first threads within those
processes. This creates a gap between when a process is created and when security
products are notified of its creation. It also gives malware authors a window to tamper with

1/9

https://www.elastic.co/blog/process-ghosting-a-new-executable-image-tampering-attack
https://www.elastic.co/blog/category/technical-topics
https://www.elastic.co/blog/author/gabriel-landau
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-pssetcreateprocessnotifyroutineex

the backing executable before security products can scan it. Recent examples of such
tampering attacks include Process Doppelganging and Process Herpaderping, which abuse
this behavior to evade security products.

This blog describes a new executable image tampering attack similar to, but distinct from,
Doppelganging and Herpaderping. With this technique, an attacker can write a piece of
malware to disk in such a way that it’s difficult to scan or delete it — and where it then
executes the deleted malware as though it were a regular file on disk. This technique does
not involve code injection, process hollowing, or Transactional NTFS (TxF).

The birth of a process

Windows Task Manager shows a list of processes running on the system. Each of these
processes is associated with an executable file on disk, such as svchost.exe. This is
because Windows launches processes from executable files, usually ending with an EXE
file extension.

1% Task Manager — O >

File Options View

Processes Performance App history Startup Users Details Services

Marme : PID Status User name CPU Memory (2. UAC virtualizat... *

[®=| RuntimeBroker.exe 348 Running user 0o 3624 K Disabled

[®=| RuntimeBroker.exe 3476 Running user 0o 1,300 K Disabled

[®=| RuntimeBroker.exe 4472 Running user 0o 1,652 K Disabled

[®=| RuntimeBroker.exe 4920 Running user 0o 3,332 K Disabled

[®=| RuntimeBroker.exe 3124 Running user 0o 1,212 K Disabled

[®=| RuntimeBroker.exe 5328 Running user 0o 2020 K Disabled

[®=| RuntimeBroker.exe 5364 Running user 0o 564 K Disabled

[8=] SearchApp.exe 4584 Suspended user 0o 0K Disabled

¢ 2earchindexer.exe 4596 Running SYSTEM 0o 1,720 K Mot allowed

(55| SecurityHealthServic... 6136 Running SYSTEM 0o 4332 K Mot allowed

G; SecurityHealthSystra... 3992 Running user 0o TOD K Disabled

[z services.exe 692 Running SYSTEM 0o 2,788 K Mot allowed

[m=] SgrmBroker.exe 3940 Running SYSTEM 0o 2624 K Mot allowed

[2z]ShellExperienceHost.... 7912 Suspended user 00 0K Disabled

[z sihost.exe 3352 Running user 00 4200 K Disabled

(55| smiss.exe 376 Running SYSTEM] 24K Mot allowed

E-E_Qspu:uulsv.exe 1960 Running SYSTEM] 836 K Mot allowed

(5= StartMenuExperienc... 4372 Running user] 7080 K Disabled

(8] svchost.exe 4756 Running SYSTEM] 244K Mot allowed

(8| svchost.exe 6764 Running SYSTEM] 1,196 K Mot allowed

(8| svchost.exe 368 Running LOCAL SE...] 10,992 K Mot allowed

[8=| svchost.exe 420 Running LOCAL SE...] 5724 K Mot allowed

[m=l cuirhinct eve ThA Runninn SWSTERA nn 25 A3R K Mot allmaed v
Fewer details End task

2/9

https://attack.mitre.org/techniques/T1055/013/
https://github.com/jxy-s/herpaderping#process-herpaderping

It's important to note that processes are not executables, and executables are not
processes. In the example Task Manager above, there are multiple processes launched
from RuntimeBroker.exe and svchost.exe.

To launch a new process, a series of steps must occur. In modern versions of Windows,
they are typically performed in the kernel by NtCreateUserProcess — however, the
individual component APIs (NtCreateProcessEx etc) are still exposed and functional for
backwards compatibility purposes. These steps are:

1. Open a handle to the executable to launch. Example: hFile =
CreateFile(“C:\Windows\System32\svchost.exe”)?

2. Create an “image” section for the file. A section maps a file, or a portion of a file, into
memory. An image section is a special type of section that corresponds to Portable
Executable (PE) files, and can only be created from PE (EXE, DLL, etc) files.
Example: hSection = NtCreateSection(hFile, SEC_IMAGE)

3. Create a process using the image section. Example: hProcess =
NtCreateProcessEx(hSection)

4. Assign process arguments and environment variables. Example:
CreateEnvironmentBlock/NtWriteVirtualMemory

5. Create a thread to execute in the process. Example: NtCreateThreadEx

File Section Process

Thread

Here is what that looks like in Process Monitor:

