
1/55

A step-by-step analysis of a new version of Darkside
Ransomware (v. 2.1.2.3)

cybergeeks.tech/a-step-by-step-analysis-of-a-new-version-of-darkside-ransomware/

Summary

Darkside ransomware is the malware family responsible for the Colonial Pipeline attack on
May 7 2021 as described at https://www.zdnet.com/article/darkside-the-ransomware-group-
responsible-for-colonial-pipeline-cyberattack-explained/. The binary contains an encrypted
configuration that will be decrypted using a custom algorithm, which reveals a 22-byte buffer
that describes different actions performed by the malware. These actions include: checking
the system language and avoiding to encrypt Russian language machines, deleting Shadow
copies, wiping Recycle Bin, ignore specific files, directories and file extensions, killing
specific processes, deleting specific services, etc. The ransomware can perform privilege
escalation using the CMSTPLUA COM interface and achieves persistence by installing itself
as a service. The files are encrypted using the custom Salsa20 implementation, with the
Salsa20 matrix being encrypted by the public RSA key hard-coded in the binary. Darkside
uses multithreading with I/O completion ports to communicate between the main thread and
the worker threads responsible for file encryptions. It’s important to mention that the process
generates a random Salsa20 matrix using the RDRAND and RDSEED instructions, as
opposed to earlier versions that use the RtlRandomEx function.

Analyst: @GeeksCyber

Technical analysis

SHA256:
0A0C225F0E5EE941A79F2B7701F1285E4975A2859EB4D025D96D9E366E81ABB9

The malware comes with an encrypted configuration that is decrypted using a custom
algorithm:

https://cybergeeks.tech/a-step-by-step-analysis-of-a-new-version-of-darkside-ransomware/
https://www.zdnet.com/article/darkside-the-ransomware-group-responsible-for-colonial-pipeline-cyberattack-explained/
https://twitter.com/GeeksCyber

2/55

Figure 1

The custom decryption algorithm consists of 4 subtraction operations by 0x10101010 each
time and then some addition operations, as shown below:

3/55

Figure 2

For each DLL to be loaded, there is a hash function that is applied to the DLL name, and the
4-byte result is compared to hardcoded values:

4/55

Figure 3

For example, the following value corresponds to kernel32.dll:

Figure 4

5/55

The following DLLs are expected to be loaded: ntdll, kernel32, advapi32, user32, gdi32,
ole32, oleaut32, shell32, shlwapi, wininet, netapi32, wtsapi32, activeds, userenv, mpr,
rstrtmgr. The process retrieves the address of multiple export functions based on similar
hash values computed using the same algorithm:

Figure 5

6/55

The decrypted configuration is presented below and is composed of the RSA-1024 exponent
(0x010001 = 65537), 0x80-byte RSA-1024 modulus, victim UID, 22 configurations bytes (will
be detailed further on) and the aPLib-compressed configuration:

Figure 6

The binary uses an aPLib-decompression algorithm to decrypt different strings. The following
list represents the directories to avoid in the encryption process:

Figure 7

7/55

The following files will be ignored by the ransomware:

Figure 8

If the file’s extension belongs to the following list, then the file will not be encrypted by the
process:

Figure 9

The binary intends to delete folders that contain the word “backup” in their name:

Figure 10
A feature not used by the malware would use the following strings decompressed as the
other ones (our guess is that the actor would try to kill the SQL-related processes in order to
encrypt databases):

Figure 11

The following processes will not be terminated by the file:

8/55

Figure 12

If a process name contains any of the following strings, it will be killed by the binary:

Figure 13

There is also a list of services to be stopped and deleted, as shown in the figure below:

Figure 14

The list of C2 servers is also obtained using the same algorithm:

Figure 15

The process reveals a message that will be utilized to set a custom wallpaper that contains
important instructions for the victim:

9/55

Figure 16

The content of the ransom note is also written in the process memory, as shown in figure 17:

Figure 17

The following table describes the actions that the malware takes depending on the
configuration decrypted above:

Offset Enabled Description

0x00 Yes FAST encryption mode

0x01 Yes Unknown (not used)