£F Process Monitor - Sysinternals: www.sysinternals.com - [m X

File Edit Event Filter T Options Help
(R REBE(AS D/ A8 XL M
Ti.. ProcessNa.. PID Operation Path Result Detail
3:16.... 7 ExplorerEXE 3956 BhCreateFile C:AWindows\System32\notepad.exe SUCCESS Desired Access: Read DatajList Directory, Execute/Traverse, Read Attributes, Synchronize, Disposition: Open. Options: Synchronous |0 Non-Alert, Non.
3:16:.. TaExplorerEXE 3956 FhCreatef c exe FILELOCKED WI.. SyncType: SyncTypeCreateSection. PageProtection: PAGE_EXECUTE_READ|PAGE_NOGACHE
3:16... TaExplorerEXE 3956 B c exe SUCCESS Name: \Windows\System32\notepad.exe
3:16.. TaExplorerEXE 3956 QIProcess Create CAWINDOWS\system32\notepad.exe SUCCESS PID: 2064, Command line: "C:AWINDOWS\system32\notepad.exe”
3:16... “notepadexe 2064 QProcess Start SUCCESS Parent PID: 3356, Command line: *C\WINDOWSisystem32\notepad.exe" , Current directory: C\Usersluser|, Environmen t =:=:|ALLUSERSPROFILE=CY\
3:16... notepad.exe 2064 QI Thread Create SUCCESS Thread ID: 6476
3:16:.. T ExplorerEXE 3956 BACloseFile C:AWindows\System32\notepad.exe SUCCESS
3:16... Clnotepadexe 2064 QfLoadImage CAWindows\System32\notepad.exe SUCCESS Image Base: 0x7f705340000, Image Size: 0x38000

Showing 8 of 619 events (1.2%) Backed by virtual memory

explorer.exe launching notepad.exe, as seen in Process Monitor

Processes are launched from executables, but some of the data within the executable file is
modified as it is mapped into a process. To account for these modifications, the Windows
memory manager caches image sections at the time of their creation. This means that
image sections can deviate from their executable files.

Scanning processes for malware

3/9

Microsoft provides security vendors with the ability to register callbacks that will be invoked
upon the creation of processes and threads on the system. Driver developers can call APls
such as PsSetCreateProcessNotifyRoutineEx and PsSetCreateThreadNotifyRoutineEx to
receive such events.

Despite the name, PsSetCreateProcessNotifyRoutineEx callbacks are not actually invoked
upon the creation of processes, but rather upon the creation of the first threads within those
processes. This creates a gap between when a process is created and when security
products are notified of its creation. It also gives malware authors a window to tamper with
the backing file and section before security products can scan them.

Note how the undocumented process creation API NtCreateProcess takes a section, not
file, handle:

NTSYSCALLAPI

NTSTATUS

NTAPI

NtCreateProcess(
Out PHANDLE ProcessHandle,
In ACCESS_MASK DesiredAccess,
_In_opt_ POBJECT_ATTRIBUTES ObjectAttributes,
In HANDLE ParentProcess,
In BOOLEAN InheritObjectTable,
_In_opt_ HANDLE SectionHandle,
_In_opt_ HANDLE DebugPort,
_In_opt_ HANDLE ExceptionPort

)i

When a process is launched, security products are provided with the following information
about the process being launched:

typedef struct _PS_CREATE_NOTIFY_INFO {
SIZE T Size;
union {
ULONG Flags;
struct {
ULONG FileOpenNameAvailable : 1;
ULONG IsSubsystemProcess : 1;
ULONG Reserved : 30;

3
3
HANDLE ParentProcessId;
CLIENT_ID CreatingThreadId;

struct _FILE_OBJECT *FileObject;
PCUNICODE_STRING ImageFileName;
PCUNICODE_STRING CommandLine;
NTSTATUS CreationStatus;

} PS_CREATE_NOTIFY_INFO, *PPS_CREATE_NOTIFY_INFO;

4/9

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-pssetcreateprocessnotifyroutineex
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-pssetcreatethreadnotifyroutineex
http://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FProcess%2FNtCreateProcess.html

Of interest is the FILE_OBJECT, which is the kernel object corresponding to the HANDLE
passed to NtCreateSection in the previous section. This FILE_OBJECT typically
corresponds to a file on disk, which can be scanned for malware.

Security products may also use filesystem minifilter callbacks, which receive notifications
when files are created, interacted with, or closed. The system impact of scanning every
single read and write operation can be significant, so files are typically scanned upon open
and close for performance reasons.

There are other potential security product interception points that we will not discuss here.
See this talk for more information.

Prior work

Process Doppelganging

Windows Transactional NTFS (TxF) is a mechanism that allows an application to perform a
series of filesystem operations as a single atomic transaction, which is then either
committed or rolled back. Files can exist within a transaction that, if rolled back, is never
visible to the underlying filesystem. Using TxF, it is possible to create an image section from
a file within a transaction, then roll back that transaction. It is possible to create a process
from such image sections.

Process Herpaderping

After creating the image section, Process Herpaderping uses the existing file handle to
overwrite the executable with a decoy PE. While this leaves the decoy on disk, it is different
from the one running in memory. The decoy remains on disk throughout the life of the
payload process.

Process Reimaging

Process Reimaging exploits a cache synchronization issue in the Windows kernel, causing
a mismatch between an executable file’s path and the path reported for image sections
created from that executable. By loading a DLL at a decoy path, unloading it, then loading it
from a new path, various Windows APIs will return the old path. This can fool security
products into looking for loaded images at the wrong path.

Ghosting a process

We can build upon Doppelganging and Herpaderping to run executables that have already
been deleted. There are several ways to delete a file on Windows, including:®

5/9

https://youtu.be/XmWOj-cfixs?t=719
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://github.com/jxy-s/herpaderping
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/in-ntdll-i-trust-process-reimaging-and-endpoint-security-solution-bypass/

o Create a new file over the old one with the FILE_SUPERSEDE or CREATE_ALWAYS
flags set.

e Setthe FILE_DELETE_ON_CLOSE or FILE_FLAG DELETE_ON_CLOSE flags
when creating or opening the file.

o Set the DeleteFile field in the FILE_DISPOSITION_INFORMATION structure to TRUE
when invoking the FileDispositionInformation file information class via
NtSetInformationFile.

Windows attempts to prevent mapped executables from being modified. Once a file is
mapped into an image section, attempts to open it with FILE_ WRITE_DATA (to modify it)
will fail with ERROR_SHARING_VIOLATION. Deletion attempts via
FILE_DELETE_ON_CLOSE/FILE_FLAG_DELETE_ON_CLOSE fail with
ERROR_SHARING_VIOLATION. NtSetInformationFile(FileDispositionInformation) requires
the DELETE access right. Even though the DELETE access right is granted to files mapped
to image sections, NtSetInformationFile(FileDispositioninformation) fails with

STATUS CANNOT _DELETE. Deletion attempts via
FILE_SUPERCEDE/CREATE_ALWAYS fail with ACCESS_DENIED.

An important note, however, is that this deletion restriction only comes into effect once the
executable is mapped into an image section. This means that it is possible to create a file,
mark it for deletion, map it to an image section, close the file handle to complete the
deletion, then create a process from the now-fileless section. This is Process Ghosting.

The attack flow is:

1. Create a file

2. Put the file into a delete-pending state using
NtSetinformationFile(FileDispositionInformation). Note: Attempting to use
FILE_DELETE_ON_CLOSE instead will not delete the file.

3. Write the payload executable to the file. The content isn’t persisted because the file is
already delete-pending. The delete-pending state also blocks external file-open
attempts.

. Create an image section for the file.

. Close the delete-pending handle, deleting the file.

. Create a process using the image section.

. Assign process arguments and environment variables.

. Create a thread to execute in the process.

== e

[Thread

oo ~NOo o bh

6/9

https://docs.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntcreatefile
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
https://docs.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntcreatefile
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/ns-ntddk-_file_disposition_information
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-ntsetinformationfile
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-ntsetinformationfile
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-zwsetinformationfile

Antivirus callbacks are invoked upon thread creation, which occurs after the file is deleted.
Attempts to open the file or perform I/O on the deleted file will fail with

STATUS FILE DELETED. Attempts to open the file before deletion is complete will fail with

STATUS_DELETE_PENDING.

This type of tampering can be applied to DLLs as well, because DLLs are mapped image
sections.

Demo

The video below shows Windows Defender detecting and blocking execution of a
Potentially Unwanted Program (PUP), Windows Credential Editor, which can be used by
attackers for lateral movement. It then shows how Ghosting interferes with Defender’s
ability to scan and block the PUP.

Ble Bt Yiew VM Bs Bep | || - @& © @@ DE2ODA B O-

[Windaws 10 x64 20H2

Windws Security

&« =

O Virus & threat protection

Protection for your device against threats.

9 Current threats

Threats found. Start the recommended actions.