0x02 No Attempt to log on as a user on the machine

0x03 Yes Encrypt DRIVE_REMOVABLE, DRIVE_FIXED and DRIVE_REMOTE
type of drives

0x04 Yes Retrieve the domain controllers and probably an attempt to spread
further

0x05 Yes Check system language and avoid the Russian language

0x06 Yes Delete volume shadow copies

0x07 Yes Delete files and folders from Recycle Bin

10/55

0x08 No Self deletion

0x09 Yes Ignore specific directories

0x0a Yes Ignore specific files

0x0b Yes Ignore specific file extensions

0x0c Yes Wipe “backup” directories

0x0d Yes Unknown (not used)

0x0e Yes Kill specific processes

0x0f Yes Stop and delete specific services

0x10 Yes Set Desktop wallpaper

0x11 Yes Drop ransom note

0x12 Yes Change icon of new encrypted files

0x13 Yes Create a mutex

0x14 Yes Unknown (not used)

0x15 Yes Communication with the C2 servers

The malware uses the NtQueryInstallUILanguage and NtQueryDefaultUILanguage APIs to
determine the language of the system and compares the result with 0x419 (Russian
language identifier). If there is a match between these two values, then the malware exits:

11/55

Figure 18
There is a call to the RegCreateKeyExW function, which is supposed to create (or open if it
already exists) the “Software\Microsoft\Cryptography” registry key, as follows:

12/55

Figure 19
The malware extracts the “MachineGuid” value from the above registry key, as presented in
the next figure:

Figure 20

Figure 21

A custom hashing algorithm that generates 8 lowercase hexadecimal characters is
implemented by the process (the “MachineGuid” value is the input, and the algorithm applies
8 times):

Figure 22

13/55

Figure 23

The value computed above (let’s call it RansomPseudoValue) will be used in the following
constructions:

Service name: <RansomPseudoValue>
Service display name: <RansomPseudoValue>
Ransom note: README<RansomPseudoValue>.TXT
Wallpaper: %PROGRAMDATA%\<RansomPseudoValue>.BMP
Each encrypted file will have the following name: <Original filename>
<RansomPseudoValue>
Icon file: %PROGRAMDATA%\<RansomPseudoValue>.ico
Registry key created: HKCR\
<RansomPseudoValue>\DefaultIcon=%PROGRAMDATA%\
<RansomPseudoValue>.ico

The binary uses the SHTestTokenMembership API to verify if the user belongs to the
Administrators groups (0x220 = 544 in decimal):

Figure 24
We’ll split the analysis into 3 different parts depending on the user’s privileges: low level
privileges, administrative privileges, and SYSTEM privileges.

Low Level privileges

The malware attempts a UAC bypass that uses the CMSTPLUA COM interface as described
at https://gist.github.com/api0cradle/d4aaef39db0d845627d819b2b6b30512. It utilizes
ZwOpenProcessToken to open the access token associated with the process (0x8 =
TOKEN_QUERY – required to query an access token):

Figure 25
The NtQueryInformationToken function is used to get the group accounts associated with the
token (0x2 = TokenGroups) and it checks if the administrators group can be found in the
TOKEN_GROUPS structure:

https://gist.github.com/api0cradle/d4aaef39db0d845627d819b2b6b30512

14/55

Figure 26
There is a call to the CoInitialize routine in order to initialize the COM library on the current
thread, as highlighted in figure 27:

Figure 27
As presented so far, the binary uses a lot of lower level APIs (from ntdll). It allocates a new
memory area using the ZwAllocateVirtualMemory API (0x3000 = MEM_COMMIT |
MEM_RESERVE and 0x4 = PAGE_READWRITE):

Figure 28
We have encountered a call to an undocumented API function called
LdrEnumerateLoadedModules:

Figure 29
The file executes CoGetObject with the object name as Elevation:Administrator!new:
{3E5FC7F9-9A51-4367-9063-A120244FBEC7}, as highlighted below:

15/55

Figure 30
Basically, it will relaunch the malware with SYSTEM privileges:

Figure 31

Figure 32
Administrative privileges

As in the first case, the binary uses ZwOpenProcessToken to open the access token
associated with the process (0x8 = TOKEN_QUERY – required to query an access token):

Figure 33
The NtQueryInformationToken API is utilized to retrieve the token’s user account (0x1 =
TokenUser):

Figure 34
The malicious process uses LookupAccountSidW to obtain the name of the account
associated with the SID provided as the input, as shown in figure 35:

16/55

Figure 35
There are 3 different comparison operations that compare the domain name (the name of the
computer in our case) with “NT AUTHORITY”, “AUTORITE NT” and “NT-AUTORITAT”
(basically, it tries to determine if the user account is SYSTEM or not):

Figure 36

17/55

The OpenSCManagerW routine is utilized to establish a connection to the service control
manager:

Figure 37
The process tries to open a service called <RansomPseudoValue> (which doesn’t exist at
this time):

Figure 38
Because the service doesn’t exist, it will be created by the malware for persistence purposes,
as shown in the following pictures:

Figure 39

18/55

Figure 40

The newly created service is started, and the binary launches itself as a service:

Figure 41
SYSTEM privileges

The malicious binary can run with no arguments, one, two, or three arguments (these cases
will be described later on). As we can see below, it uses CommandLineToArgvW to obtain
pointers to the command line arguments (argv[0] is the executable name) + the number of
arguments:

19/55

Figure 42

The WTSQueryUserToken API is utilized to obtain the primary access token of the logged-on
user specified by session 1:

Figure 43
OpenWindowStationW is used to open the “Winsta0” windows station (the interactive window
station), 0x40000 – WRITE_DAC – modify the DACL in the security descriptor for the object:

20/55

Figure 44
The DACL (discretionary access control list) of the “Winsta0” windows station is modified by
calling the NtSetSecurityObject routine with the 0x4 = DACL_SECURITY_INFORMATION
parameter:

Figure 45
There is a call to OpenDesktopW that is utilized to open the “Default” desktop object with the
argument 0x40081 = WRITE_DAC | DESKTOP_WRITEOBJECTS |
DESKTOP_READOBJECTS, as follows:

Figure 46
The DACL of the “Default” desktop object is modified by calling the
NtSetSecurityObject function with the 0x4 = DACL_SECURITY_INFORMATION parameter:

Figure 47
The malware creates a mutex called “Global\4787658f1cc4202b8a15e05dd0323fde” (this
value has been computed before this operation and represents a custom “hash” value of the
malware), which makes sure that there is only one instance of the ransomware running at a
time (if the mutex already exists, then the malware quits):

Figure 48

21/55

Figure 49
The ransomware forces the system not to enter sleep mode and not to turn off the display
while the process is running, one of the parameters being 0x80000001 = ES_CONTINUOUS
| ES_SYSTEM_REQUIRED:

Figure 50
The file changes the privilege to SE_PRIVILEGE_ENABLED in order to enable the token’s
privileges (note the TOKEN_PRIVILEGES structure) by a function call to
ZwAdjustPrivilegesToken:

Figure 51
The CreateThread API is used to create a new thread, as described in the next figure:

Figure 52
A list of valid drives on the system is extracted using the GetLogicalDriveStringsW routine:

Figure 53

22/55

The ransomware is looking for DRIVE_REMOVABLE (0x2) and DRIVE_FIXED (0x3) drives,
as highlighted in figure 54:

Figure 54

All files and directories from Recycle Bin are deleted by the process. It starts to enumerate
via a FindFirstFileExW API call:

Figure 55
As presented below, the files are deleted using the DeleteFileW function, and the directories
are removed using the RemoveDirectoryW routine:

Figure 56

23/55

The binary uses COM objects and WMI commands to delete volume shadow copies. It calls
the CoCreateInstance function to create a single object of the class IWbemLocator with the
CLSID {dc12a687-737f-11cf-884d-00aa004b2e24} (Ref.
https://forum.powerbasic.com/forum/user-to-user-discussions/source-code/25222-wmi-
wrapper-functions):