HackToolWind2 /Wincred. H

High
4/19/2021 313 PM (Active) g

Start actions I

B Administrator Command Prompt

% Virus & threat protection settings
No action needed,

Manage settings

<& Virus & threat protection updates
Secutity intelligence is up fo date.

Last update: 4/19/2021 2:55 PM

Cheeck for updates

-\ B W : HE0=g

T return to your computes, meve the mouse peanter outside or press CtrisAle,

Examining system activity during the demo, we can see Defender initially attempting to
open the payload executable to scan it, but failing because the file is in a delete-pending
state. Later attempts to open it fail because the file has already been deleted. The payload
(ghost.exe) executes without issue.

7/9

£} Process Monitor - Sysinternals: www.sysinternals.com - m} X

4:05:44 55

4:05:44.59... 'rocessGhosting.exe

2236 [BhCreateFile
4068 [Bh CreateFileMapping

C:\Userstwser\Desktop'ghost exe
C\UserstuserDesktop'ghost.exe

File Edit Event Filter Tools QOptions Help
ZR RABE|SAG B AN HBLM

Time of Day Process Name PID Operation Path Result Dietail

4:05:44 58... W ProcessGhosting.exe 4068 aCreateFlle ChUsersuser\Desktophghost.exe SUCCESS Desired Access: Generic Read/Write, Delete, Disposition: Overwritelf, Options: Synchron
4:05:44 58. rocessGhosting.exe 4068 [Bh SetDispostionInformation FileC:\Users\user\Desktop\ghost.exe SUCCESS Delete: True

4:05:44 59. ProcessGhosting.exe 4D68 [2h WriteFile C\Userstwser\Desktop'ghost exe SUCCESS Offset: 0, Length: 217,088, Priority: Normal

4:05:44.59... sMpEng.exe 2236 [hCreateFie ClUzershuger\Desktopighost.exe DELETE PENDING Desired Access: Read Attributes, Disposition: Open, Options: Open For Backup, Open Ry
4:05:44 59. rocessGhosting.exe 4068 b FlushBuffersFile ChlUeershuger\Deskiopighost.exe SUCCESS

4:05:44 59. rocessGhosting.exe 4068 awmeﬁ\e ChUsersuser\Desktophghost.exe SUCCESS Offset: 0, Length: 217,088, 1/0 Flags: Mon-cached, Paging 1/Q, Synchronous Paging |
4:05:44 59. sMpEng.exe 2236 gQuewDirectDry ChUsersuser\Desktophghost.exe SUCCESS FilelnformationClass: File Both Directorylnformation, Fitter: ghost.exe. 2: ghost exe

DELETE PENDING
FILE LOCKED WITH WRITERS

4:05:44 59. rocessGhosting.exe 4068 [Bh.QueryStandardinformation .. C:\Users\user\Desktop'ghost exe SUCCESS AllocationSize: 217,088, EndCOfFile: 217,088, NumberOfLinks: 0, DeletePending: True, Of
4:05:44 59. rocessGhosting.exe 4068 aReadFlle ChUsersuser\Desktophghost.exe SUCCESS Offset: 1,024, Length: 127 488, 10 Flags: Mon-cached, Paging 140, Priority: Normal
4:05:44 59. ProcessGhosting.exe 4068 aHeadFlle C:hUsers‘user\Desktophghost.exe SUCCESS Offset: 128,512, Length: 17.408. 170 Flags: Non-cached, Paging 140, Priorty: Nomal
4:05:44 59. rocessGhosting.exe 4068 [BhReadFile C:Users‘wser\Desktoptghost exe SUCCESS Offset: 145,920, Length: 21,504, 170 Flags: Non-cached, Paging 140, Priorty: Nomal
4:05:44 59. rocessGhosting.exe 4068 [Sh ReadFile C\Userstwuser'\Desktop'ghost exe SUCCESS Offset: 167,424, Length: 4,608, /0 Flags: Mon-cached, Paging 140, Priority: Normal
4:05:44.59. rocessGhosting.exe 4068 [Sh ReadFile ClUeershwuzer\Desktopighost.exe SUCCESS Offset: 172,032, Length: 43,520, 140 Flags: Non-cached, Paging 140, Priorty: Nomal
4:05:44 59. rocessGhosting.exe 4068 aReadFlle ChUsersuser\Desktophghost.exe SUCCESS Offset: 215,552, Length: 1,536, 10 Flags: Mon-cached, Paging 140, Priority: Normal
4:05:44 60. rocessGhosting.exe 4068 aCreateFlleMapping serstuser\Desktoptghost.exe SUCCESS SyncType: SyncTypeOther