Figure 57
There is also a new IWbemContext interface with the CLSID {44aca674-e8fc-11d0-a07c-
00c04fb68820} (Ref. https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-
wmi/3485541f-6950-4e6d-98cb-1ed4bb143441) created via a CoCreateInstance function
call:

Figure 58
Using the IWbemLocator object, the process calls the ConnectServer API to connect to the
local “ROOT\CIMV2” namespace and retrieves a pointer to a IWbemServices object, as
follows:

Figure 59
There is a call to CoSetProxyBlanket performed by the ransomware, as described in the next
figure (0xA = RPC_C_AUTHN_WINNT – NTLMSSP, 0x3 = RPC_C_AUTHN_LEVEL_CALL
and 0x3 = RPC_C_IMP_LEVEL_IMPERSONATE):

https://forum.powerbasic.com/forum/user-to-user-discussions/source-code/25222-wmi-wrapper-functions
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-wmi/3485541f-6950-4e6d-98cb-1ed4bb143441

24/55

Figure 60
The process executes the following SQL query “SELECT * FROM Win32_ShadowCopy” to
obtain an enumerator of all shadow copies, and then it deletes each of the shadow copy
objects via the DeleteInstance method:

Figure 61
A list of all services and their status is retrieved by calling the EnumServicesStatusExW
function (0x30 = SERVICE_WIN32, 0x3 = SERVICE_STATE_ALL):

Figure 62
Each service name is compared to the list that was decrypted at the beginning of the
analysis:

Figure 63
The malware opens the targeted services by calling the OpenServiceW routine (0x10020 =
DELETE | SERVICE_STOP):

25/55

Figure 64
Every targeted service is stopped and deleted using ControlService and DeleteService, as
displayed in figure 65:

Figure 65
The NtQuerySystemInformation API returns an array of
SYSTEM_PROCESS_INFORMATION structures (one for each process running on the
system, 0x5 = SystemProcessInformation):

Figure 66
Each process name is compared to the list that was decrypted in the beginning, as displayed
below:

Figure 67
For every targeted process, the binary opens the process and terminates it and all of its
threads:

26/55

Figure 68

The binary creates an ico file called <RansomPseudoValue>.ico, as displayed below:

Figure 69
A new registry key called <RansomPseudoValue> is created using the RegCreateKeyExW
function, as shown in figure 70:

Figure 70
The DefaultIcon subkey is created, and it specifies the path for the newly created ico file:

Figure 71

27/55

The malware calls the SHChangeNotify routine to notify the shell to update its icon cache
(0x08000000 = SHCNE_ASSOCCHANGED, 0x1000 = SHCNF_FLUSH):

Figure 72
A new file called %PROGRAMDATA%\<RansomPseudoValue>.BMP is created using the
CreateFileW function:

Figure 73
Moving forward, there is a registry key opened by calling the RegCreateKeyExW API, as
shown in the next picture:

Figure 74
The “WallPaper” value inside the registry key is changed to the location of the newly created
BMP file:

Figure 75

28/55

After all of these activities, the Desktop has been changed to the following image:

Figure 76
Thread activity – sub_4095AB

The thread starts by decrypting the following information:

Figure 77

The version of the Darkside ransomware is also decrypted and represents the latest version
analyzed in the wild (2.1.2.3):

Figure 78
Another JSON structure is decrypted by the binary and will be used to collect data about the
local machine:

Figure 79

One more time, the process checks the type of the drives and is looking for
DRIVE_REMOVABLE (0x2), DRIVE_FIXED (0x3) and DRIVE_REMOTE (0x4):

29/55

Figure 80

The GetDiskFreeSpaceExW function is used to retrieve information about the targeted
drives, such as the total amount of space and the total amount of free space:

Figure 81
NtDuplicateToken is utilized to duplicate an existing token and to obtain a handle to a new
access token (0xC = TOKEN_DUPLICATE | TOKEN_IMPERSONATE | TOKEN_QUERY
and 0x2 = TokenImpersonation):

Figure 82
The thread’s impersonation token is changed via a call to the ZwSetInformationThread
routine, as shown in figure 83 (0x5 = ThreadImpersonationToken):

Figure 83

30/55

The ransomware retrieves the username associated with the current thread, as well as the
NetBIOS name of the local machine:

Figure 84

Figure 85
The current language of the machine is retrieved from the “LocaleName” value, as presented
below:

Figure 86
NetGetJoinInformation is used to get the join status information for the local computer:

Figure 87
The product name of Windows can be extracted by querying the “ProductName” value and
the Windows product ID can be extracted by querying the “ProductId” value, as shown in the
following pictures:

Figure 88

31/55

Figure 89
The malware constructs the following JSON, which contains data to be exfiltrated to the C2
server:

Figure 90

The final data looks like in the following JSON form:

Figure 91

The data from above is encrypted by a custom encryption algorithm:

32/55

Figure 92

Figure 93

The result of the encryption operation is base64-encoded, as shown below:

33/55

Figure 94

Figure 95

34/55

The following function is used to generate 2 random 4-byte values that will be utilized in the
network communications. It uses instructions such as RDRAND and RDSEED to generate
random numbers (if these are supported), but we’ll provide a deeper understanding of it
when we discuss file encryption (it’s also used to generate the Salsa20 matrix):

Figure 96
The parameters of the network request have the following structure:
random_number1=base64(encryptionresult)&random_number2=victim_uid:

35/55

Figure 97

The InternetOpenW function is called using a user agent decrypted by the malware as a
parameter:

Figure 98
InternetConnectW is utilized to connect to one of the C2 servers (baroquetees[.]com) on port
443:

Figure 99
The process creates an HTTP request handle using the HttpOpenRequestW routine, as
shown in figure 100:

Figure 100

36/55

There is also a call to the InternetSetOptionW API that is used to set the security flags for the
handle (0x1f = INTERNET_OPTION_SECURITY_FLAGS):

Figure 101
The binary sends the POST request to the C2 server using HttpSendRequestW:

Figure 102

Figure 103
The status code returned by the server is retrieved using the HttpQueryInfoW API (0x13 =
HTTP_QUERY_STATUS_CODE):

Figure 104
Interestingly, the ransomware doesn’t expect a 200 status code but a 500 (Internal Server
Error). If the status code isn’t 500, then the process repeats the steps described so far using
the second C2 server, rumahsia[.]com:

37/55

Figure 105

Figure 106
This last idea concludes our analysis of this thread. We continue to analyze the main thread.

The binary enumerates the volumes available on the machine and uses the CreateFileW
routine to open them:

38/55

Figure 107
DeviceIoControl is utilized to get information about the type, size, and nature of a disk
partition (0x70048 = IOCTL_DISK_GET_PARTITION_INFO_EX):

Figure 108
A new thread is created by the file using CreateThread:

Figure 109
Thread activity – sub_407558

The only action the thread does is using the GetLogicalDriveStringsW API to retrieve the
valid drives on the local machine:

Figure 110
If a volume doesn’t have a drive letter associated with it, then the ransomware does that
using the SetVolumeMountPointW API, as highlighted in the following picture:

Figure 111

39/55

The malicious process targets the following types of drives –
DRIVE_REMOVABLE (0x2), DRIVE_FIXED (0x3) and DRIVE_REMOTE (0x4):

Figure 112

The CreateFileMappingW function is used to create a named file mapping object (name
“Local\\job0-<Process Id>” means the object is created in the session namespace):

Figure 113
The binary maps a view of the file mapping into the address space of the process by calling
the MapViewOfFile routine (0xf001f = FILE_MAP_ALL_ACCESS):

Figure 114
A named event object called “Local\\job0-<Process Id>-Event” is created by the binary:

Figure 115
The ransomware launches itself with 3 parameters, and the new process will execute the
encryption operations:

40/55

Figure 116
OpenMutexW is utilized to open a named mutex called “Global\\T-job0-<Process Id>” (which
doesn’t exist at this time) – 0x100000 = SYNCHRONIZE:

Figure 117
The event object created earlier is opened by calling the OpenEventW API (0x1f0003 =
EVENT_ALL_ACCESS), as displayed in figure 118:

Figure 118
The file creates an I/O completion port that isn’t associated with a file handle, which will be
used by the main thread to send data that will be encrypted to worker threads:

Figure 119
Two different threads that will take care of the files’ encryption are created using the
CreateThread routine:

41/55

Figure 120
The ransom note README<RansomPseudoValue>.TXT is created and populated in every
directory the malware encrypts:

Figure 121
The process doesn’t encrypt some certain files, as displayed in the next figure:

Figure 122
A list of file extensions decrypted at the beginning of the execution is also excluded from the
encryption process:

42/55

Figure 123
Every targeted file is opened and read using the CreateFileW and ReadFile functions:

Figure 124

Figure 125
The file extension is changed to also include <RansomPseudoValue>, as shown below:

Figure 126
There is a second function call to CreateIoCompletionPort that associates the existing I/O
completion port with the FileHandle parameter:

Figure 127
The RSA public exponent and the RSA modulus will be used in the encryption process of the
Salsa20 matrix, as we’ll describe later on:

43/55

Figure 128
The ransomware checks to see if the RDRAND and RDSEED instructions are supported by
the processor. If that’s the case, it will use one of them to generate 56 random bytes, and 8
NULL bytes are added to the resulting buffer (Salsa20 matrix -> custom Salsa20
implementation). If none of these are supported, the malware uses the rdtsc instruction to
generate deterministic timestamps that will provide a 64-byte Salsa20 matrix:

Figure 129

44/55

Figure 130

The thread poses a custom implementation of the RSA-1024 algorithm (it doesn’t rely on
Windows APIs). Basically, the data d will produce a ciphertext = (d^exponent)%modulus. The
raw modulus calculation is performed using addition and subtraction and part of the
implementation is presented in the following figures:

Figure 131

45/55

Figure 132

The Salsa20 matrix is encrypted using the custom RSA implementation, as shown in figure
133:

Figure 133

There is a custom “hash” function applied to the above encryption result, which produces a
16-byte output:

46/55

Figure 134

The file content that will be encrypted is appended to the buffer that will be sent to the worker
threads:

Figure 135

The Salsa20 matrix is also added to the buffer, and it will be utilized by the worker threads to
encrypt the files:

Figure 136
Thread activity – sub_405E7C (File encryption)

The file content is encrypted using a custom Salsa20 implementation and the ciphertext
overwrites the plaintext in the buffer:

47/55

Figure 137

A snippet of the custom implementation is presented below:

48/55

Figure 138

The encrypted content is written to the initial file, followed by the encrypted Salsa20 matrix
and the hash value, as displayed in the following figures:

49/55

Figure 139

Figure 140
This last idea concludes our analysis of this thread. We continue to analyze the main thread.

If the current directory contains “backup”, then the malware deletes it:

Figure 141
The main thread sends the buffer described above (which includes file content to be
encrypted etc.) to the worker threads by calling the PostQueuedCompletionStatus routine:

Figure 142
We’ve also identified a function that we believe it’s used to propagate the malware to domain
controllers (we didn’t have one in our environment). It calls functions such as
DsGetDcNameW, DsGetDcOpenW and DsGetDcNextW:

50/55

Figure 143
Darkside enumerates all network shares using the NetShareEnum API and encrypts each
one of them by the main encryption routine described so far:

51/55

Figure 144

Thread activity – sub_4096A4

The following JSON is decrypted by the thread:

Figure 145

The file opens the following registry key by calling RegCreateKeyExW:

52/55

Figure 146
The Product ID is retrieved again by calling the RegQueryValueExW function:

Figure 147
The machine GUID is extracted from the registry and represents a unique identifier for the
machine:

Figure 148

Figure 149
After the encryption finishes, the malware sends encryption statistics to the C2 server, such
as: victim ID, uid, number of encrypted files, size of encrypted files, number of skipped files
and elapsed time. The final JSON structure looks like the following:

53/55

Figure 150

As already described so far regarding the C2 communication, the buffer is encrypted with a
custom algorithm and base64-encoded. The request sent to the C2 server is presented in
the next picture:

Figure 151
If the self deletion feature would be enabled, Darkside would delete itself using
ShellExecuteW:

Figure 152

Figure 153
As we specified at the beginning of the analysis, the binary can run with different parameters:

1 parameter: filename – only this file will be encrypted
2 parameters: “-path” directory – only this directory will be encrypted
3 parameters: “-work” worker0 job0-<Process Id> – this is spawned by the initial
process, already described

54/55

A particular case is handled by the ransomware differently when it deals with a shortcut file
(.lnk file). Basically, the binary wants to extract the full path to the file from this link. It calls the
CoCreateInstance API with the CLSID of {000214F9-0000-0000-C000-000000000046}
(IShellLinkW interface):

Figure 154
Unfortunately, Scylla didn’t help us here and it couldn’t provide us the methods. We’ve found
that the next 2 function calls are used to extract the path of the file/directory:

Figure 155

Figure 156
The file extracted above is encrypted as usual:

Figure 157

References

MSDN: https://docs.microsoft.com/en-us/windows/win32/api/

Fakenet: https://github.com/fireeye/flare-fakenet-ng

Any.run:
https://any.run/report/0a0c225f0e5ee941a79f2b7701f1285e4975a2859eb4d025d96d9e366e
81abb9/e7a712f5-961a-45b4-a7e5-a0f7196113a5

VirusTotal:
https://www.virustotal.com/gui/file/0a0c225f0e5ee941a79f2b7701f1285e4975a2859eb4d025
d96d9e366e81abb9/detection

https://docs.microsoft.com/en-us/windows/win32/api/
https://github.com/fireeye/flare-fakenet-ng
https://any.run/report/0a0c225f0e5ee941a79f2b7701f1285e4975a2859eb4d025d96d9e366e81abb9/e7a712f5-961a-45b4-a7e5-a0f7196113a5
https://www.virustotal.com/gui/file/0a0c225f0e5ee941a79f2b7701f1285e4975a2859eb4d025d96d9e366e81abb9/detection

55/55

Analysis of Darkside Ransomware v1.8.6.2:
https://chuongdong.com/reverse%20engineering/2021/05/06/DarksideRansomware/

Fireeye report: https://www.fireeye.com/blog/threat-research/2021/05/shining-a-light-on-
darkside-ransomware-operations.html

https://gist.github.com/api0cradle/d4aaef39db0d845627d819b2b6b30512

https://forum.powerbasic.com/forum/user-to-user-discussions/source-code/25222-wmi-
wrapper-functions

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-wmi/3485541f-6950-
4e6d-98cb-1ed4bb143441

INDICATORS OF COMPROMISE

C2 domains: baroquetees[.]com, rumahsia[.]com

SHA256:
0A0C225F0E5EE941A79F2B7701F1285E4975A2859EB4D025D96D9E366E81ABB9

Created files: README<RansomPseudoValue>.TXT, %PROGRAMDATA%\
<RansomPseudoValue>.BMP, %PROGRAMDATA%\<RansomPseudoValue>.ico

Service Name: <RansomPseudoValue>, Service display name: <RansomPseudoValue>

Registry key: HKCR\<RansomPseudoValue>\DefaultIcon=%PROGRAMDATA%\
<RansomPseudoValue>.ico

User-Agent: Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:79.0) Gecko/20100101
Firefox/80.0 (prone to False Positives)

https://chuongdong.com/reverse%20engineering/2021/05/06/DarksideRansomware/
https://www.fireeye.com/blog/threat-research/2021/05/shining-a-light-on-darkside-ransomware-operations.html
https://gist.github.com/api0cradle/d4aaef39db0d845627d819b2b6b30512
https://forum.powerbasic.com/forum/user-to-user-discussions/source-code/25222-wmi-wrapper-functions
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-wmi/3485541f-6950-4e6d-98cb-1ed4bb143441