4:05:44 60. rocessGhosting.exe 4068 [BhCloseFile C\Users'wuser\Desktop'ghost. exe SUCCESS

4:05:44 60. rocessGhosting exe 4068 [BhQueryNamelnformationFile C-\Users‘user\Deskiop'ghost exe FILE DELETED

4:05:44 61. sMpEng.exe 2236 [BhCreateFie ClUzershuger\Desktopighost.exe NAME NOT FOUND Desired Access: Read Attributes, Synchronize, Digposition: Open, Options: Synchronous|
4:05:44 61. MsMpEng.exe 2236 [BhCreateFile CUeershuger\Desktopighost.exe NAME NOT FOUND Desired Access: Read Attrbutes, Synchronize, Digpostion: Open, Options: Synchronous|
4:05:44 61. sMpEng.exe 2236 a[}eateﬁle C\Usersuser\Desktopghost.exe NAME NOT FOUND Desired Access: Read Attributes, Synchronize, Disposition: Open, Options: Synchronous|
4:05:44 61. sMpEng.exe 2236 g[}eateﬂle CAUsersuser\Desktopghost.exe NAME NOT FOUND Desired Access: Read Attributes. Synchronize, Disposition: Open, Options: Synchronous|
4:05:44 61 rocessGhosting exe 4068 &% Process Create “Users'wser\Desktop'ghost exe SUCCESS PID: 5684, Command line: ghost exe

4:05:44 61. host.exe 5684 IF Process Start SUCCESS Parent PID: 4068, Command line: ghost.exe, Cument directory: C:\Users'uger\Desktop,
4:05:44 61... - ghost.exe 5684 IF Thread Create SUCCESS Thread ID: 5824

< >

Desired Access: Read Data/List Directary, Read Attributes, Read Contral, Synchronize,
SyncType: SyncTypeCreate Section, PageProtection: PAGE_EXECUUTE_READWRITEI

Showing 26 of 413,252 events (0.0062%)

Backed by virtual memory

Detection

Elastic Security detects a variety of process image tampering techniques including
Doppelganging, Herpaderping, and Ghosting. It does this by checking the FILE_ OBJECT
for abnormalities during the process creation callback. These are reported in process
creation events under process.Ext.defense_evasions.

& elastic

Discover

) v process.Ext.defense_evasions: *

© — +Add filter

l logs-*

QU Ssearch field names

Filter by type 0

subject_name
code_signature trusted
command_line

command_line.caseless

command_line.text

ecutable.caseless

Comparing techniques

M

1hit

Count

Time ~

> May 25, 2821 & 16:84:51.875

May 19, 2021 @ 17:42:39.287 - May 26, 2021 @ 17:42:39.287 Auto v

process.name

ghost.exe

KaL

Save Open Share Inspect

@ Hide chart

Options ~ New

~ Last7days Show dates

@timestamp per 3 hours.

process.Ext.defense_evasions

Process Tampering: Image 1s locked for access

Building upon a useful table from the Process Herpaderping documentation, we can
compare the basic API flow across the various techniques:

Type

Technique

Hollowing

map -> modify section -> execute

8/9

https://www.elastic.co/security
https://github.com/jxy-s/herpaderping#comparison

Doppelganging transact -> write -> map -> rollback -> execute

Herpaderping write -> map -> modify -> execute -> close

Ghosting delete pending -> write -> map -> close(delete) -> execute

Conclusion

In this blog, we surveyed the state of the art in Windows executable image tampering
attacks, then disclosed a new such attack. We then demonstrated this attack bypassing
common security software, and showed how to detect it using freely available software.

To find threats like process tampering in your environment, install the latest version of
Elastic Security on Elastic Cloud, and be sure to take advantage of our quick start training
to set yourself up for success. Happy hunting!

Responsible disclosure: We filed a bug report with MSRC on 2021-05-06, including a
draft of this blog post, a demonstration video, and source code for a PoC. They responded
on 2021-05-10 indicating that this does not meet their bar for servicing, per
https://aka.ms/windowscriteria.

References

1. With some exceptions, such as the System and Registry processes.
2. These examples are pseudocode.

3. https://go.microsoft.com/fwlink/?Linkld=140636 Page 32, "File Deletion Semantics"

We're hiring
Work for a global, distributed team where finding someone like you is just a Zoom
meeting away. Flexible work with impact? Development opportunities from the start?

9/9

https://www.elastic.co/security
https://www.elastic.co/training/elastic-security-quick-start
https://msrc.microsoft.com/
https://aka.ms/windowscriteria
https://go.microsoft.com/fwlink/?LinkId=140636

